3.RC正弦波振荡器实验报告之欧阳光明创编
RC正弦波振荡器设计实验
综合设计 正弦波振荡器的设计与测试一.实验目的1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加的选频网络,用以确定振荡频率。
正弦波振荡的平衡条件为:..1AF = 起振条件为..||1AF > 写成模与相角的形式:..||1AF = 2A F n πψ+ψ=(n 为整数) 电路如图1所示:1. 电路分析RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路,决定振荡频率0f 。
1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。
该电路的振荡频率 : 0f =RCπ21① 起振幅值条件:311≥+=R R A f v ②式中d f r R R R //32+= ,d r 为二极管的正向动态电阻2. 电路参数确定(1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC=21f π ③为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求(2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。
此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R(3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实现稳幅。
实验 rc正弦波振荡器实验报告
实验rc正弦波振荡器实验报告
一、实验目的
1.掌握RC正弦波振荡器的设计方法
2.掌握RC正弦波振荡器的调试方法
二、实验仪器及器件
集成运算放大器μA741二极管电阻瓷片电容若干
三、实验原理
振荡电路有RC正弦波振荡电路、桥式振荡电路、移相式振荡电路和双T网络式振荡电
路等多种形式。
其中应用最广泛的是RC桥式振荡电路
1.电路分析
RC桥式振荡电路由RC串并联选频网络和同相放大电路组成,图中RC选频网络形成
正反馈电路,决定振荡频率fo, R、R,形成负反馈回路,决定起振的幅值条件。
两个二极管起稳定作用(如波形)
该电路的振荡频率
(1)起振幅值条件
(2)式中R,=R +15k +3k,若加二极管,此时R, =R +15k +3k/rj
此时rg为二极管的正向动态电阻
2.电路参数确定
(1) 确定R、R,
电阻R和R,应由起振的幅值条件来确定,由式(2)可知R,≥2 R 通常取R,=(2.1-2.5) R,
这样既能保证起振,也不致产生严重的波形失真。
(2) 确定稳幅电路
通常的稳幅方法是利用A,随输出电压振幅上升而下降的自动调节作用实现稳幅。
图中稳幅
电路由两只正反向并联的二极管D、D2和3kQ
电阻并联组成,利用二极管正向动态电
阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端
并联小电阻Rz。
实验证明,取R_≈rj时,效果最佳。
四、实验内容
1.根据图形连接好电路,填写如下表格
五、思考题及实验心得:
在RC桥式振荡电路中,若电路不能起振,应调整哪个参数?
若输出波形失真应如何调整?。
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
rc正弦波振荡器测量数据试验报告
rc正弦波振荡器测量数据试验报告一、实验目的1、学习RC正弦波振荡器的组成及其振荡条件;2、学会测量、调试振荡器。
二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。
1、RC移相振荡器:电路如右图1所示,选择R>>Ri。
起振条件:放大器A的电压放大倍数|A|>29电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围:几赫~数十千赫。
2、RC串并联网络(文氏桥)振荡器:本实验电路图如下面的图2所示。
电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
3、双T选频网络振荡器:本实验电路如下图3所示:电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。
三、实验器材1、+12V直流电源;2、函数信号发生器;3、双踪示波器;4、频率计;5、直流电压表;6、数字万用表;7、15K电阻2个、103电容4个、10电位器1个。
四、实验内容1、RC串并联选频网络振荡器:(1)按图2连接线路。
(2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。
(3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。
再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数A(3.2倍,要断开RC串并联网络测量)。
(4)用频率表测量振荡频率(893HZ),并与计算值进行比较。
(5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。
2、双T选频网络振荡器:(1)按图3组接线路。
其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。
《模拟电子技术》正弦波振荡电实验报告
《模拟电子技术》正弦波振荡电实验报告一、实验目的1、进一步学习RC 正弦波振荡器的组成及其振荡条件。
2、学会测量、调试振荡器。
3、理解RC 参数对振荡频率的影响。
二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器电路型式如图3-1所示。
振荡频率:RC21f O π起振条件:|A|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图3-1 RC串并联网络振荡器原理图图3-2是由集成运放构成的文氏桥正弦波振荡电路,RC选频网络如图3-3所示。
图3-2 文氏桥正弦波振荡器电路图3-3 RC 串并联选频网络令01=2f RC π,则该选频网络的频率特性表达式为:001F =3+()f f j f f-其幅频特性为:F =相频特性为:001=arctan ()3f f f f ϕ⎡⎤-⎢⎥⎣⎦﹣ 三、实验设备与器件1、+12V 直流电源。
2、函数信号发生器。
3、双踪示波器。
4、频率计。
5、直流电压表。
6、电阻、电容、电位器等。
四、实验内容1、按图3-2组接线路。
使R P1=R 2=10k Ω。
2、用示波器观测输出电压u O 波形。
1、u O 波形幅度2.测量振荡频率Rp1(kΩ) R2(kΩ) 测量值(Hz)计算值(Hz)10 10 158.983 159.15530 30 52.896 53.120 3放大器电压放大倍数输入:2.121V 输出:6.682V可知,电压的放大倍数为3.15。
4、RC串并联网络幅频特性f/Hz 100 120 150 155 159 180 200 220 250U1/V 5.987 5.981 5.957 5.921 5.906 5.996 5.889 5.975 5.928U2/V 1.806 1.672 1.517 1.487 1.453 1.369 1.270 1.189 1.088五、实验结果总结决定频率的各个参数它的标称值与实际值肯定是有误差的。
正弦波振荡器实验报告总结
正弦波振荡器实验报告总结
正弦波振荡器实验是电子学中的基础实验,本实验通过搭建RC 电路来产生正弦波信号。
整个实验包括搭建RC电路、选择合适的元件参数、调整电路工作点、观察输出波形等步骤。
在实验中,正确选择RC电路的元件参数是关键,需要根据实验要求进行合理的选择。
调整电路工作点也是非常重要的,需要通过对电容器的充放电过程进行观察和调试,才能达到较稳定的输出波形。
此外,观察输出波形也是实验中需要进行的重要步骤。
只有通过观察输出波形,才能判断电路的工作稳定性和准确度,判断是否需要进行进一步的调整。
总结来说,正弦波振荡器实验需要仔细调试和观察,对于理解电路工作原理和信号产生有着重要的作用。
rc正弦波振荡实验报告
rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。
本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。
实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。
具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。
2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。
3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。
当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。
通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。
当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。
讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。
当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。
这个充放电过程会不断重复,从而产生稳定的正弦波信号。
在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。
这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。
而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。
此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。
这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。
当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。
RC正弦波振荡器实验
RC 正弦波振荡器实验一、实验室名称电子技术实验室 二、实验目的1、 进一步学习RC 正弦波振荡器的组成及其振荡条件2、 学会测量、调试振荡器 三、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器 电路型式如图12-2所示。
振荡频率 RC21f O π起振条件 |A|>3 电路特点 可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图12-2 RC 串并联网络振荡器原理图注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。
四、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等五、实验内容1、 RC串并联选频网络振荡器(1)按图12-4组接线路图12-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。
(3) 接通RC串并联网络,并使电路起振,用示波器观测输出电压u O波形,调节R f使获得满意的正弦信号,记录波形及其参数。
(4) 测量振荡频率,并与计算值进行比较。
(5) 改变R或C值,观察振荡频率变化情况。
(6) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。
且输入、输出同相位,此时信号源频率为2πRC 1f f ο==六、实验数据 (1)静态工作点测量(2)电压放大倍数Ui=778mV,Uo=2.88V,AV=3.59,周期T=1000us,幅度为3V(3)f(理论)=1000Hz, f(实测)=990Hz,根据上参数可知频率f=1000Hz 计算值;R=16K ,C=0.01uF, f=f o =990Hz (4) 增大R 或C ,输出信号的频率减小。
正弦波振荡器实验报告
正弦波振荡器实验报告姓名:学号:班级:实验目的1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路设计及电参数计算。
2. 掌握振荡回路Q 值对频率稳定度的影响。
3. 掌握振荡器反馈系数不同时,静态工作电流IEQ 对振荡器起振及振幅的影响。
二、实验电路图三、实验内容及步骤1. 利用EWB 软件绘制出如图 1.7 的西勒振荡器实验电路。
2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形读出振荡频率,并做好记录3. 改变电容 C 6的值,观察频率变化,并做好记录。
填入表 1.3中。
4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。
填入表 1.3 中。
5.将C4 的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。
填入表 1.4 中。
四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图2)交流通路图2、改变电容 C 6的值时所测得的频率 f 的值如下:3、C40.033μF0.33μF0.01μFC6(pF)270470670270470670270470670F(Hz)494853.5403746.8372023.832756.832688.232814.4486357.7420875.4373357.21)、当C4=0.033uF 时:C6=270pF 时, f= 1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZC6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ2)、当C4=0.33uF时:C6=670uF 时, f= 1/T=1000000/30.4744=32814.4HZC6=270pF 时, f= 1/T=1000000/30.5280=32756.8HC6=470uF 时, f= 1/T=1000000/30.5921=32688.2HZ3)、C4=0.01时:当C6=470uF 时, f=1/T=1000000/2.3760=420875.4HZ 当C6=270uF 时,f=2、将 C4 的值恢复为 0.033μ F ,分别调节 Rp 在最大到最小之间当 C6=670uF 时, f=1/T=1000000/2.6784=373357.2HZ变化时的频率和波形如下:(3)、当Rp=30k 时, f=1/T=1000000/2.3760=420875.4HZ (4)、当Rp=20k 时, f=1/T=1000000/2.3520=425170.1HZ (5)、当Rp=10k 时, f=1/T=1000000/2.3664=422582.8HZ(6)、当 Rp=0k 时, f= 1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当 C4 较大(既为 0.33PF )时,不管 C6 如何变化,电路所输出的波形的频率比较稳定,而且没有失 真。
rc正弦波振荡实验报告
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
实验十四 RC正弦波振荡器
07电信2007117106 谢华实验十四RC正弦波振荡器一、实验目的1.掌握RC正弦波振荡器的电路结构及工作原理2.熟悉正弦波振荡器的测试方法3.观察RC参数对振荡频率的影响,学习振荡频率的测定方法二、实验仪器1 双踪示波器2 低频信号发生器3 频率计4 毫伏表直流电源三、实验原理正弦振荡电路一般包括两部分,放大电路A和反馈网络F,如图5-14-1所示X0Xf由于振荡电路不需要外界输入信号,因此,通过反馈网络输出的反馈信号Xf就是基本放大电路的输入信号Xid。
该信号经基本放大电路放大后,输出为Xo,若能使Xf与Xid大小相等,极性相同,构成正反馈电路,那末这个电路就能维持稳定的输出。
因而,Xf=Xid可引出正弦振荡条件。
由图5-14-1可知:Xo=AXid而Xf=Fxo 当Xf=Xid时,则有:AF=1上述条件可写成︱A F︱=1,称幅值平衡条件。
即放大倍数A与反馈系数F乘积的模为1,表明振荡电路已经达到稳幅振荡,但若要求电路能够自行振荡,开始时必需满足︱A F︱>1的起振条件。
由Xf与Xid极性相同,可得:ΦA+ΦF=1 称相位平衡条件即放大电路的相角和反馈网络的相角之和为2n·PI,其中n为整数。
要使振荡电路输出确定频率的正弦信号,电路还应包含选频网络和稳幅电路两部分。
选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。
RC正弦振荡电路也称为文氏桥振荡电路。
它的主要特点是利用RC串并联网络作为选频和反馈网络。
如图5-14-2所示:由串并联网络的幅频特性,可知当信号频率为f o=1/2·PI·RC时,选频网络的相角为0度,传递系数稍大于3。
故实验中的放大电路采用同相比例电路。
实验内容1、按上图连线,注意电阻1Rp=R,需预先调好再接入。
2、调节电位器2Rp,使电路产生正弦振荡,用示波器观察输出波形。
RC振荡电路实验报告
RC振荡电路实验报告一、实验目的1、深入理解 RC 振荡电路的工作原理。
2、掌握 RC 振荡电路的频率计算方法。
3、学会使用实验仪器测量 RC 振荡电路的相关参数。
4、观察 RC 振荡电路中电容和电阻值对振荡频率的影响。
二、实验原理RC 振荡电路是一种由电阻(R)和电容(C)组成的简单振荡电路。
它基于电容的充放电过程来产生周期性的振荡信号。
在 RC 串联电路中,当电源接通时,电容开始充电,充电电流逐渐减小,直到电容两端的电压达到电源电压。
然后,电容通过电阻开始放电,放电电流逐渐减小,直到电容两端的电压为零。
这个充放电过程会不断重复,形成周期性的振荡。
RC 振荡电路的振荡频率可以通过以下公式计算:f = 1 /(2πRC)其中,f 是振荡频率,R 是电阻值,C 是电容值,π 是圆周率。
三、实验仪器1、示波器:用于观察振荡电路的输出波形。
2、函数信号发生器:提供电源。
3、直流电源:提供稳定的电压。
4、电阻箱:用于改变电阻值。
5、电容箱:用于改变电容值。
6、万用表:测量电压、电流等参数。
四、实验步骤1、按照电路图连接好 RC 振荡电路,将电阻和电容的值设置为预定值。
2、打开直流电源和函数信号发生器,调整输出电压和频率,使其适合实验要求。
3、将示波器的探头连接到RC 振荡电路的输出端,观察输出波形。
4、调整示波器的时间和电压刻度,使波形清晰可见,并测量振荡周期 T。
5、根据测量得到的振荡周期 T,计算出振荡频率 f = 1 / T。
6、改变电阻箱的值,保持电容值不变,重复步骤 3 5,记录不同电阻值下的振荡频率。
7、改变电容箱的值,保持电阻值不变,重复步骤 3 5,记录不同电容值下的振荡频率。
五、实验数据及处理1、保持电容值 C =01μF 不变,改变电阻值 R 的实验数据如下:|电阻值(Ω)|振荡周期(μs)|振荡频率(kHz)|||||| 1000 | 150 | 667 || 2000 | 210 | 476 || 3000 | 270 | 370 |2、保持电阻值 R =1000Ω 不变,改变电容值 C 的实验数据如下:|电容值(μF)|振荡周期(μs)|振荡频率(kHz)|||||| 005 | 70 | 1429 || 01 | 150 | 667 || 02 | 300 | 333 |根据实验数据,以电阻值(或电容值)为横坐标,振荡频率为纵坐标,绘制出相应的曲线。
RC振荡电路实验报告
RC振荡电路实验报告一、实验目的1、深入理解 RC 振荡电路的工作原理。
2、学会测量 RC 振荡电路的频率和振幅。
3、研究 RC 振荡电路中电阻、电容参数对振荡频率的影响。
二、实验原理RC 振荡电路是一种由电阻(R)和电容(C)组成的简单振荡电路。
其基本原理是利用电容的充放电过程和电阻的限流作用,形成周期性的电压变化,从而产生振荡信号。
在 RC 串联电路中,当电源接通时,电容开始充电,充电电流逐渐减小,电容两端的电压逐渐升高。
当电容充电到电源电压时,充电过程结束,此时电容开始放电,放电电流逐渐增大,电容两端的电压逐渐降低。
当电容放电到电压为零时,放电过程结束,电容又开始充电,如此反复,形成振荡。
RC 振荡电路的振荡频率可以通过以下公式计算:$f =\frac{1}{2\pi RC}$其中,f 为振荡频率,R 为电阻值,C 为电容值。
三、实验仪器与设备1、示波器2、信号发生器3、直流电源4、电阻箱5、电容箱6、面包板7、导线若干四、实验步骤1、按照电路图在面包板上搭建 RC 振荡电路,选择合适的电阻和电容值。
2、将示波器的探头连接到 RC 振荡电路的输出端,调整示波器的设置,使其能够清晰地显示振荡信号的波形。
3、打开直流电源,观察示波器上的振荡信号,测量其频率和振幅。
4、改变电阻箱的阻值,保持电容值不变,重复步骤 3,记录不同电阻值下的振荡频率和振幅。
5、改变电容箱的电容值,保持电阻值不变,重复步骤 3,记录不同电容值下的振荡频率和振幅。
五、实验数据与分析|电阻值(Ω)|电容值(μF)|振荡频率(Hz)|振幅(V)|||||||1000|01|1592|5||2000|01|796|45||3000|01|531|4||1000|02|796|48||1000|03|531|42|通过对实验数据的分析,可以发现:1、当电容值不变时,随着电阻值的增大,振荡频率逐渐减小。
这是因为电阻值增大,充电和放电的时间常数增大,导致充放电速度变慢,从而使振荡频率降低。
rc振荡器实验报告
rc振荡器实验报告实验目的:通过rc振荡器实验,了解rc电路在谐振状态下的波形特征,掌握rc振荡器的基本工作原理及应用。
实验原理:rc振荡器是由一个放大器、一个正反馈回路和一个rc电路组成的。
其中,rc电路起到谐振的作用,放大器负责提供放大信号以及驱动rc电路,正反馈回路则是为了保持电路在谐振状态下稳定。
当rc电路的谐振频率等于放大器反馈信号的频率时,正反馈信号的放大效果将不断累积,rc电路的振幅将不断增加。
直到达到极限,rc振荡器将产生一个稳定的振荡信号输出。
实验装置:rc振荡器实验箱、数字示波器、万用表、电源、rc电路成品。
实验步骤与结果:1)将rc电路成品接入实验箱,并按照电路图连接实验线路。
如图所示:2)将数字示波器连接到rc电路的输出端,选用正弦波模式。
3)开启电源,调节数字示波器的探头量程和时间基准,使得波形能够正常显示。
4)调节放大器的电位器,使得rc振荡器产生一个稳定的正弦波信号输出。
记录下谐振频率。
5)逐渐减小放大器的电位器数值,观察rc振荡器的输出波形变化,记录下相关数据。
6)通过计算,确定rc电路的谐振频率、谐振带宽以及衰减因子等重要参数,分析rc振荡器的工作状态。
实验结论:通过本次实验可以发现,在rc振荡器的正反馈作用下,rc电路能够产生一个稳定的振荡信号输出。
当放大器电位器的数值逐渐减小时,输出波形的频率将发生变化,谐振频率也随之改变。
通过实验测量,我们可以确定rc电路的谐振频率、谐振带宽以及衰减因子等参数,这些参数的优化设计可以进一步提高rc振荡器的稳定性和输出性能。
总之,本次实验有助于我们对rc振荡器的基本工作原理和应用有更深入的了解,对于电子电气相关专业的学生来说也是一个必要的实践环节。
RC正弦波振荡器
模拟电子技术 RC 正弦波振荡器实验报告内容包含:实验目的、实验仪器、实验原理,实验内容、实验步骤、实验数据整理与归纳(数据、 图表、计算等)、实验结果分析、实验思考题、实验心得。
【实验目的】(1)进一步学习RC 正弦波振荡器的组成及其振荡条件。
(2)学会测量、调试振荡器。
【实验仪器】 (1)+12V 直流电源;(3) DS1062E-EDU 双踪示波器; (5) MS8200D 直流电压表; (7)电阻、电容、电位器等若干支。
【实验原理】从结构上看,正弦波振荡器是没有输入信号的,是一种带选频网络的正反馈 放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz 〜 1MHz 的低频信号。
1. RC 移相振荡器RC 移相振荡器电路形式如图9-1所示,选择R>>G 。
图9-1 RC 移相振荡器原理图(2) AS101E 函数信号发生器; (4)频率计;(6) 3DG12X2 或 9013X2 支;振荡频率 f D =——2n46RC起振条件 放大器A 的电压放大倍数1 A I >29电路特点 简便,但选频作用差,振幅不稳,频率调节不便,一般 用于频率固定且稳定性要求不高的场合。
频率范围 儿赫〜数十千赫口2. RC 串并联网络(文氏桥)振荡器3. 串并联网络振荡器电路形式如图9-2所示。
一“力RCIA >3可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到 良好的振荡波形。
图9-2 RC 串并联网络振荡器原理图注;本实验采用两级共对极分立兀件放大哥组成RC F 弦波振菊谓口【实验内容】1. RC 串并联选频网络振荡器 (1)按图9-3组接线路。
(2)断开RC 串并联网络,(不接A 、B ),测量放大器静态工作点。
记录数据,如 表9-1所示。
起振条件表9-1(3)接通RC 串并联网络(联A、B ),并使电路起振,用示波器观测输出电压%的 波形,调节学使获得满意的正弦信号,记录波形及参数(幅度)。
模拟电子技术实验RC正弦波振荡器
模拟电子技术实验 RC正弦波振荡器
主要内容
1、实验目的 2、实验原理 3、实验设备与器件 4、实验内容及步骤
1 实验目的
了解选频网络的组成及其选频特性; 掌握RC正弦波振荡器的组成及其振荡条件; 学会测量、调试选频网络和振荡器。
动画演示
Xid
Xo
A
Xf F
如何起振? AF1 如何保证输出频率?选频网络(RC/LC选频网络); 起振原因是什么?内部噪声、接通电源时的阶跃。
稳幅 当输出信号幅值增加到一定程度时,使振幅条件:
AF 1
AF 1
8
2 实验原理
RC正弦波振荡器-选频网络
当
f
f0
1
2RC
时
0
1 RC
0
1 RC
F
3
j(
2 实验原理
信号产生电路-振荡条件
Xi +
Xid
A
Xo
–
Xf
F
A F
A 1 AF
AF 1
AF 1
a f 180(2n )
负反馈
Xi +
Xid
A
Xo
+
Xf
F
AF
1
A AF
AF 1
AF 1
a f 0(2n )
正反馈
2 实验原理
信号产生电路-振荡条件
振荡平衡条件
AF 1
AF 1
a f 0(2n )
稳幅环节:Rf、R1。
2 实验原理
A 1 Rf
RC正弦波振荡器-稳幅原理
R1
模电实验_RC正弦波振荡器
实验六——正弦波振荡器发生器实验报告一,实验目的(1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。
(2)学习用集成运算放大器组成波形发生器的工作原理。
二,实验原理波形的产生是集成运算放大器的非线性应用之一。
常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。
RC正弦波振荡器。
RC桥式震荡电路由两部分组成,即放大电路和选频网络。
电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。
若图中R1=R2=R,C1=C2=C,则电路的振荡频率为f0=1/2πRC。
为使电路起振要求电压放大倍数Av满足Av=1+(RP+R4)/R3>3→Rp+R4>2R3。
三,实验内容(1)用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系。
(2)用示波器测量Vo,Vc处波形的幅值和频率(3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。
(4)当T1=T2时,测量电阻Rp的大小,将理论值与实测值进行比较。
四,实验器材(1)双路直流稳压电源一台(2)函数信号发生器一台(3)示波器一台(4)万用表一台(5)集成运算放大器两片(6)电阻,电容,二极管,稳压管若干。
(7)模拟电路试验箱一台。
五,实验步骤RC正弦波振荡器。
1)按图示连接号电路,检查无误后,接通±12V直流电源。
2)用示波器观察有无正弦波输出。
3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。
4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。
5)测量当R1=R2=10kΩ,C1=C2=0.01μF和R1=R2=10kΩ,C1=C2=0.02μF 两种情况下。
rc正弦波振荡实验报告
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
3.RC正弦波振荡器实验报告之欧阳法创编
RC正弦波振荡器实验报告时间:2021.03.09 创作:欧阳法
学号 200800120228姓名辛义磊实验台号
30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。
二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组
具有随外加正偏电压成。
由于二极管的导通电阻r
D
增加而减小的非线性特性,所以振荡器的起振条件为当适当减小,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。
振荡器的振荡角频率
欲产生振荡频率符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。
电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。
2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路图。
RC振荡器
四、实验步骤及内容
准备:接通电路电源。
(一)电路调试
按照电路图连接电路,并进行调试
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为=858.96Hz
时间:2021.03.09 创作:欧阳法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*欧阳光明*创编 2021.03.07
RC正弦波振荡器实验报告
欧阳光明(2021.03.07)
学号 200800120228姓名辛义磊实验台号 30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。
二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组成。
由于二极管的导通电阻r D 具有随外加正偏电压增加而减小的非线性特性,所以振荡器的起振条件为
当适当减小,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。
振荡器的振荡角频率
欲产生振荡频率符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。
电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。
2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路图。
RC振荡器
四、实验步骤及内容
准备:接通电路电源。
(一)电路调试
按照电路图连接电路,并进行调试
*欧阳光明*创编 2021.03.07
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为=858.96Hz
五、思考题。