数字控制可变增益放大器的设计

合集下载

可变增益放大器电路设计

可变增益放大器电路设计

可变增益放大器电路设计可变增益放大器电路设计设计可变增益放大器电路的步骤如下:1. 确定需求:首先确定所需的增益范围和输入信号的类型。

根据应用需求决定电路的放大倍数。

2. 选择放大器芯片:根据需求选择适合的放大器芯片。

考虑芯片的输入和输出特性,以及供电电压和功耗等因素。

3. 设计反馈网络:放大器通常采用反馈网络来控制增益。

根据所选芯片的规格书,设计反馈网络的参数,包括电阻和电容等元件的数值。

4. 确定电源供电:根据芯片的供电要求,选择合适的电源电压和电流。

确保电源稳定可靠,能够满足放大器的工作需求。

5. 进行仿真和优化:使用电路仿真软件,仿真整个电路的性能。

根据仿真结果进行优化,调整电路参数以改善性能,如增益平坦度、频率响应等。

6. 绘制电路图:根据电路设计,使用电路设计软件绘制出完整的电路图。

确保电路图的正确性和可读性。

7. 原理图布局:将电路图中的元件进行布局,包括安放芯片、电容、电感、电阻等元件。

合理布局可以减小信号干扰和噪音,提高电路性能。

8. 选择元器件:根据电路设计,选择适合的电容、电阻、电感等元件。

考虑元件的品质、价格和供货情况等因素。

9. 组装和调试:将所选元件安装到电路板上,进行电路的组装。

然后进行电路的初步调试,检查电路的工作状态和性能。

10. 最终测试:完成电路的组装和调试后,进行最终测试。

测试电路的增益范围、频率响应、失真等性能指标是否符合设计要求。

11. 优化和改进:根据最终测试结果,对电路进行优化和改进。

可能需要调整元件参数、更换芯片或进行其他改进措施。

12. 文档和记录:在设计过程中,及时记录设计思路、仿真结果、调试过程和测试结果。

编写详细的设计文档,以备将来参考和复用。

通过以上步骤,可以设计出一个符合要求的可变增益放大器电路。

设计过程中需要考虑到电路的性能、稳定性、可靠性和成本等方面的因素,并进行合理的优化和改进。

AD8370应用指南( 可变增益放大器)

AD8370应用指南( 可变增益放大器)

AD8370是美国AD公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数以及优良的失真性能和较宽的带宽,可以广泛应用于差分ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口、单端差动转换器中。

文章介绍了AD8370的基本原理及应用设计方法。

关键词:AD8370;数字控制;可变增益;放大器1 概述AD8370是美国AD(ANALOG DEVICES INC)公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数。

由于其具有优良的失真性能和较宽的带宽,所以特别适合作为现代接收器设计中的增益控制器件应用。

图1是AD8370的原理框图。

在宽输入动态范围应用中,AD8370可提供两种输入范围,分别对应于高增益模式和低增益模式。

它内部的一个7位衰减器在提供28dB的衰减范围时,分辨率高于2dB,而在22dB的衰减范围时,分辨率高于1dB。

AD8370的输入增益选择范围为17dB,可输出低失真的高电平。

AD8370可通过在PWUP引脚上输入合适的逻辑电平来上电或者断电。

当关闭电源时,AD8370的消耗电流小于5mA,并可提供优良的输入输出隔离。

AD8370采用ADI 高速XFCB方法,因而可在宽带情况下提供高频率和低失真特性,其典型静态电流为78mA。

AD8370可变增益放大采用的是密集的16脚TSSOP封装,工作温度范围为-40℃~+85℃。

其主要特点如下:●差动输入为200Ω;●差动输出为100Ω;●噪声系数为7dB(最大增益时);●频带宽度可从低频到700MHz(-3dB);●具有40dB的精确增益范围;●带有串行7位接口;●可通过管脚编程低、高增益,其中低增益范围为-11~17dB,高增益范围为+6~34dB;●输入动态范围很宽;●单电源可低至3V。

AD8370可应用于差动ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口以及单端差动转换等领域。

20可变增益放大器的设计

20可变增益放大器的设计
vo R f i0 R f (i1 i2 .... in ) ( R f / R1 )VREF (b1 2 1 b2 2 2 ...bn 2 n )
DA转换器构成的可编程增益放大器 除法器型可编程增益放大器
可编程仪表放大器
• PGA205
(有电阻型,引脚型,数字型)
模拟开关的基本原理
模拟开关的结构是将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个方向上同等顺畅地通过,因而 也没有严格的输入端与输出端之分。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决 定。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS或是 TTL逻辑、以及模拟电源电压是单或是双电源,对数字输入信号进行所需的电平转换。(CD4066没有电 平转换)。
模拟开关的应用
3、音频信号的失真问题
音频信号对失真的要求都比较高,模 拟开关在切换音频信号时由于导通电 阻随信号变化(即非线性)产生了信 号失真。
模拟开关的应用
4、高频或视频的特殊要求:
RON和寄生电容之间的平衡对视频信号非常重要。RON较大的传统模拟开关需要额外增益级来补偿插 入损耗。同时,低RON开关具有较大寄生电容,减小了带宽,降低视频质量。低RON开关需要输入缓冲器, 以维持带宽,但是这会增加元件数量。L、T型开关适合高频开关,有比较高的隔离度,可以利用单刀双 置。
电阻越小、越平坦越好
模拟开关的基本原理
模拟开关CD4051-53特性
通路电阻与电源电压、输入电压的关系
通路电阻与温度、输入电压的关系
模拟开关CD4051-53参数
模拟开关CD4051-53参数
模拟开关CD4051-53参数

增益可自动变换放大器的设计与实现

增益可自动变换放大器的设计与实现

增益可自动变换放大器的设计与实现一、设计任务及指标:设计一个增益可自动变换的交流放大器。

1、放大器增益可在1倍2倍3倍4倍四档间巡回切换,切换频率为1Hz;2、对指定的任意一种增益进行选择和保持,保持后可返回巡回状态;3、通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示1、2、3、4倍即可。

4、电源采用±5V电源供电。

二、设计原理以及内容:1、时钟产生电路:利用555电路组成多谐振荡器,管脚3输出所产生的时钟信号,其频率计算公式为:F=1/T=1.44/C1(R1+2R2)令C1=10uF,R1=R2,则带入公式可求:R1=R2=48k ohm在multisim里所组成的电路图如左:2、序列产生电路:用74LS161构成四位加法计数器采用异步清零法,产生QD QC QB QA :0000-0001-0010-0011-0000序列,使得增益循环变换。

将QC通过非门接到CLR段,当QC为1时,计数器异步清零。

3、译码电路:将74LS161的四个状态进行译码,1Y0到1Y3输出端分别是对增益1到4倍的选择4、选择保持电路:手动实现4个增益状态的选择:将74LS161的使能端与J3、U6A的使能端连接,并通过非门连到U4A 的使能端,当J3为高电平的时候,74LS161与U4A 工作,实现增益的自动变换;当J3接地的时候,U6A工作,实现增益的选择与保持。

5、数码管显示电路:1)由于74LS139工作时输出低电平,不工作时输出高电平,所以将两个74LS139的输出端分别与非,使工作时ABCD输出高电平。

J3 J2J1 增益0 00 101 210 311 41 自动控制2)连接到数码管:A B C D a b c d 显示 1000 0000 0 0100 0001 1 0010 0010 2 000100113a=b=0 c: c= A _B _ = A+B ___________d: d= A _C _ = A+C ___________所以把a,b 接地,用两个或非门实现c,d 的连接。

pga可编程增益放大器原理

pga可编程增益放大器原理

pga可编程增益放大器原理1.引言1.1 概述可编程增益放大器(Programmable Gain Amplifier,PGA)是一种用于信号处理和调节的电路器件。

它是一种特殊的增益放大器,可以通过改变放大倍数来调整信号的幅度。

在很多应用中,信号的幅度常常需要进行调节,以满足系统对信号灵敏度和动态范围的要求。

传统的解决方法是使用固定增益的放大器,但这种方法在应对不同幅度的信号时存在一定的局限性。

与传统的固定增益放大器不同,PGA具有可编程的增益调节功能。

通过改变输入和输出之间的放大倍数,PGA能够根据实际需求灵活地调整信号的幅度,从而更好地适应不同的应用场景。

可编程增益放大器通常由放大电路和数字控制系统组成。

放大电路负责对信号进行放大处理,而数字控制系统通过用户界面或者计算机接口等方式,向放大电路发送控制信号,以调整放大倍数。

这种数字控制的特性使得PGA更加灵活可靠,并且可以实现更为精确的增益调节。

在实际应用中,PGA广泛用于各种需要信号调节的领域,如通信系统、音频处理、医疗设备等。

它可以用于增强信号弱化后的信号,调节信号的动态范围,提高系统的灵敏度和精度,同时还可以减少噪声和失真的影响。

本文将详细介绍可编程增益放大器的基本原理和工作原理,并对其应用前景进行展望。

通过深入了解PGA的原理和特点,读者能够更好地了解和应用可编程增益放大器,为相关领域的研究和开发提供一定的参考和指导。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍了整篇文章的组织和结构。

通过明确阐述文章的组织框架和各个章节的内容安排,读者可以更好地理解整篇文章的逻辑脉络。

文章结构部分应包括以下内容:首先,介绍整篇文章的目的和意义。

可以说明可编程增益放大器在电子领域的重要性和应用前景,引发读者的兴趣。

然后,明确文章的章节安排。

可以简要介绍每个章节的主要内容和要点,以及各个章节之间的逻辑关系。

接着,说明各个章节的篇幅安排。

毕业设计--增益可自动变换的放大器设计

毕业设计--增益可自动变换的放大器设计

增益可自动变换的放大器设计一、设计要求1、放大器增益可在1倍→2倍→3倍→4倍四档间巡回切换,切换频率为1赫兹。

2、能够对任意一种增益进行选择和保持(演示:控制某个增益保持时间为4秒)。

二、设计方案1、方案图:2、功能说明:此电路由电源电路,时钟脉冲产生电路,具有延时功能的脉冲产生、反相电路、计数电路、译码驱动电路、数码显示电路、具有选择功能的电路、电阻网络以及放大电路九部分组成。

增益可自动变换的放大器是通过以下方式来实现其功能的:时钟脉冲产生电路控制增益的切换频率,并通过计数电路对某一种增益进行选择;具有延时功能的脉冲产生电路通过对计数电路使能端的控制达到对某一种增益保持的目的;通过译码驱动显示电路显示不同的放大倍数;通过计数电路输出的信号控制具有选择功能的电路来实现不同反馈电阻的接入,从而实现了不同增益范围的切换。

三、电路设计与分析1、时钟脉冲产生电路、具有延时功能的脉冲产生电路及反向电路该部分电路的核心器件是555定时器,其中,时钟脉冲产生电路是由555定时器组成的多谐震荡器,具有延时功能的脉冲产生电路是由555定时器组成的单稳态触发器。

其具体电路如下:图一时钟脉冲产生电路图二具有延时功能的脉冲产生电路及反向电路555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。

按其工艺分双极型和CMOS型两类,其应用非常广泛。

2、555定时器的组成和功能图1—1是555定时器内部组成框图。

它主要由两个高精度电压比较器A1、A2,一个RS触发器,一个放电三极管和三个5KΩ电阻的分压器而构成。

3、555定时器的应用如图所示的时钟脉冲产生电路是用555定时器组成的多谐震荡器,其工作波形如下所示:计算公式如下:输出高电平时间tpL=RP1C2ln2≈0.7RP1C2输出低电平时间tpH=(R2+RP1)C2ln2≈0.7(R2+RP1)C2振荡周期f=1/ tpL+tpH≈1.43/ (R2+RP1)C2由以上计算公式可知:通过确定电阻阻值及电容容值和调节电位器RP1可以实现频率为1赫兹的时钟脉冲输出。

自动增益控制放大器的设计与实现

自动增益控制放大器的设计与实现

自动增益控制放大器的设计与实现程望斌1, 杨陈明1, 江 武1, 贺利苗2, 佘凯华1, 龙 杰1(1. 湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006; 2. 湖南理工学院 经济与管理学院, 湖南 岳阳 414006) 摘 要: 为实现稳定输出, 需对放大器系统的增益进行自动控制. 本文提出了自动增益控制放大系统的总体设计方案, 并对主要功能模块进行了方案比较与论证, 重点对硬件系统和软件系统进行了详细设计, 最后对系统进行了完整测试, 并对检测结果进行了分析. 结果表明: 系统稳定可靠、操控方便, 具有较好的人机交互性能.关键词: 自动增益控制; MSP430单片机; 直流放大; PGA2310中图分类号: TN432 文献标识码: A 文章编号: 1672-5298(2015)02-0048-05Design and Realization of Automatic Gain Control AmplifierCHENG Wang-bin 1, YANG Chen-ming 1, JIANG Wu 1, HE Li-miao 2,SHE Kai-hua 1, LONG Jie 1(1. College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;2. College of Economics and Management, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract : To achieve the stable output, amplifier system needs to be automatically regulated. This paper presents the automatic gain control amplifier system overall design, compares and demonstrates the main function module scheme. The hardware system and software system is emphasis designed in detail. Finally system is completely tested, and the testing results are analyzed. The results show that the system has good man-machine interactive performance and also the system is stable and reliable, in addition, and it is easy to control.Key words : automatic gain control; MSP430 microcomputer; Dc amplifier; PGA2310引言随着电子信息技术的迅速发展, 信号传输与增益控制技术广泛应用于军事、工业等行业, 具有较好的研发价值. 自动增益控制, 可以使系统的输出信号保持在一定范围内, 因此在信号传输领域得到广泛应用. 本文设计的数字式自动增益控制放大器, 是利用线性放大和压缩放大的有效组合对输出信号进行调整[1]: 当输入信号较弱时, 线性放大电路工作, 保证输出信号的强度; 当输入信号强度达到一定程度时, 启动压缩放大线路, 使输出幅度降低, 衰减输入信号, 从而实现放大器的自动增益控制.1 系统总体设计方案系统共分为三大部分: 第一部分为稳幅功能模块, 采用−95.5dB~31.5dB 程控放大, 通过NE5532跟随器, 实现稳幅功能. 比如对幅值在10mV~1V 的输入信号, 可使输入信号有效值稳定在353.5mV 左右, 且在其频率带宽范围内, 保证其幅频曲线稳定, 以及后级的功率放大电路稳定. 第二部分为峰值检波模块, 其采用AD637进行真有效值峰值检波. 第三部分为功率放大器, 采用运放NE5532, 在满功率带宽为100KHz 且幅值达到10V 时, 其压摆率为9V/us, 能够满足要求, 并且能支持±20V 供电. 再利用场效应管实现其输出电流的扩流, 就能使功率到达10W. 通过单片机MSP430G2553控制既实现了放大器电压增益Av 可自动调节并显示, 又降低了整个系统的成本. 因而系统效率高, 成本低, 可靠性和稳定性较强.输入信号经过电压跟随器, 将输入信号送给PGA2310自动调节增益AGC 模块, 通过控制器MSP430G2553对其进行控制. 而AD637真有效值检波模块是对PGA2310的输出信号进行峰值检波, 并收稿日期: 2015-04-05作者简介: 程望斌(1979− ), 男, 湖北崇阳人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 光电子技术、学科竞赛第28卷 第2期 湖南理工学院学报(自然科学版) Vol.28No.22015年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2015第2期 程望斌, 等: 自动增益控制放大器的设计与实现 49将检测的真有效值反馈给单片机从而达到环路控制的目的[2]. 为了设计的更人性化, 特增加了显示模块, 能够显示AGC 放大器当前增益的分贝值. 功率放大部分是对AGC 模块的输出信号进行功率放大, 驱动10Ω的负载. 系统总体设计框图如图1所示.2 方案论证与选择(1) AGC 电路方案论证与选择方案一: 典型的是采用场效应管或三极管控制增益. 主要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现增益控制[3].方案二: 采用TI 公司VCA810压控放大芯片, 用两级VCA810级联实现−40dB~40dB 的程控放大. VCA810具有低失调电压, 一级放大倍数最大范围−40dB~40dB, 且外围电路简单, 但由于单级放大倍数过大易引起自激, 故采用两级级联放大.方案三: 采用TI 公司PGA2310数字程控放大芯片, 单级放大倍数的最大范围−95.5dB~31.5dB, 并且内部含有两个相互独立的通道, 其构成的外围电路简单, 易操控, 精确度较高.方案比较: 方案一采用大量分立元件, 电路复杂, 稳定性差, 调试较繁琐, 且精度不够. 方案二需要两级级联, 实现效果较好, 但由于MSP430G2553内部没有DA, 需要外加DA 芯片控制, 搭建电路较复杂. 方案三能够直接由单片机控制, 电路简单, 容易实现.(2) 峰值检波电路方案论证与选择方案一: 基本的峰值检波电路是由二极管电路和电压跟随器组成的, 此电路能够检测的信号频率范围宽, 但受二极管导通压降等因素的影响, 检波精度差.方案二: 真有效值检波电路采用ADI 公司的AD637,该芯片真有效值rms V V =输出为信号的真有效值电压.方案比较: 方案一电路简单, 容易调试, 受器件的影响使得测量精度失准. 方案二采用集成芯片实现峰值检波, 外围电路搭建容易, 并且抗噪声性能好、精度高.(3) 功率放大方案论证与选择方案一: 由多个高速缓冲器BUF634并联实现扩流输出, 提升放大器带负载能力[4]. 方案二: 用分立元件构成末级放大电路, 利用集成运放和MOSFET 扩流来实现放大.方案比较: 方案一效果好但成本较高; 方案二虽然实现较为麻烦, 但是成本低廉, 效果较好. 故采用方案二.图1 系统总体设计框图50 湖南理工学院学报(自然科学版) 第28卷3 系统硬件设计3.1 PGA2310构成的程控AGC 电路程控AGC 电路如图2所示. 为提高信号的稳定性, 信号经信号输入端口至NE5532运放构成跟随缓冲电路. 将此信号输入至PGA2310 Vin-L 引脚, 其正负电源引脚各加入10uf 和0.1uf 的电容滤波, 然后PGA2310输出信号通过NE5532跟随器输入至AD637构成的真有效值检波电路, 最后MSP430单片机AD 采集检波后的直流信号. 设定当输入直流或交流时, 如果检波输出信号大于353mV 或小于353mV , 单片机自动检测并且调节PGA2310增益, 使PGA2310输出直流电压信号时幅值稳定在0.5V 左右, 输出交流信号时峰值稳定在1V 左右.3.2 AD637真有效值检波电路PGA2310程控输出信号输入至AD637 Vin 管脚, 当输入为0时, 调节RP2滑动变阻器使检波输出也为0; 当有输入信号时, 调节RP1滑动变阻器使输出信号为输入信号有效值, 得到正确的检波直流信号. 检波电路图如图3所示.图2 程控AGC 电路图图3 AD637真有效值检波电路图第2期 程望斌, 等: 自动增益控制放大器的设计与实现 51 3.3 功率放大为实现较好的功率放大要求, 后级需要驱动10Ω负载, 由于普通运放不能提供驱动负载所需功率, 所以必须进行功率放大以提供所需功率并且将信号放大2倍. 我们采用如图4所示运放加MOS管电路, 具有带负载能力强等优点.4 系统软件设计本系统软件设计部分基于MSP430单片机平台, 主要完成增益控制、AD采集、预置信息液晶显示和按键控制[5], 系统以友好的人机界面展现给用户. 系统设计流程图如图5所示.在图5中, 我们采用条件判断语句控制AGC模块的增益, 并且还添加了一些容错措施, 以达到AGC 放大器在频带内稳定输出的目的, 为后级的功率放大电路的稳定提供了保证.5 系统测试及结果分析5.1 测试仪器TDS1012双踪示波器、SU3080数字函数信号发生器、直流稳压电源、万用表等.图4 功率放大电路图图5 系统设计流程图52 湖南理工学院学报(自然科学版) 第28卷5.2 直流信号放大测试测试方法: 幅度可变的直流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测测试输出信号. 测试结果见表1.输入信号(mv) 输出信号理论值(mv) 输出信号测试值(mv) 相对误差(%)<0.01 10.00 9.89 1.1% 0.1 10.00 9.90 1% 1 10.00 10.02 0.2%测试条件: 输入直流电压信号(0.01V/0.1V/1V)分别由滑动变阻器分压得到. 5.3 交流信号放大测试测试方法:(1) 从函数发生器输入频率为10KHz 且幅值可变的交流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表2.输入信号(mV) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%) <0.01 10.00 9.88 1.2% 0.01 10.00 9.94 0.6% 1 10.00 10.03 0.3%(2) 从函数发生器输入信号幅值为1V 且频率可变的交流电压信号至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表3.输入信号(Hz) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%)1 10.00 9.88 1.2% 10 10.00 9.86 1.4% 1000 10.00 9.89 1.1% 10K 10.00 9.92 0.8% 100K 10.00 9.91 0.9% 200K 10.00 9.89 1.1%5.4 测试结果分析由测试数据可知, 放大器增益控制, 交直流放大, 带宽和带负载能力等指标都达到了要求. 在测量输入信号幅值低于10mV 时, 由于输入信号幅度过小、噪声的掩盖和仪器磨损等原因, 所以此项测试结果有误差.6 总结本文设计的系统实际输入信号有效值达到5mV , 在现有的仪器条件下, 信号幅度输出小时噪声大, 导致输出波形噪声较大. 放大器在驱动 10Ω负载时, 通频带带宽超过 100KHz, 带内失真小, 但功率放大器对扩流MOSFET 需配对, 否则容易产生交越失真. 如果对功率放大电路进行改善, 就能拓宽带宽[6] , 增大信号载体的容量.参考文献[1] 陈亮名, 杨 昆. 基于宽带高增益的放大器设计[J]. 电子设计工程, 2014, 22(15): 146~148 [2] 赖小强, 李双田. 数字闭环自动增益控制系统设计与实现[J]. 网络新媒体技术, 2013, 2(3): 40~44 [3] 李怀良, 庹先国, 朱丽丽, 等. 中低频宽动态范围AGC 放大器设计[J]. 电测与仪表, 2013, 50(566): 96~99 [4] 于国义, 张 乐, 崔先慧, 等. 用于CMOS 图像传感器的AGC 放大器设计[J]. 中国科技, 2013, 8(1): 10~13 [5] 李晓宇, 宫 平, 李杉杉, 等. 自增益电路在激光测距中的应用[J]. 电子设计工程, 2014, 22(18): 77~78, 83 [6] 陈铖颖, 黑 勇, 戴 澜, 等. 面向助听器应用的低功耗自动增益控制环路[J]. 微电子学, 2013, 43(4): 464~467表1 直流信号放大测试结果表2 交流信号放大测试结果(信号频率为10KHz)表3 交流信号放大测试结果(信号幅值为1V)。

程控增益放大器的几种通用设计方法

程控增益放大器的几种通用设计方法

程控增益放大器的几种通用设计方法程控增益放大器(AGC)是一种能够自动调节增益的放大器,它能够在输入信号强弱不一的情况下保持输出信号的稳定性。

在许多无线通信系统和音频设备中,AGC都扮演着重要的角色。

本文将介绍几种常见的程控增益放大器的通用设计方法,帮助读者更好地了解和应用AGC技术。

一、基于反馈的AGC设计方法反馈是一种常见的控制方法,通过对输出信号进行采样并与输入信号进行比较,然后根据比较结果对增益进行调节。

基于反馈的AGC设计方法一般包括以下几个关键步骤:1. 采样输出信号。

通过使用信号检测器或功率检测器来对输出信号进行采样,获取其能量或功率的信息。

2. 与输入信号进行比较。

将采样得到的输出信号能量或功率与输入信号进行比较,得到它们之间的差异。

3. 根据比较结果调节增益。

根据比较结果来控制放大器的增益,使输出信号的能量或功率保持在一个稳定的水平。

基于反馈的AGC设计方法的优点是稳定性高、响应速度快,适用于大多数AGC应用场景。

这种方法也存在一些缺点,比如对反馈路径的稳定要求高、容易产生回音等问题。

与基于反馈的AGC设计方法相对应的是基于前馈的AGC设计方法。

前馈AGC的核心思想是在信号放大前通过控制环路对输入信号进行预处理,从而实现对放大器增益的控制。

基于前馈的AGC设计方法一般包括以下几个关键步骤:1. 使用可变增益放大器。

在输入信号经过放大之前,通过可变增益放大器对信号进行预处理,调节增益来实现对输入信号的控制。

2. 设置控制环路。

设计控制环路,通过对控制信号进行调制来控制可变增益放大器的增益,从而实现对输出信号的稳定控制。

3. 调节控制参数。

通过调节控制环路的一些参数,比如控制信号的幅度、频率等来控制放大器的增益。

随着数字技术的发展,越来越多的AGC设计方法开始采用数字控制的方式。

基于数字控制的AGC设计方法一般包括以下几个关键步骤:1. 数字信号处理。

将输入信号进行数字化处理,并通过一些算法对信号的能量或功率进行测量和分析。

VCA820可控增益放大器原理

VCA820可控增益放大器原理

VCA820可控增益放大器原理宽带放大器在工业测量与控制领域应用广泛。

在测量与控制电路中,宽带放大器是调理传感器输出信号的重要环节。

传感器输出的电平信号通常不是规则的正弦信号,且输出电压范围往往变化很大,这就需要后级放大器具有较高的频带宽度和灵活的电压增益,因此,这里提出一种以压控增益放大器VCA822为核心的可编程宽带放大器,可实现通频带为100 Hz~15 MHz,放大器增益为10~58 dB,6 dB 步进可调。

该设计可通过矩阵式键盘设置放大器增益,液晶显示器显示输出电压,人机界面友好。

1 放大器设计及工作原理设计一个通过键盘设置增益,且具有AGC功能的宽带放大器。

放大器输入端采用同相放大电路进行阻抗匹配,使输入电阻达到MΩ数量级。

该系统设计分为宽带放大、峰值采样、人机交互等3个模块。

宽带放大模块中电压增益可预置的功能是由VCA822实现。

VCA822一款直流耦合型宽频带压控增益放大器,最大工作频带宽度可达150 MHz。

放大器增益由控制电压和外围电阻阻值共同决定。

控制电压的输出是由单片机运算并控制D/A转换器而输出的,因而能够实现较精确的数控。

另外,放大器后级接入两档信号处理电路,一档增益0 dB,另一档为衰减档,通过一个控制端口,实现信号在这两档位之间选择。

这种方法的优点在于条理清晰,控制方便,易于单片机处理。

针对峰值采样,采用数字检波,即通过高速A/D转换器对输出的正弦信号进行采样,判断一定时间内采集到的数字信号的最大值,该最大值即为该信号的峰值。

而这种通用数字峰值检波电路仅能在低频段效果良好,针对系统设计要求中的高频信号,以及某些特定频率信号,将产生一定误差。

采用双频数字峰检对信号进行采样,这种方案可有效避免产生误差。

在上述两模块的基础上实现AGC的功能。

峰值检波测得的电压值反馈回单片机,单片机对宽带放大电路实现放大精确控制。

通过这种方式可将输出信号的峰值稳定在4.8 V左右。

该系统总体实现框图如图l所示。

可变增益放大器的设计

可变增益放大器的设计

可变增益放大器的设计赵悦;张罡帅;郭玉会【摘要】该文提出了可变增益放大器的设计方法,以实现对放大增益的实时控制,且对于输入信号的带宽以及频率都可以灵活调整,使得放大器的应用方式更加灵活、应用领域更加宽广。

文中采用可编程放大器AD603作为可变增益放大器,使用单片机进行控制电压的调整,对实现方法进行了详细的阐述,对该系统进行测试及结果分析。

【期刊名称】《黑龙江科技信息》【年(卷),期】2012(000)022【总页数】1页(P57-57)【关键词】可变增益;放大器;编程【作者】赵悦;张罡帅;郭玉会【作者单位】保定供电公司,河北保定071000;保定供电公司,河北保定071000;华北电力大学(保定),河北保定071000【正文语种】中文【中图分类】TN722伴随着计算机科学与技术迅猛的发展,使用数字电路进行信号处理的优势也更加突出。

为了充分发挥和利用数字电路在信号处理上的强大功能,工程中可以先把模拟信号按比例转换成数字信号,然后利用数字电路对该信号进行处理,之后再输出处理过的模拟信号。

放大功能是模拟信号处理电路中最常用到的,它是通过放大器电路实现的,大多数模拟电子系统中都应用了不同类型的放大电路。

放大电路也是构成其他模拟电路的基本单元电路,如滤波、振荡、稳压等功能电路。

本文以放大器为研究核心,讨论数字和模拟电路组成智能控制放大器增益的系统。

目前实现可变增益放大器的方法有多种,常用的方法是采用普通带宽放大器构成的放大电路,而AGC(Auto Gain Control)部分则是采用分立元件构成的,利用反馈的方法改变放大器的增益。

同时采用场效应管作为AGC的控制端可实现高频率和噪声低的放大效果,但是这种放大器的精确增益控制受限于温度和电源的漂移影响,很难实现稳定性。

为实现放大器的可编程控制,则需采用控制电压与增益成线性关系的可编程放大器,放大器AD603的增益可通过编程控制。

AD603是一款低噪声、温度稳定性高的可编程控制增益的放大器,其增益与单片机的控制字成线性关系,因此能实现可变增益控制放大器。

可编程增益放大器

可编程增益放大器
可编程增益放大器具有以下优点:结构简单;带宽稳定;和输入电阻恒定,对前级形成恒定的负载效应,在 该放大器与前级之间不需增加缓冲电路来隔离。
组合PGA
组合PGA
组合PGA一般由运算放大器、仪器放大器或隔离型放电器再加上一些其他附加电路组成。其工作原理是通过 程序调整多路转换开关接通的反馈电阻的数值,从而调整放大器的放大倍数。
针对峰值采样,采用数字检波,即通过高速A/D转换器对输出的正弦信号进行采样,判断一定时间内采集到 的数字信号的最大值,该最大值即为该信号的峰值。而这种通用数字峰值检波电路仅能在低频段效果良好,针对 系统设计要求中的高频信号,以及某些特定频率信号,将产生一定误差。采用双频数字峰检对信号进行采样,这 种方案可有效避免产生误差。
在上述两模块的基础上实现AGC的功能。峰值检波测得的电压值反馈回单片机,单片机对宽带放大电路实现 放大精确控制。通过这种方式可将输出信号的峰值稳定在4.8 V左右。
的性能参数
的性能参数
可编程增益放大器的性能参数可以根据D/A转换器的相应参数换算得到,根据MAX502的性能指标其性能参数 如下:
输入失调电压:<±1mV (未调整)
<!--[编辑本段]-->
的设计及工作
的设计及工作
以基于VCA822的可编程增益放大器为例,其设计及工作原理如下:
设计一个通过键盘设置增益,且具有AGC功能的宽带放大器。放大器输入端采用同相放大电路进行阻抗匹配,
使输入电阻达到MΩ数量级。该系统设计分为宽带放大、峰值采样、人机交互等3个模块。
宽带放大模块中电压增益可预置的功能是由VCA822实现。VCA822一款直流耦合型宽频带压控增益放大器,最 大工作频带宽度可达150 MHz。放大器增益由控制电压和外围电阻阻值共同决定。控制电压的输出是由单片机运 算并控制D/A转换器而输出的,因而能够实现较精确的数控。另外,放大器后级接入两档信号处理电路,一档增益 0 dB,另一档为衰减档,通过一个控制端口,实现信号在这两档位之间选择。这种方法的优点在于条理清晰,控制 方便,易于单片机处理。

一种增益可控高频宽带放大器的设计

一种增益可控高频宽带放大器的设计

• 128•随着人工智能及物联网技术的不断发展,高频宽带放大器在传输增益和功率放大等技术方面有着越来越高的要求。

本文针对宽带放大器传输增益的稳定性问题,设计了一种增益可控的高频放大模块,能够实现增益高精度可控的技术要求。

利用HMC470为主运算放大器,级联AD8009作为推挽输出后极,通过对主电路嵌入低功耗微处理器MSP430G2553单片机的方式,实现放大器的数控增益。

利用AD 软件仿真测试表明,该设计增益精确可控,稳定性较强,抗干扰能力较好,能够使用在高品质音响、民用雷达通信等场合。

1.引言随着电子、通信技术的飞速发展,增益可控制的宽带放大器发挥着越来越重要的作用(张玉钱,一种高增益宽带视频放大器设计:南京:南京理工大学,2015)。

在雷达通信、信号传输、电子测距等应用电路中,不仅要求高频放大器达到宽带的状态,还要求具有较精确的放大增益。

增益可控的宽带放大器件的发展,与集成运放在各行业的发展息息相关(杨洪文,可调节的宽带放大器在测试中的优势:国外电子测量技术,2017)。

目前,国内外对于可控的高增益宽带放大器的研究处于快速发展阶段。

何晓丰等(何晓丰,马成炎,叶甜春,王良坤,莫太山,数字控制增益可配置的射频宽带放大器:浙江大学学报(工学版),2012)提出了一种带单端转差分功能的大动态范围的数字控制增益可配置的射频宽带放大器,用于双频段电视射频接收机的前端,提供了更高的线性度。

高瑜宏等(高瑜宏,朱平,一种高增益带宽积CMOS跨导运算放大器:微电子学,2017)设计了一种高增益可控的运算放大器,提出的多级前馈补偿结构改善了DC增益和增益带宽积,通过相位补偿的方式对放大增益进行控制。

本文使用单片机数字控制的方式,设计了一种增益可控的高频放大模块,不仅能够实现较高的直流增益,还具备增益高精度可控的技术要求。

2.放大器系统组成本设计主要由可控增益电路、单片机最小系统、电源模块组成,系统结构如图1所示。

可变增益运算放大器设计

可变增益运算放大器设计

可变增益运算放大器设计
可变增益运算放大器是一种能够根据输入信号的大小调整放大倍数的放大器。

它通常由一个可变增益电路和一个运算放大器组成。

以下是一种常见的可变增益运算放大器设计方法:
1. 选择一个合适的运算放大器芯片,如LM741或TL071等。

这些芯片具有高增益和低噪声的特点。

2. 设计一个可变增益电路,可以使用电位器或可变电阻来实现。

这个电路的作用是调整输入信号的放大倍数。

3. 将可变增益电路与运算放大器芯片连接起来。

输入信号通过可变增益电路进入运算放大器,然后经过放大后的信号输出。

4. 调整可变增益电路的参数,以达到所需的放大倍数。

可以通过调节电位器或改变可变电阻的阻值来实现。

5. 进行电路测试和调试,确保放大器的性能符合要求。

可以使用示波器和信号发生器等仪器来检测输入输出信号的波形和幅度。

需要注意的是,可变增益运算放大器设计中需要考虑的因素还包括输入和输出阻
抗、频率响应、稳定性等。

在设计过程中,可以参考相关的电路设计手册和应用笔记,以获得更详细的设计指导。

程控增益放大器的几种通用设计方法6篇

程控增益放大器的几种通用设计方法6篇

程控增益放大器的几种通用设计方法6篇第1篇示例:程控增益放大器是一种可以根据控制信号来调节放大倍数的放大器,通常用于音频设备或通信设备中。

它在许多应用场景中都发挥着重要作用,比如在音频混音台中对不同信号进行调节、在通信系统中动态地调节信号的增益等。

要设计一个高性能的程控增益放大器,需要考虑多个方面的因素,包括放大器的稳定性、带宽、增益范围、失真和噪声等。

在此,我们将介绍几种通用的设计方法,以帮助工程师们更好地设计程控增益放大器。

一种常见的设计方法是使用可变增益放大器芯片。

这种芯片通常集成了控制电路和放大电路,可以方便地实现程控增益功能。

工程师们只需要按照芯片厂家提供的设计指南进行设计,通常只需要很少的外部元件即可完成设计。

这种设计方法具有成本低、易于实现的优点,适用于一些对性能要求不是很高的场合。

另一种设计方法是使用集成运算放大器和调节电阻网络。

通过调节电阻网络的阻值,可以实现对增益的控制。

这种方法的优点是可以灵活地调整增益范围,同时可以根据需要选择不同的运算放大器以实现更高的性能要求。

但是这种设计方法需要对电路的稳定性和噪声进行较为细致的分析和优化。

还有一种设计方法是使用数字控制的程控增益放大器。

这种设计方法将控制电路部分用数字信号处理的方式实现,可以实现更精确的控制和更复杂的功能。

通常需要搭配数字模拟转换器和微控制器等器件,同时需要编写控制算法。

这种设计方法的特点是可以实现更高的精度和更复杂的控制功能,但是相对复杂度也更高。

除了以上介绍的几种设计方法外,还有一些其他的设计方法,比如使用特殊的调节元件或者非线性元件实现程控增益放大器。

不同的设计方法适用于不同的场合,工程师们可以根据具体的需求和资源选择合适的设计方法。

在实际设计过程中,需要充分考虑电路的稳定性、带宽、失真和噪声等指标,通过合理选择元件、优化电路结构和控制算法等手段来实现设计要求。

还需要进行充分的仿真和测试,确保设计的程控增益放大器能够满足实际应用需求。

增益可调放大器的设计

增益可调放大器的设计

增益可调放大器的设计摘要本设计利用两级可控增益放大器AD603芯片为设计核心,根据AD603的放大原理公式计算出实现指标增益所需要的反馈电阻值,实现增益控制;同时使用了多种抗干扰措施以减少噪声并抑制高频自激,使得系统抗干扰能力加强,工作稳定性达到预期目标。

设计的可控增益放大器通过仿真调试,能够满足通频带10Hz~5MHz稳定指标的要求,实现增益在0~56dB的线性可调,增益误差小于1.4dB,系统噪声小于20mV。

系统达到了宽频带、低噪声、工作稳定的设计目标。

关键词AD603 放大器增益控制通频带第一章绪论1.1课题的背景及选题的意义近年来随着计算机和互联网的迅速普及,多媒体信息的高速传输呈现飞速增长的趋势。

放大器作为集成电路的一种的重要的组成部分是国内外研究的热点。

目前集成放大器的研究主要集中在多级运放的补偿、宽带高速运放、满足专用放大器的特殊结构和提高通用放大器指标的方法等这几个方向。

但是可变增益放大器的研究国外开展较多,国内目前已有少量关于可变增益放大器的研究,主要是基于CMOS工艺的可变增益放大器设计方法。

宽带放大器在光纤通信、电子战设备及微波仪表等方面应用越来越广泛。

这些系统一般要求放大器具有增益可调、宽频带、低噪声、工作稳定等特点。

可变增益放大器是一种通过改变电路某一参量对放大器增益进行调节的放大器,广泛应用于无线通讯、医疗设备、助听器、磁盘驱动等领域。

1.2 放大器的分类(1)通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。

通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。

Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。

(2)高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。

可变增益放大器 (数电)

可变增益放大器 (数电)

可变增益放大器设计报告院系:自动化工程学院电气工程系学号:姓名:摘要该方案采用555定时器电路作为基准时间产生电路,产生频率为1Hz的脉冲接到计数器的计数端,使得电路能够实现在四种不同的状态间切换。

再通过模拟开关CD4052组成的控制电路和运算放大器LM324增益电路实现4种增益的切换。

运用拨动开关来控制计数器的预置数值,当计数器组成的定脉冲产生电路产生5s高电平接到计数器的保持端,使计数器处于保持状态。

同时数控开关经过编码成的二进制数接到模拟开关的控制端端,由简单与非门对数控开关进行编码,将编码送到计数器置位,从而实现数字控制不同增益。

一、设计任务1.基本部分(1)放大器增益可在0.5倍、1倍、2倍、3倍四档间巡回切换,切换频率为1Hz;(2)可以随机对当前增益进行保持,保持时间为5s,保持完后继续巡回状态;(3)对指定的任意一种增益进行选择和保持(保持时间为5s),保持完后返回巡回状态;(4)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。

2.发挥部分(1)对于不同的输入信号自动变换增益:a.输入信号峰值为0—1V,增益为3;b.输入信号峰值为1—2V,增益为2;c.输入信号峰值为2—3V,增益为1;d.输入信号峰值为3V以上,增益为0.5;(2)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。

二、各模块方案论证1.1S时钟脉冲用555构成多谐振荡器,产生1S的时间脉冲,接计数器从0、1、2、3循环显示1)555内部结构图1.555内部结构2)555外部原理图和真值表图2.555原理图及真值表3)555管脚功能1-接地端2-低电平触发端3-输出端,输出电流可达200mA,直接驱动继电器、发光二极管、扬声器、指示灯等,输出电压约低于电源电压1-3V。

4-复位端,若此端输入一负脉冲,而使触发器直接复位。

不用时加以高电平。

5-电压控制端,此端可外加一电压以改变比较器的参考电压,不用是可悬空或通过0.01μF的电容接地。

数字控制可变增益放大器AD8370及其应用

数字控制可变增益放大器AD8370及其应用

摘要:AD8370是美国AD公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数以及优良的失真性能和较宽的带宽,可以广泛应用于差分ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口、单端差动转换器中。

文章介绍了AD8370的基本原理及应用设计方法。

关键词:AD8370;数字控制;可变增益;放大器1概述AD8370是美国AD(ANALOGDEVICESINC)公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数。

由于其具有优良的失真性能和较宽的带宽,所以特别适合作为现代接收器设计中的增益控制器件应用。

图1是AD8370的原理框图。

在宽输入动态范围应用中,AD8370可提供两种输入范围,分别对应于高增益模式和低增益模式。

它内部的一个7位衰减器在提供28dB的衰减范围时,分辨率高于2dB,而在22dB的衰减范围时,分辨率高于1dB。

AD8370的输入增益选择范围为17dB,可输出低失真的高电平。

AD8370可通过在PWUP引脚上输入合适的逻辑电平来上电或者断电。

当关闭电源时,AD8370的消耗电流小于5mA,并可提供优良的输入输出隔离。

AD8370采用ADI高速XFCB方法,因而可在宽带情况下提供高频率和低失真特性,其典型静态电流为78mA。

AD8370可变增益放大采用的是密集的16脚TSSOP封装,工作温度范围为-40℃~+85℃。

其主要特点如下:●差动输入为200Ω;●差动输出为100Ω;●噪声系数为7dB(最大增益时);●频带宽度可从低频到700MHz(-3dB);●具有40dB的精确增益范围;●带有串行7位接口;●可通过管脚编程低、高增益,其中低增益范围为-11~17dB,高增益范围为+6~34dB;●输入动态范围很宽;●单电源可低至3V。

AD8370可应用于差动ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口以及单端差动转换等领域。

程控增益放大器工作原理(一)

程控增益放大器工作原理(一)

程控增益放大器工作原理(一)程控增益放大器工作原理程控增益放大器(Programmable Gain Amplifier,PGA)是一种能够根据输入的控制信号来调节放大倍数的放大器。

它在诸多领域中得到广泛应用,如音频处理、仪器测量等。

本文将详细介绍程控增益放大器的工作原理。

1. 什么是程控增益放大器?程控增益放大器是一种具备可调节放大倍数的放大器。

它通常由可变增益放大器(Variable Gain Amplifier,VGA)和控制电路组成。

控制电路负责接收控制信号,并根据信号的数值来调节可变增益放大器的增益。

2. 可变增益放大器的实现原理可变增益放大器主要通过控制其反馈网络来实现增益的调节。

2.1 反馈网络的作用反馈网络在放大器中起到控制信号流动、调节增益的作用。

它可以将一部分输出信号通过反馈回来与输入信号相混合,从而实现增益调节。

2.2 反馈网络的类型可变增益放大器常用的反馈网络有以下几种类型:•串联反馈:将一部分输出信号与输入信号串联相加,并将相加结果作为反馈信号输入到放大器中。

•并联反馈:将一部分输出信号与输入信号并联相加,并将相加结果作为反馈信号输入到放大器中。

•混合反馈:同时采用串联反馈和并联反馈的方式。

3. 控制电路的工作原理控制电路在程控增益放大器中起到接收控制信号、并根据信号数值来调节增益的作用。

3.1 控制信号的输入方式控制信号可以通过多种方式输入到控制电路中,如电压信号输入、数字信号输入等。

通过合理设计接口电路,可以将不同形式的控制信号转换为电压信号,以便控制电路进行处理。

3.2 控制信号的处理方式控制信号经过控制电路的处理后,其数值将被转换为相应的增益调节值。

常见的处理方式包括数字-模拟转换、比较运算等。

4. 程控增益放大器的优势与应用程控增益放大器相比固定增益放大器具有以下优势:•灵活性高:可以根据需求灵活调节增益,适用于不同的应用场景。

•成本低:相比使用多个不同增益的放大器,使用单一的程控增益放大器可以降低成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(请在以上方框内打“√” ) 学位论文作者签名: 日期: 年 月 日 指导教师签名: 日期: 年 月 日
万方数据
华 中 科 技 大 学 硕 士 学 位 论 文


可变增益放大器(VGA)是模拟集成电路中的常见结构,它能根据实际需要, 提供一定范围内的可调增益,能有效地处理或输出不固定的信号,广泛应用于通信 设备、医疗设备、显示成像等设备中。本文研究的 VGA 是用于微纳控光器件,将输 入的数字逻辑电平,经过可调放大,输出方波电压作用于液晶微纳控光器件。 本文首先详细介绍了 VGA 的主要三种结构,分析其特点和适用范围,综合比较 各种结构的优缺点,根据实际情况选择最合适的电路结构;之后介绍了 VGA 中的核 心电路运算放大器,对常见的几种运放结构分析比较,从运放的主要性能参数出发, 选取合适的结构;其次,从上而下的划分了电路框架,定义电路功能,自下而上的 完成了电路的设计,通过分析计算电路的仿真结果,与实际需求比对;最后,介绍 了 VGA 的版图设计。 本文设计的 VGA 采用可变反馈的闭环结构,通过将 8bit 的数字控制信号译码, 得到 120 种控制信号组合,从而对开关电阻阵列进行编程控制,得到 120 步线性可 变的放大倍数。电路中的运算放大器采用折叠式共源共栅和共源级的二级结构,全 差分运放由单级的折叠式共源共栅和带源跟随器的共模反馈放大器组成。另外,电 路在 0~5V 和±20V 的两个电压域内工作,用减法器电路实现电压转换。 研究中采用华虹 NEC BCD180 工艺,实现的 VGA 能将 0~3.3V 的信号放大至 3.03V~39.95V(峰峰值) ,步进精度为 0.15V,可变的增益范围为-0.746dB~21.69dB 工作频率在 100KHz 范围内可调,能实现较高精度的调节。
II
万方数据
华 中 科 技 大 学 硕 士 学 位 论 文
Huahong NEC BCD180 process is used for the design of VGA , the digitally controlled VGA can output a voltage(Vpp) from 3.03V to 39.95V in a step size of 0.15V, the variable gain is -0.746dB ~ 21.69dB. This VGA achieves high accuracy and works at an adjustable frequency from 0 to 100 KHz.
分类号 学校代码 1 0 4 8 7
学号 密级
M201272459
硕士学位论文数字控制可变增益 Nhomakorabea大器的设计
学位申请人 学 科 专 业: 指 导 教 师: 答 辩 日 期:
: 陈 宇
控制工程 桑红石 副教授 2014.05.25
万方数据
A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering
Keywords: VGA;operational amplifier;cascode;CMFB
III
万方数据
华 中 科 技 大 学 硕 士 学 位 论 文


摘 要............................................................................................................... I Abstract .......................................................................................................... II 缩略语............................................................................................................ VI 1 绪论 1.1 研究背景与意义 .......................................................................................1 1.2 国内外研究现状 .......................................................................................1 1.3 本文的主要工作 .......................................................................................3 2 电路原理 2.1 可变增益放大器的常见结构 ...................................................................5 2.2 可变增益放大器的主要性能参数 ......................................................... 11 2.3 运算放大器的常见结构 .........................................................................13 2.4 运算放大器的主要性能参数 .................................................................16 3 基本电路单元设计与仿真 3.1 折叠式共源共栅放大器 .........................................................................18 3.2 全差分运算放大器 .................................................................................21 3.3 偏置电路..................................................................................................24 3.4 数字控制可变电阻网络 .........................................................................27 4 可变增益放大器的实现与仿真
Design of Digitally Controlled and Variable Gain Amplifier
Candidate : Major :
Chen Yu Control Engineering Associate Prof. Sang Hongshi
Supervisor:
Huazhong University of Science and Technology Wuhan, Hubei 430074, P. R. China May, 2014
万方数据
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得 的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他 个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集 体, 均已在文中以明确方式标明。 本人完全意识到本声明的法律结果由本人承担。
关键词: 可变增益放大器;运算放大器;共源共栅;共模反馈
I
万方数据
华 中 科 技 大 学 硕 士 学 位 论 文
Abstract
The variable gain amplifier (VGA) is a common structure of the analog integrated circuit system, it can provide a range of adjustable gain according to the actual needs. Because of the ability to deal with or output an uncertainty signal, the VGA is widely used in communication equipment, medical equipment, display imaging devices and so on. The VGA in this paper is designed for the Micro-nano optical controlled devices, amplify the digital voltage adjustable at the input port, and get a square wave voltage to the Micro-nano optical controlled devices at the output port. Firstly, this article introduces three common structures of VGA, then analyze its characteristics and scope of application, compare the advantages and disadvantages between the various structures, so that the most appropriate circuit structure was chose according to the actual situation. Secondly, the operational amplifiers are introduced as the most important circuit in VGA, several common op-amp circuits are analyzed and compared. Then the appropriate structure is selected according to the main property parameters. Thirdly, the circuit framework and functions are defined from up to down, completed the design of VGA from bottom to up, then the simulation results are compared with actual demand by analysis and calculation. Finally, the layout design of VGA is completed. Closed-loop feedback VGA structure is used in this article, 120 kinds of combinations of signals are got for the switching resistor arrays that can be controlled programmed. Meanwhile, a linear variable magnification is obtained at the steps of 120. A second-level structure with folded cascode and a common source stage is used in op-amp circuit, the structure with folded casecode and a common drain stage CMFB is used in fully differential op-amp circuit. In addition, the circuit is worked in two voltage domains that is 0 ~ 5V and ±20V, so the subtraction circuit is used for voltage conversion.
相关文档
最新文档