小学奥数等差数列经典练习题
小学生奥数等差数列练习题五篇
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学⽣奥数等差数列练习题五篇》相关资料,希望帮助到您。
1.⼩学⽣奥数等差数列练习题 1、有⼀堆粗细均匀的圆⽊,堆成梯形,最上⾯的⼀层有5根圆⽊,每向下⼀层增加⼀根,⼀共堆了28层.问最下⾯⼀层有多少根? 2、建筑⼯地有⼀批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都⽐其上⾯⼀层多4块砖,已知最下层2106块砖,问中间⼀层多少块砖?这堆砖共有多少块? 3、⼀个⼤剧院,座位排列成的形状像是⼀个梯形,⽽且第⼀排有10个座位,第⼆排有12个座位, 4、⼀辆双层公共汽车有66个座位,空车出发,第⼀站上⼀位乘客,第⼆站上两位乘客,第三站上三位乘客,依此类推,第⼏站后,车上坐满乘客? 5、王芳⼤学毕业找⼯作。
她找了两家公司,都要求签⼯作五年的合同,年薪开始都是⼀万元,但两个公司加薪的⽅式不同。
甲公司每年加薪1000元,⼄公司答应每半年加薪300元。
以五年计算,王芳应聘公司⼯作收⼊更⾼。
6、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲⼀下.问:时钟⼀昼夜打多少下? 7、已知:a,1,3,5……,99,101,b,2,4,6……,98,100,则a、b两个数中,较⼤的数⽐较⼩的数⼤多少? 8、⼩明进⾏加法珠算练习,⽤1+2+3+4+……,当加到某个数时,和是1000。
在验算时发现重复加了⼀个数,这个数是多少? 9、编号为1~9的9个盒⼦⾥共放有351粒糖,已知每个盒⼦都⽐前⼀个盒⼦⾥多同样数量的糖.如果1号盒⼦⾥放11粒糖,那么后⾯的盒⼦⽐它前⼀个盒⼦⾥多放⼏粒糖? 10、⼩王和⼩⾼同时开始⼯作。
⼩王第⼀个⽉得到1000元⼯资,以后每⽉多得60元;⼩⾼第⼀个⽉得到500元⼯资,以后每⽉多得45元。
小学奥数计算专题--等差数列(六年级)竞赛测试.doc
小学奥数计算专题--等差数列(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?【答案】1470【解析】由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
【题文】文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?【答案】120【解析】文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数=(21-3)÷2+1=10。
所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。
【题文】李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?【答案】880【解析】(25+63)×20÷2=880(个)【题文】建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
【答案】52【解析】求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
评卷人得分答:这堆钢管一共有52根。
【题文】用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按下图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边能放10根火柴棒,那么这个大的等边三角形中一共要放多少根火柴棒?【答案】165【解析】如果把图中最上端的一个三角形看做第一层,与第一层紧相连的3个三角形(2个向上的三角形,一个向下的三角形)看做第二层,那么这个图中一共有10层三角形。
(完整)小学五年级等差数列练习
(完整)小学五年级等差数列练习等差数列的练等差数列练1、6+7+8+9+……+74+75=2、2+6+10+14+……+122+126=3、已知数列2、5、8、11、14……,47应该是其中的第几项?4、有一个数列:6、10、14、18、22......,这个数列前100项的和是多少?5、在等差数列1、5、9、13、17 (401)中,401是第几项?第50项是多少?6、1+2+3+4+……+2007+2008=7、(2+4+6+......+2000)-(1+3+5+ (1999)=8、1+2-3+4+5-6+7+8-9+……+58+59-60=1等差数列的练9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
10、求1——99个连续自然数的所有数字的和。
操演2:1、在等差数列1,5,9,13,17,…,401中401是第几项?2、100个小同伙排成一排报数,每后一个同学报的数都比前一个同学报的数多3,XXX站在第一个位置,XXX站在末了一个位置。
小宏报的数是300,小明报的数是几?3、有一堆粗细匀称的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增长一根,一共堆了28层。
最上面一层有几何根?4、1+2+3+4+5+6+…+97+98+99+100=?2等差数列的练5、求100之内所有被5除余的天然数的和。
6、XXX和小胡两小我竞走,限制工夫为10秒,谁跑的距离长谁就得胜。
XXX第一秒跑1米,当前每秒都比以前一秒多跑0.1米,小胡自始至终每秒跑1.5米,谁能取胜?操演3:1.数列4,7,10,……295,298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米,第10小时蜗牛爬了1.9米,第一小时蜗牛爬多少米?3.求自然数中所有三位数的和。
4.求所有除以4余1的两位数的和。
3等差数列的练5.有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学三年级奥数专项训练题《等差数列(一)》
小学三年级奥数专项训练题《等差数列(一)》等差数列是指从第二项开始,每一项与前一项的差都相等的数列。
其特点是相邻两项差值相等,且要么递增,要么递减。
其中公差、首项、末项和项数是等差数列的重要概念。
下面我们来看一些例题。
例1:请观察下面的数列,找规律填数字。
①5,9,13,17,21,_____;②7,11,15,19,_____,27,_____,35;③200,180,160,140,_____;④102,92,82,72,____,52.例2:一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是多少?又一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是多少?例3:一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差是多少?第19项是多少?212是这个数列的第几项?例4:计算下面的数列和:3+7+11+15+19+23+27+31=______。
例5:计算下列各题⑴1+2+3+4+…+23+24+25=_____;⑵1+5+9+13+…+33+37+41=_____。
例6:计算下面数列的和。
2+4+6+8+10+12+14+16+18=______。
例7:把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色.如果最底层有15个正方形,问其中有多少个染白色的正方形,有多少个染黑色的正方形?例8:计算下面各个数列的和。
⑴1+2+3+4+5+6+7+8+9+10=______;⑵1+2+3+4+…+98+99+100=______;⑶1+2+3+4+…+999+1000=______。
例9(超常大挑战):求下列数表的和=______。
xxxxxxxxxxxxxxxxxxxxxxx2xxxxxxxx13xxxxxxxx314xxxxxxxx1415以上是等差数列的基本知识及例题。
需要注意的是,等差数列的公式包括第n项、项数和和数公式,其中第n项公式为首项加上(n-1)倍的公差,项数公式为末项减去首项再除以公差再加上1,和数公式为首项加末项再乘以项数再除以2.此外,小兔子跳台阶和首尾配对思想也是解题时的常用技巧。
小学奥数等差数列练习及答案【三篇】
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。
(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差数列。
要求和能够利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们能够根据求和公式来计算。
解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
小学奥数 等差数列计算题 精选练习例题 含答案解析(附知识点拨及考点)
等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:知识点拨等差数列计算题23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.【例 1】 用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++= ⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题 【难度】2星 【题型】计算 【解析】 ⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078+++++++=+⨯÷=()⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:471013404346446152375+++++++=+⨯÷=()【答案】⑴3078 ⑵2500 ⑶375【巩固】 1+2+……+8+9+10+9+8+……+2+1=_____。
(完整版)四年级奥数等差数列练习题
等差数列例1:已知数列5,8,11,14,17……求(1)这个数列的第201项是多少?(2)176是这个数列的第几项?练1:已知数列3,9,15,21,27……求:(1)这个数列第100项是多少?(2) 147是数列的第几项?525是数列的第几项?练2:已知数列14,23,32,41 (455)求(1)这个数列共有多少项?(2)这个数列第25项是多少?第33项是多少?练3:医院为病床编号依次为8,14,20,26……,问编号为284的病床是第几张?例2:已知等差数列的末项是162,公差是7,项数是22求(1)这个等差数列的首项是几?(2)这个数列的第15项是多少?第18项呢?练1:已知等差数的公差hi5,末项是165,数列共30项(1):这个数列首项是多少?(2):这个数列第11项,第17项各是多少?练2:一个数列首项为12,第8项为96,求它的第10项?练3:被4除余1的两位数共有多少个?例3:如果一个等差数列第4项为21,第6项为33,求它的第8项?练1:如果一个等差数列第5项是19,第8项是61,求它的第11项?练2:如果一个等差数列第3项是10,第7项是26,求它的第12项?练3:如果一个等差数列第2项是10,第6项是18,求它的第110项?例4:36个学生排除一排玩报数游戏,后一个同学总比前一个多数8,已知最后一个同学报256,第一个同学是几?练1:仓库里有一叠被编上号的数,共40本,已知每个下面一本书都比上面一本书的编号多5,最后一本编号为225,问第一本编号是几?练2:学校举办运动会,共54人参加,每个人都有参赛号码,已知前一人号码比后一人的号码少4,最后一个人的号码是215,第一人的号码是多少?练3:地上将粗细均匀的圆木,堆成一堆,最上面一层有6跟圆木,每向下一层增加一根,共堆28层。
最下面一层有多少跟圆木?例5:一个九层书架最上面一层放39本书,最下面一层放15本书,已知相邻两层书相差本书相等,问第5层放了多少本书?练1:有一排用等差数列编码的彩色小旗,第1面上的号码为37,第8面小旗的编号为387,你知道第7面小旗的编码吗?练2:在124和245之间插入10个数后,使它成为等差数列,这10个数中,最小是几?最大是几?练3:游乐园的智慧梯,最高一层宽60cm,最低一级宽160cm,中间还有9级,求第5级的宽度?课后练习(1):有一个数列,2,6,10,14……104,这个数列共有多少项?(2):有一个数列,2,7,12,17……,这个数列的第100项是多少?(3):有一个数列,1,4,7,10……,求这个等差数列的第50项是多少?(4)有一个等差数列,3,7,11,15…… 359是这个数列的第几项?(5):3,9,15,21……中,381是第几项?(6):在一个等差数列中,首项=1,末项=57,公差=2,这个数列共有多少项?(7):有一列数是这样排列的,3,11,19,27,35,43,51……,求第12个数是多少?(8):在4和25中间添上6个数,变成一个等差数列,公差是多少?写出这个数列?(9):糖果生产商为机器编号,依次为1,7,13,19,25……,问第19个的编号是多少?(10):一个等差数列第5项是19,第8项是61,求它的第11项?(11):有一串数,第一个数是5,以后每个数都比前一个大5,最后一个数是90,你能算出这一串数有几个数吗?(12):有20个数,第一个数是9,以后每个数都比前一个大2,你能算出第20个数是多少吗?(13):被4除余1的两位数有多少个?(14):如果一个等差数列第20项是46,第22项是54,求第25项是多少?(15):梯子的最高一级宽30cm,最低一级宽100cm,中间还有11级,各级的宽度成等差数列,正中一级的宽度是多少?。
奥数题库(三年级)等差数列1初步
求公差或某一项1.等差数列中,第9项和第17项相隔__________个公差.2.等差数列中,第6项和第20项相隔__________个公差.3.等差数列中,第7项和第19项相隔__________个公差.4.一个等差数列共有15项.每一项都比它的前一项大2,并且首项为30,那么末项是__________.5.一个等差数列,每一项都比它的前一项大2,第3项为33,那么第10项是__________.6.一个等差数列,每一项都比它的前一项大3,第2项为10,那么第12项是__________.7.一个等差数列首项为7,第10项为61,那么这个等差数列的公差是__________.8.一个等差数列第4项为25,第15项为113,那么这个等差数列的公差是__________.9.一个等差数列第7项为50,第12项为75,那么这个等差数列的公差是__________.10.一个等差数列首项为4,第10项为49,那么第19项是__________.11.一个等差数列第3项为18,第9项为60,那么第15项是__________.12.一个等差数列第2项为24,第10项为64,那么第18项是__________.求项数1.一个等差数列首项为5,末项为101,公差为8,那么首项和末项之间相隔了__________个公差.2.一个等差数列首项为20,末项为116,公差为6,那么首项和末项之间相隔了__________个公差.3.一个等差数列首项为10,末项为100,公差为5,那么首项和末项之间相隔了__________个公差.4.一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有__________项.5.一个等差数列第3项为50,公差为8,那么130是这个等差数列的第__________项.6.一个等差数列首项为5,公差为7,那么103是这个等差数列的第__________项.7.已知等差数列2,9,16,23,30,…,那么86是这个等差数列的第__________项.8.已知等差数列3,9,15,21,27,…,那么93是这个等差数列的第__________项.9.已知等差数列4,15,26,37,…,那么114是这个等差数列的第__________项.10.一个等差数列的首项为11,第7项为65,146是第__________项.11.一个等差数列的首项为7,第8项为91,127是第__________项.12.一个等差数列的首项为12,第7项为90,129是第__________项.。
四年级等差数列的奥数题
等差数列的求和公式为:S=(首项+末项)×项数÷2
求首项是5,末项是93,公差是4的等差数列的和
1.求等差数列1,6,11,16…的第20项是多少?第35项是多少?251是这个等差数列的第几项?
2、已知等差数列2,5,8,11,14…,问47是其中第几项?
3、如果一等差数列的第4项为21,第6项为33,求它的第8项.
4、已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多
少?这个数列的第16项是多少?
5、小剧场共有40排座位,每一排都比前一排多2个座位,最后一排有120个
座位,第一排有多少个座位?第25排有多少个座位?
解答:
1.公差为5;
第20项为(20-1)*5+1=96;
第35项为(35-1)*5+1=171;
251是第((251-1)/5)+1=51 项
2.公差为3;
47是第((47-2)/3)+1=16项
3.公差为(33-21)/(6-4)=6;
第8项为33+(8-6)*6=45;
也可直接由33+(33-21)得出
4.令首项为x,则x+(25-1)*4=280,得首项为184;
第16项为184+(16-1)*4=244;
5.公差为2,项数为40,末项为120,
则令首项为x,有x+(40-1)*2=120,得首项为42;
第25排有座位 42+(25-1)*2=90个
6.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第()项。
等差数列五年级奥数练习题
等差数列五年级奥数练习题等差数列是数学中常见的一种序列形式,它的每一个元素与前一个元素之间具有相等的差值。
在五年级奥数练习题中,等差数列也是一个常见的考点。
下面我们将介绍几个与等差数列相关的五年级奥数练习题。
练习题一:已知等差数列的前四项依次是2,5,8,11,求这个等差数列的通项公式。
解析:我们可以观察到这个等差数列的公差是3,第一项是2。
根据等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。
代入已知条件可得:an = 2 + (n-1)3。
简化后得到通项公式为:an = 3n-1。
练习题二:已知等差数列的前五项依次是1,4,7,10,13,求这个等差数列的第十项。
解析:我们可以观察到这个等差数列的公差是3,第一项是1。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:a10 = 1 + (10-1)3。
简化后得到第十项为:a10 = 28。
练习题三:已知等差数列的第五项是13,公差是4,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是4,第五项是13。
根据等差数列的求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示第一项,an表示第n项。
代入已知条件可得:S10 = (10/2)(13 + a10)。
由于已知条件中只给出了第五项,我们需要根据公差和第五项求得第十项a10。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:13 = a1 + (5-1)4。
解方程得到第一项a1为1。
将a1和公差d代入求和公式,得到S10 = (10/2)(13 + (1 + (10-1)4))/2。
简化后得到前十项的和为:S10 = 265。
练习题四:已知等差数列的前三项之和是12,公差是2,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是2,前三项之和是12。
(完整版)小学四年级奥数试题等差数列专项练习--小学数学试卷
小学四年级奥数试题《等差数列》专题过关检测卷A卷(50分)一、判断下面的数列是否是等差数列(8分)(1)2,5,8,11,14,…(2)2,7,2,7,2,7,…(3)88,77,66,55,44,33,22,11(4)1×1,2×2,3×3,4×4,…(5)1,1,2,3,5,8,13,…(6)2×5,4×5,6×5,8×5,…(7)1×2,2×3,3×4,4×5,…(8)4+5,5+6,6+7,7+8,…二、填空题(每空1分,共11分)1.已知等差数列4,8,12,16,…,它的第15项是________。
2.已知等差数列2,7,12,…,122,这个等差数列共有________项。
3.从25开始往后,数20个连续的奇数,最后1个奇数是________。
4.在一个等差数列中,第一项是12,第五项是60,公差是________。
5.在自然数10到30之间插人pq个数,使这六个数构成等差数列,这四个数分别是________,________,________,________。
6.三个数成等差数列,它们的和是18,积是120,这三个数是________,________,________。
三、解答题(每题5分,共25分)1.有一个等差数列:1,5,9,13,17,21,…(1)它的第1000个数是多少?(2)4921是它的第几项?2.已知数列14,23,32,41, (455)(1)这个数列共有多少项?(2)这个数列的第25项是多少?第33项是多少?3.已知数列3,9,15,21,27,…(1)这个数列的第100项是多少?(2)147是数列的第几项?525是数列的第几项?4.蜗牛从早晨开始爬行,每小时比前一小时多爬行10厘米,第一小时爬了100厘米,休息的最后一小时爬了190厘米。
(完整版)三年级奥数-等差数列
小学三年级奥数专项练题《等差数列(一)》【课前】(★)请观察下面的数列,找规律填数字。
①5,9,13,17,21,_____;②7,11,15,19,_____,27,_____,35;③200,180,160,140,_____;④102,92,82,72,____,52。
【知识要点屋】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。
2.特点:①相邻两项差值相等;②要么递增,要么递减。
3.名词:公差,首项,末项,项数5 ,9,13,17,21,25(★★★)⑴一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;⑵一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。
(★★★)一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。
【铺垫】(★★)计算下面的数列和:3+7+11+15+19+23+27+31=_____。
(★★★)计算下列各题⑴1+2+3+4+…+23+24+25=_____;⑵1+5+9+13+…+33+37+41=_____。
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?解答:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。
2、一个等差数列的首项是6,第8项是55,公差是()。
解答:d=(55-6)÷(8-1)=7(1)2、4、6、8、……、28、30这个等差数列有( )项。
(2)2、8、14、20、……62这个数列共有()项。
(1)2、4、6、8、……、28、30这个等差数列有( )项。
小学奥数等差数列经典练习题
小学奥数等差数列经典练习题一、判断下面的数列中哪些是等差数列?在等差数列的括号后面打√。
0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673……90,79,68,57,46,35,24,13……1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10二、求等差数列3,8,13,18,……的第30项是多少?三、求等差数列8,14,20,26,……302的末项是第几项?四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位?五、计算11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+303、求等差数列6,9,12,15,……中第99项是几?4、求等差数列46,52,58……172共有多少项?5、求等差数列245,238,231,224,……中,105是第几项?6、求等差数列0,4,8,12,……中,第31项是几?在这个数列中,2000是第几项?7、从35开始往后面数18个奇数,最后一个奇数是多少?、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少?1、计算:100+200+300+……21001+79+……+17+15+132、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次?3、请用被4除余数是1的所有两位数组成一个等差数列。
并求出这个等差数列的和。
4、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少?5、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数?6、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手?7、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好?8、40个连续奇数的和是1920,其中最大的一个是多少?9、小明读一本600页的书,他每天比前一天多读1页。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学奥数训练题 等差数列与高斯求和
等差数列与高斯求和1、计算下列各题:(1)11+14+17+ (101)(2)2+6+10+ (90)(3)297+293+289+ (209)(4)193+187+181+ (103)(5)1+3+4+6+7+9+10+12+13+…+66+67+69+70;(6)2+4+8+10+14+16+20+…+92+94+98+100;(7)1000+999-998+997+996-995+…+103+102-101。
2、在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的5个数。
3、在1000到2000之间,所有个位数字是7的自然数之和是多少?4、左下图是一个堆放铅笔的V形架,如果V形架上一共放有210支铅笔,那么最上层有多少支铅笔?5、有一堆粗细均匀的圆木,堆成右上图的形状,最上面一层有6根,每向下一层增加一根,共堆了25层。
问:这堆圆木共有多少根?6、在上题中,如果最下面一层有98根,这堆圆木共有2706根,那么共堆了多少层?7、用相同的立方体摆成右图的形式,如果共摆了10层,那么最下面一层有多少个立方体?8、某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。
问:这个剧院一共有多少个座位?9、小明从1月1日开始写大字,第1天写了4个,以后每天比前一天多写相同数量的大字,结果全月共写了589个大字。
问:小明每天比前一天多写几个大字?10、一个七层书架放了777本书,每一层比它的下一层少7本书。
问:最上面一层放了几本书?11、学校进行乒乓球选拨赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了78场比赛。
问:有多少人参加了选拨赛?12、跳棋棋盘(如左下图)上一共有多少个棋孔?13、右上图中的正六边形棋盘上共有多少个棋孔?14、用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形按左下图所示铺满一个大的等边三角形,已知这个大的等边三角形的底边放有10根火柴,那么一共要用多少根火柴?15、有一个六边形点阵(右上图),它的中心是一个点,看做第1层,第2层每边2个点,第3层每边3个点……这个六边形点阵共100层。
小学数学《等差数列》练习题(含答案)
小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手, 多多贏得小印章!分析:以下答案仅供参考!(1)先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、……从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、••••••从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用型表示;末项:一个数列的最后一项,通常用爲表示,它也可表示数列的第n项.每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n来表示;公差:等差数列每两项之间固定不变得差,通常用d来表示;和:一个数列的某些项的和,常用Sn来表示・(3)三个重要的公式:①通项公式:末项二首项+(项数-DX公差a n =a i+ (n _ 1) Xd回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:aιl-aιlt=(n-m)×cl,②项数公式:项数二(末项-首项)一公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到:n = (a lt-a l)÷d + \(若U ll);n = (a l-a n)÷d + \(若A a”).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、•・••••、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48 有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组.当然,我们还可以有其他的配组方法.③求和公式;和=(首项+末项)X项数÷2s l,=(a l+a n)×n÷2对于这个公式的得到我们可以从两个方面入手:(思路 1) 1+2+3+…+98+99+100=(1 + IOo) + (2 + 99) + (3 + 98) + …+ (50 +51)V ______________________ iz______________________ >50-MoL= 101x50=5050(思路2)这道题目,我们还可以这样理解:和=1 + 2 + 3+ 4+ ....+ 98+ 99+100 + 和二100+99 + 98+ 97+ ....+ 3+2+12 倍和=101 + 101+101+101+ .. + 101 + 101+101100 --------即,和=(IOO+l)xl00∙j∙2=101x50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数•譬如:(1) 4+8+12+...+32+36= (4+36) ×9÷2=20×9=180 ,题中的等差数列有 9 项, 中间一项即第5项的值是20,而和恰等于20X9 ;(2) 65+63+61 + ...+5+3+1= (1+65) ×33÷2=33X33= 1089 ,题中的等差数列有 33 项,中间一项即第17项的值是33,而和恰等于33X33.如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项.中项定理也可用在速算与巧算中.譬如:计算:124. 68+324. 68+524. 68+724. 68+924. 68分析:这是一列等差数列,项数是奇数,中间数是524. 68,所以可以用5X524. 68=2623.4.等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点. 一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透∙【复习2]某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位•问: 这个剧一共有多少个座位?分析:首项:70-(25-1)X2=22 ,座位总数:(22+70) × 25÷2=1150 .【复习3】小明从1月1日开始写大字。
小学奥数:等差数列应用题.专项练习
等差数列应用题例题精讲【例 1】100以内的自然数中。
所有是3的倍数的数的平均数是。
【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?【例 8】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例 9】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢? 【例 10】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【例 11】某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数等差数列经
典练习题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
小学奥数等差数列经典练习题
一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。
0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10
二、求等差数列3,8,13,18,……的第30项是多少
三、求等差数列8,14,20,26,……302的末项是第几项
四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算
11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30
3、求等差数列6,9,12,15,……中第99项是几
4、求等差数列46,52,58……172共有多少项
5、求等差数列245,238,231,224,……中,105是第几项
6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项
7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4
除余数是1的所有两位数组成一个等差数列。
并求出这个等差数列的和。
4、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少
5、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数
6、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手
7、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好 8、40个连续奇数的和是1920,其中最大的一个是多少 9、小明读一本600页的书,他每天比前一天多读1页。
16天读完,那么他最后一天读了多少页 2 等差数列 1、有一个数列:2,6,10,14,…,106,这个数列共有多少项。
2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项 3、求
1,5,9,13,…,这个等差数列的第3O项。
4、求等差数列2,5,8,11,…的第100项。
5、计算1+2+3+4+…+53+54+55的和。
6、计算5+10+15+20+ +190+195+200的和。
7计算- 8、计算- 等差数列练习知识点 1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项,第二个数叫做第二项以此类推,最后一个数叫做这个数列的末项,数列中数的个数称为项数,我们将用 n 来表示。
如:2,
4,6,8,,100 2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差,即: da2a1a3a2an2an1anan1 例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、计算等差数列的相关公式:通项公式:第几项=首项+×公差即:ana1d 项数公式:项数=÷公差+1 即:nd1 求和公式:总和=×项数÷2 即:a1a2a3ana1ann2 在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7,的第 10 项,第 100 项,并求出前 100 项的和。
我们观察这个等差数列,可以知道首项 a1=3,公差d=2,直接代入通项公式,即可求得 a10a1d39221,a100a1d3992201. 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+201=1002=10200. 解:由已知首项 a1=3,公差d=2,所以由通项公式ana1d,得到a10a1d39221 a100a1d3992201。
同理,由已知,
a1=3,a100=201,项数n=100 代入求和公式得
3+5+7+201=1002=10200. 练习2:1、求出你已经写出的等差数列的各项和。
2、有一个数列,4、10、16、22……52,这个数列有多少项 3、一个等差数列,首项是
3,公差是2,项数是10。
它的末项是多少 4、求等差数列1、4、7、10……,这个等差数列的第30项是多少例2:在1、2两数之间插入一个数,使其成为一个等差数列。
解:根据第几项=首项+×公差, 1212 那么第三项a3=a1+2d,即:2=1+2d,所以d=0.故等差数列是,1、2、2。
拓展:1、在1与0 之间插入3个数,使这5个数成为一个等差数列。
2、在6和3之间插入7个数,使他们成为等差数列,求这个数的和是多少例3:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了多少次手练习:1、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手
2、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次例4:4个连续整数的和是94,求这4个数。
解:由于4个数是连续的整数,那么这4个数就是公差d=1的等差数列,不妨设第一个数为a1,那么第二个数就是a1+1,同理:第3个数,第4个数分别是a1+2,a1+3那么由已知,这四个整数的和是94,所以
a1+++=94,因此a1=22,所以这4个连续分别是22、23、24、25. 练习:1、3连续整数的和是20,求这3个数。
2、5个连续整数的和是180,求这5个数。
3、6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少例5:丽丽学英语单词,第一天学会了6
个,以后每天都比前一天多学会1个,最后一天学会了16个。
丽丽在这些天中共学会了多少个单词解:因为丽丽从第二天开始,每天都比前一天多学会1个单词,因此丽丽每天学会的单词个数是一12121212 个等差数列,并且这个等差数列的首项a1=6, 公差d =1,末项an=16,若想求和,必须先算出项数n,根据公式项数=÷公差+1 ,即n=÷1+1=11 那么丽丽在这些天中共学会的单词个数为:
6+7+8+……+1= 11÷2=121练习:有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众 2、一个家具厂生产书桌,从第二个月起,每个月增加10件,一年共生产了1920件,那么这一年的12月份共生产了多少书桌巩固练习: 1、6+7+8+9+……+74+75= 2、2+6+10+14+……+122+126= 3、已知数列2、5、8、11、14……,47应该是其中的第几项 4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少 5、在等差数列1、5、9、13、17……401中,401是第几项第50项是多少 6、1+2+3+4+……+2007+2008= 7、-=
8、1+2-3+4+5-6+7+8-9+……+58+59-60=
9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
10、求1——99个连续自然数的所有数字的和。
11.在等差数列5、10、15、20中,
155是第几项350是第几项 12、在等差数列6、13、20、27……中,第几个数是1994 13、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多2个座位,这个剧场共有多少个座位 14、求所有除以4余1的两位数的和是多少 15、、12、21、30、39、48、57、66……第12个数是多少 912是第几个数 16、已知等差数列5,8,11…,求出它的第15项和第20项。
17、按照1、4、7、10、13…,排列的一列数中,第51个数是多少
18、求首项是5,末项是93,公差是4的等差数列的和。
19、3+7+11+…+99= 20、省工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2。