运筹学实验报告汇总

合集下载

运筹学实验报告

运筹学实验报告

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。

解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。

运筹学综合实验报告

运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。

一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。

二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。

它将优化目标函数的线性组合与整数限制相结合。

一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。

最后两个约束条件要求自变量只能是整数。

2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。

Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。

Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。

三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

运筹学实验报告

运筹学实验报告

1、实验目的和任务训练建模能力.应用EXCEL建模及求解的方法应用;通过实验进一步掌握运筹学有关方法原理、求解过程,提高学生分析问题和解决问题能力。

2、实验仪器、设备及材料计算机、Excel3、实验内容、炼油厂的生产计划问题例一炼油厂的生产计划某炼油厂的工艺流程图如图 1-1所示。

炼油厂输入两种原油(原油 1和原油2)。

原油先进入蒸馏装置,每桶原油经蒸馏后的产品及份额见表1-1,其中轻、中、重石脑油的辛烷值分别为90、80和70。

石脑油部分直接用于发动机油混合,部分输入重整装置,得辛烷值为115的重整汽油。

1桶轻、中、重石脑油经重整后得到的重整汽油分别为、、桶。

蒸馏得到的轻油和重油,一部分直接用于煤油和燃料油的混合,一部分经裂解装置得到裂解汽油和裂解油。

裂解汽油的辛烷值为105。

1桶轻油经裂解后得桶裂解油和桶裂桶汽油;1桶重油裂解后得桶裂解油和桶裂解汽油。

其中裂解汽油用于发动机油混合,裂解油用于煤油和燃料油的混合。

渣油可直接用于煤油和燃料油的混合,或用于生产润滑油。

1桶渣油经处理后可得桶润滑油。

混合成的高档发动机油的辛烷值应不低于 94,普通的发动机油辛烷值不低于84。

混合物的辛烷值按混合前各油料辛烷值和所占比例线性加权计算。

规定煤油的气压不准超过 1kg/cm2,而轻油、重油、裂解油和渣油的气压分别为、、和0.05kg/cm 2。

而气压的计算按各混合成分的气压和比例线性加权计算。

燃料油中,轻油、重油、裂解油和渣油的比例应为 10:3:4:1。

已知每天可供原油1为20000桶,原油2为30000桶。

蒸馏装置能力每天最大为45000桶,重整装置每天最多重整10000桶石脑油,裂化装置能力每天最大为8000桶。

润滑油每天产量就在500~1000桶之间,高档发动机油产量应不低于普通发动机油的40%。

又知最终产品的利润(元 /桶)分别为:高档发动机油700,普通发动机油600,煤油400,燃料油350,润滑油150,试为该炼油厂制定一个使总盈利为最大的计划。

运筹学实验报告(题目)

运筹学实验报告(题目)

运筹学实验报告(题目)运筹学实验报告指导老师:姓名:学号:班级:目录例题实验一人力资源分配问题实验二配料问题实验三套裁下料问题实验四成本收益平衡问题实验五投资问题例题实验目的:1掌握Excel并熟悉它的使用环境。

2、准备好系统中的Office安装盘,然后选择【工具】|【加载宏】菜单命令,在弹出的【加载宏】对话框中选择【规划求解】3、在Excei中,对已有的问题进行规划求解。

实验内容:1、对下面线性规划问题进行求解;max z =3x1+x2+2x312x1+3x2+6x3+3x4=98x1+x2-4x3+2x5=103x1-x6=0Xj>=0 j=1,2,3,4,5,6一、第一步:打开Excel菜单栏中的工具菜单,出现一个子菜单,单击“规划求解”选项。

第二步:出现规划求解参数的对话框。

该对话框用来输入规划的目标函数,决策变量和约束条件。

第三步:在规划求解参数对话框内填写参数所在的地址如下:在设置目标单元格一栏内,填入表示目标函数值的单元格地址B16,并选择最大值选项;在可变单元格一栏内,填入决策变量的单元格地址B14:C14。

第四步:单击添加按钮,出现添加约束对话框,在单元格引用位置一栏内,填入约束条件左边的值所在的单元格地址B19:B21;选择<=;在约束值一栏内,填入约束条件左边的值的单元格地址D19:D21。

选择确定,得到一个填写完毕的规划求解参数对话框第五步:单击对话框内的选项按钮,出现规划求解选项对话框。

该对话框用来输入规划求解运算中的有关参数,例如是否线性模型、是否假定非负、迭代次数、精度等。

大部分参数已经按一般要求设置好了,只需设置是否采用线性模型,以及是否假定非负。

在本实验中,选择“采用线性模型”;选择“假定非负”。

然后就进行规划求解。

1.2(a)自变量X1 X2 X3 X4 X5 X6约束条件系数12 3 6 3 0 0 9 =8 1 -4 0 2 0 10 =3 0 0 0 0 -1 0 = 目标函数系数 3 1 2 0 0 0 3解0 0 1.5 0 8 0所以该问题有最优解:X=(0,0,1.5,0,8,0)实验(一)人力资源分配问题实验目的:1、根据题目要求,在有限的人力资源约束下进行建模。

运筹学实验报告总结心得

运筹学实验报告总结心得

运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。

本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。

2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。

具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。

2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。

TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。

我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。

2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。

我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。

然后,通过TSP算法,求解最优的路径。

3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。

我们以图的形式展示了最优路径,并计算出了最小的运输成本。

4. 建议在实验过程中,我们发现了一些可以改进的地方。

首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。

其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。

最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。

5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。

我们成功地解决了一个实际问题,并得到了有用的结果和结论。

我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。

运筹学作为一门跨学科的领域,具有广泛的应用前景。

通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。

运筹学实验报告

运筹学实验报告

运筹学实验报告实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb:实验步骤1用Excel求解数学规划例:求max=2x1+x2+x34x1+2x2+2x2≥42x1+4x2≤204x1+8x2+2x3≤4步骤:1.输入模型数据制E3的公式到E4-E6:3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值: 4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。

添加完成后选择“确定”返回。

5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:6.单击“求解”按钮,得到问题的最优解为:x1 =1,x2=0,x3=0,max Z=2。

2.winQSB求解线性规划及整数规划[例]求解线性规划问题:Minz=2x1—x2+2x32x1+2x2+x3=43x1+x2+x4=6第1步:生成表格选择“程序,生成对话框:第2步:输入数据单击“OK”,生成表格并输入数据如下第3步:求解):x1,x2,x3决策变量(Decision Variable最优解:x1=2,x2=0,x3=0目标系数:c1=2,c2= -1,c3=2最优值:4;其中x1贡献4、x2,x3贡献0;检验数(Reduced Cost):0,0,1.75。

目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。

约束条件(Constraint):C1、C2;左端(Left Hand Side):4,6右端(Right Hand Side):4,6松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。

运筹学实验总结

运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。

在这学期的运筹学课程中,我们进行了一系列实验。

这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。

在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。

实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。

我选择了一个典型的生产调度问题作为实验题目。

通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。

通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。

实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。

在这个实验中,我选择了货物配送路线问题作为研究对象。

通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。

这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。

实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。

在这个实验中,我们学习了动态规划的基本原理和设计思想。

我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。

这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。

实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。

在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。

通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。

实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

在这个实验中,我选择了装箱问题作为研究对象。

通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。

这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。

运筹学实验报告(1)

运筹学实验报告(1)

运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。

二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。

先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。

A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。

否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。

若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。

四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。

运筹学实验报告

运筹学实验报告

《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。

由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。

各人完成相应任务时间如下表。

请为公司制定一个总工时最小的指派方案。

实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。

又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。

方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。

规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。

实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。

实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。

公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。

公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。

2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。

实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。

实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。

实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。

运筹学实验报告1

运筹学实验报告1

运筹学实验报告1《运筹学》课程实验报告一学院:专业:班级:姓名:学号:指导老师:实验报告班级学号姓名课程名称运筹学开课实验室实验时间实验项目名称【实验项目一】线性规划综合性实验实验性质验证性()综合性(√)设计性()成绩指导老师签名实验条件:硬件:计算机,软件:lingo11实验目的及要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

实验内容:熟悉、了解LINGO系统菜单、工具按钮、建模窗口、求解器运行状态窗口以及结果报告窗口等的环境。

实验过程:1.选择合适的线性规划问题可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型应用运筹学软件Lingo对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析对求解结果进行简单的应用分析。

实验习题计算:使用lingo来求解下列例题1. MAXZ=2X1+2X2X1-X2≥-1-0.5X1+X2≤2X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的解为无界解,X=(2,3)是它的一个基可行解。

2. MINZ=1000X1+800X2X1≥10.8X1+X2≥1.6X1≤2X2≤1.4X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的最优解X=(1,0.8),目标值Z=1640实验总结:例题1可用图解法检验,从图中可以清楚的看出,该问题可行域无界,目标函数值可以增大到无穷大,该题解为无界解;但在其可行域中存在顶点X=(2,3),故X=(2,3)为该线性规划问题的基可行解。

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

运筹学实践教学报告模板(3篇)

运筹学实践教学报告模板(3篇)

第1篇一、引言运筹学作为一门应用广泛的学科,其核心在于运用数学模型和算法解决实际问题。

为了更好地理解和掌握运筹学的理论和方法,本次实践教学报告以XX项目为例,详细阐述运筹学在实际问题中的应用过程。

二、项目背景与目标1. 项目背景XX项目是XX公司为提高生产效率、降低成本而提出的一个优化问题。

公司现有生产线,由于设备老旧、工艺流程不合理等原因,导致生产效率低下,成本较高。

为了解决这一问题,公司决定运用运筹学方法进行生产线优化。

2. 项目目标通过运筹学方法,对XX项目生产线进行优化,实现以下目标:- 提高生产效率,降低生产周期;- 降低生产成本,提高企业经济效益;- 优化生产线布局,提高生产线柔性。

三、运筹学方法选择与应用1. 方法选择针对XX项目的特点,本次实践选择了以下运筹学方法:- 线性规划(Linear Programming,LP)- 整数规划(Integer Programming,IP)- 模拟退火算法(Simulated Annealing,SA)2. 方法应用(1)线性规划首先,根据XX项目实际情况,建立了线性规划模型。

模型中包含决策变量、目标函数和约束条件。

通过求解线性规划模型,得到了最优的生产方案,包括各设备的生产能力分配、生产顺序安排等。

(2)整数规划由于部分设备的生产能力为整数,因此采用整数规划方法对模型进行改进。

通过求解整数规划模型,进一步优化了生产方案,使得设备利用率达到最大化。

(3)模拟退火算法为了提高生产方案的鲁棒性,采用模拟退火算法对优化后的生产方案进行全局搜索。

通过模拟退火算法,得到了一组更加优化的生产方案,提高了生产线的柔性。

四、结果与分析1. 结果经过运筹学方法的应用,XX项目生产线优化取得了以下成果:- 生产效率提高了XX%;- 生产周期缩短了XX天;- 生产成本降低了XX%;- 生产线柔性得到了显著提高。

2. 分析(1)线性规划方法的应用使得生产线设备利用率得到最大化,从而提高了生产效率;(2)整数规划方法的应用确保了设备生产能力的合理分配,避免了生产过程中的资源浪费;(3)模拟退火算法的应用使得生产方案具有更好的鲁棒性,提高了生产线的柔性。

最新运筹学实践报告加工问题的(优质5篇)

最新运筹学实践报告加工问题的(优质5篇)

最新运筹学实践报告加工问题的(优质5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新运筹学实践报告加工问题的(优质5篇)“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以取得上级领导部门的指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

豆,i=3表示玉米;j=1表示I 等耕地,j=2表示II 等耕地,j=3表示III 等耕地)。

z 表示总产量。

max z=1100011x+950012x+900013x+800021x+680022x+600023x+1400031x+1200032x+1000033x11x +21x+31x <=100 12x+22x+32x <=30013x +23x+33x<=200s.t. 1100011x +950012x +900013x >=190000800021x+680022x+600023x>=1300001400031x+1200032x+1000033x>=350000ijx>=0(i=1,2,3;j=1,2,3)二、求解过程三、实验分析从表中可以看出,水稻只在III 等耕地上种植21.1 2hm ;大豆只在III 等耕地上种植21.7 2hm ;玉米在I 等耕地种植100 2hm ,II 等耕地种植3002hm ,III 等耕地种植157.22hm 。

可以获得最大总产量6892222kg 。

(2)如何制订种植计划,才能使总产值最大?一、建立模型设ijx 表示为i 种作物在j 等耕地种植的面积(i=1表示水稻,i=2表示大豆,i=3表示玉米;j=1表示I 等耕地,j=2表示II 等耕地,j=3表示III 等耕地)。

z 表示总产值。

max z=(1100011x+950012x+900013x)*1.2+(800021x+680022x+600023x)*1.5+(1400031x+1200032x+1000033x)*0.811x +21x+31x <=100 12x+22x+32x <=30013x +23x+33x<=200s.t. 1100011x +950012x +900013x >=190000800021x+680022x+600023x>=1300001400031x+1200032x+1000033x>=350000ijx>=0(i=1,2,3;j=1,2,3)二、求解过程三、实验分析从表中可以看出,水稻在I等耕地种植58.75 2hm,II等耕地种植300 2hm,III等耕地种植2002hm;玉米hm;大豆只在III等耕地上种植16.252hm。

可以获得最大总产值6830500元。

只在I等耕地上种植252《运筹学》课程实验第 2 次实验报告实验内容及基本要求:实验项目名称:运输问题建模与求解实验类型:验证每组人数:1实验内容及要求:1)了解运输问题建模思路,并能够根据实际问题进行建模。

2)学会利用EXCEL与Lingo软件进行运输问题的求解。

习题:腾飞电子仪器公司在大连和广州有两个分厂生产同一种仪器,大连分厂每月生产400台,广州分厂每月生产600台。

该公司在上海和天津有两个销售公司负责对南京、济南、南昌、青岛四个城市的仪器供应。

另外因为大连距离青岛较近,公司同意大连分厂向青岛直接供货,运输费用如下图,单位是百元。

问应该如何调运仪器,可使总运输费用最低?图中1-广州、2-大连、3-上海、4-天津、5-南京、6-济南、7-南昌、8-青岛实验过程与结果:一、建立模型设ijx 表示为从i 地运输到j 地的仪器台数(i=1,2,3,4;j=3,4,5,6,7,8)。

1-广州、2-大连、3-上海、4-天津、5-南京、6-济南、7-南昌、8-青岛。

z 表示总运费。

min z=213x+314x+323x+24x+428x+235x+636x+337x+638x+445x+446x+647x+548x35x +45x =200 36x+46x =150 37x +47x =350 28x +38x+48x =300s.t.13x +14x<=600 23x +24x+28x <=400 35x +36x +37x +38x -13x -23x=0 45x+46x+47x+48x -14x -24x=0ijx>=0且为整数(i=1,2,3,4;j=3,4,5,6,7,8)二、求解过程三、实验分析由表可知,最低总运费为4600。

具体过程如下:从广州运往上海550台仪器,从广州运往天津40台仪器;从大连运往天津100台仪器,从大连运往青岛300台仪器,大连不往上海运仪器;上海运往南京200台仪器,上海运往南昌350台仪器,上海不往济南和青岛运仪器;天津只运往济南150台仪器。

11x +12x+13x +14x=7 21x+22x+23x +24x=4 31x+32x+33x +34x=911x +21x+31x=3 s.t. 12x +22x +32x =613x +23x+33x =514x+24x+34x+34x=6ijx>=0(i=1,2,3;j=1,2,3,4)且为整数二、求解过程三、实验分析与一般的线性规划问题的解法类似,首先建立运输问题的电子表格。

然后利用Spreadsheet 来求解该问题。

从该表可以清楚的看到,产地1A 运往销地1B 和3B ,产地2A 运往销地1B 和4B ,产地3A 运往销地2B 和4B ,产量等于销量,实际产量等于实际销量。

总费用等于85。

该模型适用于产销平衡运输问题,对于产销不平衡运输问题具有一定的局限性,因此在建立模型之前就要判别是否需要增设虚拟产地、虚拟销地。

1x +2x +3x<=24x +5x>=1 6x +7x>=1s.t.8x +9x +10x>=2 1001x+120+2x+1503x+804x+705x+906x+807x+1408x+1609x+18010x<=710ix=0或1(i=1,2,3,4,5,6,7,8,9,10)二、求解过程三、实验分析由该表可知,在A1,A3,A5,A6,A8,A9建立销售点,可获得最大总利润242万元,从本质上来说,整数规划和一般的线性规划没有太大区别,只是将决策变量限制在0和1之间,因此,在用计算机软件求解整数规划时,如何将用计算机语言表示决策变量的限制是难点,需要我们掌握一定的软件知识。

整数规划应用范围很广,可以推广到许多方面例如,背袋(或装载)问题、固定费用问题、送货问题等。

1x +4x +5x +6x +7x>=28 1x +2x +5x +6x +7x>=15 1x +2x +3x +6x +7x>=24 s.t.1x +2x +3x +4x +7x>=251x +2x +3x +4x +5x>=19 2x +3x +4x +5x +6x>=31 3x +4x +5x +6x +7x>=28ix>=0且为整数(i=1,2,3,4,5,6,7)二、求解过程三、实验分析由上表可知,在星期日和星期一不安排售货人员,在星期二安排8位售货人员,在星期三安排12位售货人员,在星期五安排11位售货人员,在星期六安排5位售货人员,这样可是使一整周配备的售货人员最少,却可以满足每天售货人员人数的需要。

线性规划的应用范围大,已经渗透到经济活动的各个领域:比如人事指派、资源配置、节约下料、和环境优化等,但是该模型也有一定的局限性,比如,线性规划模型实质上还是一个静态的模型。

事实上,随着约束条件的变化,目标函数中的一些指标常常并非一成不变。

因此在实际运用中,我们要视具体情况使用,并适时地改变一些价值系数。

相关文档
最新文档