热学第二章 习题答案
第二章 热力学第二定律
第二章热力学第二定律一、选择题1.25℃时,将11.2升O2与11.2升N2混合成11.2升的混合气体,该过程( )(A) ∆S > 0,∆G < 0 ;(B) ∆S < 0,∆G < 0 ;(C) ∆S = 0,∆G = 0 ;(D) ∆S = 0,∆G < 0 。
2.∆G= ∆F的过程是( )(A) H2O(l,373K,p2O(g,373K,p) ;(B) N22(g,400K,100kPa) ;(C) 等温等压下,N2(g) + 3H23(g) ;(D) Ar(g,T,p T+100,p)。
3.等温等压下进行的化学反应,其方向由∆r H m和∆r S m共同决定,自发进行的反应应满足下列哪个关系式( )(A) ∆r S m= ∆r H m/T;(B) ∆r S m> ∆r H m/T ;(C) ∆r S m≥ ∆r H m/T;(D) ∆r S m≤ ∆r H m/T。
4.已知水的六种状态:①100℃,p2O(l);②99℃,2p2O(g);③100℃,2p2O(l);④100℃、2p2O(g);⑤101℃、p2O(l);⑥101℃、p2O(g)。
它们化学势高低顺序是( )(A) μ2> μ4> μ3> μ1> μ5> μ6;(B) μ6> μ5> μ4> μ3> μ2> μ1;(C) μ4> μ5> μ3> μ1> μ2> μ6;(D) μ1> μ2> μ4> μ3> μ6> μ5。
5.下列过程中∆S为负值的是哪一个( )(A) 液态溴蒸发成气态溴;(B) SnO2(s) + 2H2(g) = Sn(s) + 2H2O(l) ;(C) 电解水生成H2和O2;(D) 公路上撤盐使冰融化。
6.从A态到B态可沿两条等温膨胀途径进行,一条可逆,一条不可逆,试判断哪个关系式成立( )(A). ΔS可逆>ΔS不可逆(B). W可逆> W不可逆(C). Q可逆< Q不可逆(D). (Q-W)可逆> (Q-W)不可逆7.在隔离体系中发生一个自发过程,则ΔG应为( )(A). ΔG < 0 (B). ΔG > 0(C). ΔG =0 (D). 不能确定8.某气体进行不可逆循环过程的熵变为( )(A). ΔS系= 0 , ΔS环= 0 (B). ΔS系= 0 , ΔS环> 0(C). ΔS系> 0 , ΔS环= 0 (D). ΔS系> 0 , ΔS环> 09.某物质的蒸气压可由下式表示:ln(P/kp a)=13.14-(2437/T),该物质的摩尔气化热为( )(A). 20.26 kJ·mol-1 (B). 293.1 J·mol-1(C). 5612 J·mol-1(D). 2437 J·mol-110.1mol理想气体经绝热自由膨胀体积增大10倍,则物系的熵变为()(A). ΔS = 0 (B). ΔS = 19.1 J/K (C). ΔS >19.1 J/K (D). ΔS < 19.1J/K 11.在273K和1atm下,水的化学位μH2O(l)和水汽的化学位μH2O(g)的关系是()(A). μH2O(l) =μH2O(g) (B). μH2O(l) >μH2O(g) (C). μH2O(l) < μH2O(g)(D). 无法知道12.纯液体在常压下凝固,下列各量中哪个减少()(A). 熵(B). 自由能(C). 凝固热(D). 蒸汽压13.1mol理想气体经一等温可逆压缩过程,则()(A). ΔG >ΔF (B). ΔG <ΔF(C). ΔG =ΔF (D). ΔG与ΔF无法进行比较14.在-200C和1atm下,1mol的过冷水结成冰,则物系、环境及总熵变是( )(A). ΔS系< 0 , ΔS环< 0 , ΔS总< 0 (B). ΔS系> 0 , ΔS环> 0 , ΔS总> 0(C). ΔS系< 0 , ΔS环> 0 , ΔS总< 0 (D). ΔS系< 0 , ΔS环> 0 , ΔS总> 015.等温等压下发生不可逆电池反应,其ΔS的计算公式为()(A). ΔS =ΔH/T (B). ΔS =(ΔH-ΔG )/T(C). ΔS=Q实/T (D). 以上三式都不适用16.绝热封闭体系中若ΔS > 0,表明该过程是()(A). 可逆(B). 自发(C). 非自发(D) 自发或非自发17.对于封闭体系,当W f=0时,可作为过程的可逆性与变化方向性的判据有()(A). (dU)T.V≤0 (B). (dH)S.P≥0 (C). (dS)U.V≥0 (D). (dG)T.P≥018.250C,1atm下,NaCl在水中溶解度为6mol˙ L-1, 如将1molNaCl溶解于1L水中,此溶解过程中体系的ΔS和ΔG变化为()(A). ΔG > 0 ,ΔS < 0 (B). ΔG > 0 ,ΔS > 0(C). ΔG < 0 ,ΔS > 0 (D). ΔG = 0 ,ΔS > 019.在一个绝热的刚性密闭容器中,装有H2和Cl2的混合气体,T为298K,用光引发使之反应生成HCl(g),设光照能量可不计,气体为理想气体,测得Δf H m (HCl)=— 92.30kJ·mol-1,此过程()(A). ΔH>0 ΔS<0 (B). ΔH<0 ΔS<0(C). ΔH<0 ΔS>0 (D). ΔH>0 ΔS>020.纯物质在恒压下无相变时的G∽T曲线形状是( )GT T T T (A) (B) (C) (D)21.实际气体CO 2经节流膨胀后,温度下降,那么( )(A) ∆S(体) > 0,∆S(环) > 0 ; (B) ∆S(体) < 0,∆S(环) > 0 (C) ∆S(体) > 0,∆S(环) = 0 ; (D) ∆S(体) < 0,∆S(环) = 022.2mol 理想气体B ,在300K 时等温膨胀,W = 0时体积增加一倍,则其 ∆S (J·K -1)为( )(A) -5.76 ;(B) 331 ; (C) 5.76 ; (D) 11.5223.某体系等压过程A→B 的焓变∆H 与温度T 无关,则该过程的( )(A) ∆U 与温度无关 ; (B) ∆S 与温度无关 ; (C) ∆F 与温度无关 ; (D) ∆G 与温度无关24.等温下,一个反应a A + b B = d D + e E 的 ∆r C p = 0,那么( )(A) ∆H 与T 无关,∆S 与T 无关,∆G 与T 无关 ; (B) ∆H 与T 无关,∆S 与T 无关,∆G 与T 有关 ; (C) ∆H 与T 无关,∆S 与T 有关,∆G 与T 有关 ; (D) ∆H 与T 无关,∆S 与T 有关,∆G 与T 无关 。
热学教程第二章习题答案
热学教程第二章习题答案热学教程第二章习题答案热学是物理学中的一个重要分支,研究物体的热力学性质和热传导现象。
在热学教程的第二章中,我们学习了一些基本的热力学概念和定律,以及一些与热力学相关的计算方法。
本文将为大家提供热学教程第二章习题的答案,帮助大家更好地理解和掌握这些知识。
1. 问题:一个物体的热容量为100 J/℃,它的温度从20℃升高到40℃,需要吸收多少热量?答案:根据热容量的定义,热容量等于物体吸收或释放的热量与温度变化的乘积。
因此,吸收的热量等于热容量乘以温度变化。
在这个问题中,热容量为100 J/℃,温度变化为40℃-20℃=20℃,所以吸收的热量为100 J/℃ × 20℃ = 2000 J。
2. 问题:一个物体的热容量为50 J/℃,它的温度从25℃升高到75℃,需要吸收多少热量?答案:同样地,根据热容量的定义,吸收的热量等于热容量乘以温度变化。
在这个问题中,热容量为50 J/℃,温度变化为75℃-25℃=50℃,所以吸收的热量为50 J/℃ × 50℃ = 2500 J。
3. 问题:一个物体的热容量为200 J/℃,它吸收了5000 J的热量,温度升高了多少℃?答案:根据热容量的定义,吸收的热量等于热容量乘以温度变化。
在这个问题中,吸收的热量为5000 J,热容量为200 J/℃,所以温度变化为5000 J / 200 J/℃ = 25℃。
4. 问题:一个物体的热容量为80 J/℃,它吸收了2000 J的热量,温度升高了多少℃?答案:同样地,根据热容量的定义,温度变化等于吸收的热量除以热容量。
在这个问题中,吸收的热量为2000 J,热容量为80 J/℃,所以温度变化为2000 J / 80 J/℃ = 25℃。
通过以上习题的解答,我们可以看到热容量和温度变化之间的关系。
当热容量增大时,物体吸收或释放的热量相对较大;而当温度变化增大时,物体吸收或释放的热量也相对较大。
热力学第二定律习题解析
第二章热力学第二定律习题一 . 选择题:1. 理想气体绝热向真空膨胀,则 ( )(A) △S = 0,W = 0 (B) △H = 0,△U = 0(C) △G = 0,△H = 0 (D) △U = 0,△G = 02. 熵变△S 是(1) 不可逆过程热温商之和 (2) 可逆过程热温商之和(3) 与过程无关的状态函数 (4) 与过程有关的状态函数以上正确的是()(A) 1,2 (B) 2,3 (C) 2 (D) 43. 对于孤立体系中发生的实际过程,下式中不正确的是:()(A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 04. 理想气体经可逆与不可逆两种绝热过程()(A) 可以从同一始态出发达到同一终态(B) 不可以达到同一终态(C) 不能断定 (A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定5. P⊖、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零?(A) △U (B) △H (C) △S (D) △G6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定8. H2和 O2在绝热钢瓶中生成水的过程:()(A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 09. 在 270K,101.325kPa 下,1mol过冷水经等温等压过程凝结为同样条件下的冰,则体系及环境的熵变应为: ( )(A) △S体系 < 0 ,△S环境 < 0 (B) △S体系 < 0 ,△S环境> 0(C) △S体系 > 0 ,△S环境 < 0 (D) △S体系 > 0 ,△S环境 > 010. 1mol 的单原子理想气体被装在带有活塞的气缸中,温度是 300K,压力为 1013250Pa。
工程热力学第二章 习题解答
第二章 习题解答 2-1()36296.82731700.2630 m /kg 0.510RT pv RT v p ⨯+=⇒===⨯ 311 3.802 kg/m 0.2630v ρ=== 2-2 (1)08314296.93 J/kg K 28R R M ===⋅ (2)30296.932730.8 m /kg 101325RT v p ⨯=== 311 1.25 kg/m 0.8v ρ=== (3)()306831450027364.27 m /kmol 0.110M R T V p ⨯+===⨯ 2-3储气罐内原有CO 2质量:()()3111101.32530103 6.558 kg 188.927345g p V m RT +⨯⨯===⨯+ 充气后的CO 2质量:()()3222101.32530010318.582 kg 188.927370g p V m RT +⨯⨯===⨯+ 充入的CO 2质量:2118.582 6.55812.024 kg m m m ∆=-=-=2-4()621212100.07 1.626 kg 287300p p V m m m RT -⨯⨯∆=-===⨯ 2-5010101325300388 kg/h 287273p V m RT ⨯===⨯ 3299.310300346 kg/h 287273pV m RT ⨯⨯===⨯2-6充入的空气在室外状态下体积:()3220.80.18.559.5 m 0.1pV V p -⨯∆=== 59.519.83 min 3τ== 2-7()()350011011010014310115.210 1.0210273101325300273 5.57310 m /hp V pVT pV V T T p T +⨯⨯⨯⨯=⇒==⨯+=⨯ 2-8 表压力:230009.807234 kPa 0.44g p π⨯==⨯ 101234335 kPa g p B p =+=+=(1)压力不变()2211227318582 K V T T V ==⨯+==309℃ (2)32232875820.5 m /kg 33510RT v p ⨯===⨯ (3)终态:32211 2 kg/m 0.5v ρ=== 初态:3122 4 kg/m ρρ==2-9(1)613.7100.057.693 kg 296.8300pV m RT ⨯⨯===⨯ (2)1222112116.5300361 K 13.7p V p V p T T T T p =⇒==⨯= 2-10111m RT V p = 6212126212250.361030318.6 kg 0.510293p V m p T m RT p T ⨯⨯⨯====⨯⨯2-11333440.15243.140.00185 m 332V R π⎛⎫==⨯⨯= ⎪⎝⎭ 537.6100.001852083 J/kg K 2.2510300pV R mT -⨯⨯===⋅⨯⨯ 该气体为氦气2-12 其他条件相同时,压力低、温度高所需体积大。
李椿热学答案及部分习题讲解部分习题的参考答案
“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。
第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。
【精品】化工热力学第二章习题解答
【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。
即Ct = q - A / V + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - A / V + B。
2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。
即Ct = q - (A / 3)T^3 + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。
(完整版)第二章热力学第一定律习题
第二章热力学第一定律选择题1. 热力学第一定律厶U=Q+W只适用于(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2. 关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上(B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B3. 关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关答案:D。
因焓是状态函数。
4. 涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。
因为焓变厶HM U+A (pV),可以看出若△ (pV) V 0则厶H VA Uo5. 下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液(B) 稀溶液(C) 所有气体(D) 理想气体答案:D6. 与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零(B) 化合物的生成热一定不为零(C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。
按规定,标准态下最稳定单质的生成热为零。
7. dU=CvdT及dUm=Cv,md■适用的条件完整地说应当是(A) 等容过程(B) 无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D8.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程(B) 可逆循环过程(C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程答案:0因液体分子与气体分子之间的相互作用力是不同的故内能不同。
第2章 习题提示和答案
2−10 空 气 在 某 压 气 机 中 被 压 缩 , 压 缩 前 空 气 的 参 数 是 : p1 = 0.1MPa ,
v1 = 0.845 m3 kg 。压缩后的参数是 p2 = 0.1MPa ,v2 = 0175 m3 kg 。设在压缩过程中每 kg
空气的热力学能增加 146.5kJ 同时向外放出热量 50kJ。压气机每分钟产生压缩空气 10kg。求: (1)压缩过程中对每 kg 气体所作的体积变化功;(2)每生产 1kg 的压缩空气所需的功(技 术功);(3)带动此压气机要用多大功率的电动机?
氨进入和离开锅炉时的焓分别为 h1 = h ' = −396.2kJ/kg、h2 =h" = −223.2kJ/kg ,氨离开过热 器时的焓为 h = −25.1kJ/kg 。
提示和答案:氨在锅炉和过热器中过程均近似为定压过程,换热量等于焓差。
Φ g
=
0.865kW
, Φs
=
0.991kW
。
2−15 向大厦供水的主管线在地下 5m进入时,管内压力 600kPa。经水泵加压,在距地 面 150m高处的大厦顶层水压仍有 200kPa,假定水温为 10℃,流量为 10kg/s,忽略水热力学 能差和动能差,假设水的比体积为 0.001m3/kg,求水泵消耗的功率。
8
第二章 热力学第一定律
进口处蒸汽为 70m/s,出口处速度为 140m/s 时对汽轮机的功率有多大的影响;(4)蒸汽进 出、口高度并差是 1.6m 时,对汽轮机的功率又有多大影响?
提示和答案:(1)
p 1
=
p e ,1
+
p b
=
9.1MPa
、
p2
=
大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念
第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。
设混合气体的温度为150℃,求混合气体的压强。
(完整版)第二章习题解答
第二章 热力学第二定律思考题答案一、是非题1 × 2√ 3× 4× 5× 6× 7× 8√ 9√ 10× 11× 12× 13× 14× 15× 16× 17× 18× 二、选择题1.C 2.D 3.C 4.C 5.D 6.A 7.B 8.D 9.A 10.A 11.A习 题1. 2mol 理想气体由500kPa ,323K 加热到1000kPa ,373K 。
试计算此气体的熵变。
(已知该气体的C V ,m =25R ) 解:由于实际过程不可逆,要求此过程的熵变,设计定压可逆与定温可逆两途径实现此过程,如下图所示:1212,,,ln ln 1121212121p pR T T C dp p RT T T dT C Vdp TTdT C TVdpdH T pdV Vdp pdV dH T pdV dpV dH TpdVdU T Q S m p p p T T m p p p T T m p rm -=-=-=-=+--=+-=+==∆⎰⎰⎰⎰⎰⎰⎰⎰⎰δ11212,1212,64.65001000ln 2323373ln 272ln ln )(ln ln -⋅=⨯-⨯=-+=-=∆K J kPakPa R mol K K R mol p pnR T T R C n p p nR T T nC S m V m p2. 在20℃时,有1molN 2和1molHe 分别放在一容器的两边,当将中间隔板抽去以后,两种气体自动混合。
在此过程中系统的温度不变,与环境没有热交换,试求此混合过程的△S ,并与实际过程的热温商比较之。
解:分别考虑假设N 2由V A 定温可逆膨胀至2V A ,同理He 由V A 定温可逆膨胀至2V A△S 1 = n (N 2)R ln2 △S 2 = n (He)R ln2所以系统的 △S = △S 1+△S 2 = n (N 2) R ln2 + n (He) R ln2= 2×1mol×8.314 J ·mol -1·K -1×ln2 = 11.52J.K -1而实际过程系统没有与环境交换热和功,则 TQ= 0 即 △S >TQ 3. 1 mol 双原子理想气体,温度为298.15 K ,压强为p θ,分别进行:(1)绝热可逆膨胀至体积增加1倍;(2)绝热自由膨胀至体积增加1倍。
第二章 热力学第二定律 答案
第二章热力学第二定律练习题答案一、判断题答案:1.对。
自然界发生的过程是以一定速率进行的,都是不可逆的,但不一定都是自发的,例如人们用电解水法制备氢气。
2.错。
例如,理想气体绝热不可逆压缩,就不是自发的。
3.错。
只有在孤立体系才成立。
非孤立体系不成立,例如电解水熵增加,但不自发的。
4.第1,2个结论正确,第3个结论错。
绝热不可逆压缩过程。
∆S > 0。
5.错。
系统由同一始态出发,经绝热可逆和绝热不可逆过程不可能到达相同的终态。
经绝热可逆,∆S = 0;绝热不可逆过程,∆S > 0。
6.错。
系统经循环过程后回到始态,状态函数都不改变,但不能依此来判断过程的性质,可逆循环与不循环都可以回到始态。
7.错。
正确说法是隔离系统平衡态的熵最大。
8.错。
正确的是绝热可逆过程中∆S = 0,绝热不可逆过程中∆S > 09.不矛盾。
理想气体经等温膨胀后,是的,吸的热全部转化为功,因气体的状态变化了,体积增大了,发生了其他变化。
10.错。
例如过冷水结冰,自发过程,但熵减少。
只有孤立体系或绝热体系,自发变化过程,∆S > 0。
11.错。
必须可逆相变才能用此公式。
12.错。
系统的熵除热熵外,还有构型熵。
例如NaOH固体溶于水,或C在氧气中燃烧,都是放热,但熵都是增加。
13.对。
固体、液体变成气体,熵是增加的。
14.错。
冰在0℃,pө下转变为液态水,不能认为是自发方程;同样在0℃,pө下液态水也可以变成冰,只能说是可逆过程(或平衡状态)。
15.错。
只有孤立体系才成立,非孤立体系不成立,例如过冷水结冰,ΔS< 0,混乱度减小,自发过程的方向就不是混乱度增加的方向。
16.错,必须在等温、等压的条件下才有此结论。
17.错。
若有非体积功存在,则可能进行,如电解水,吉布斯函数变化大于零。
18.错。
此说法的条件不完善,如在等温条件下,做的功(绝对值)才最多。
19.错。
基本方程对不可逆相变不适用。
20.错。
热力学答案 第二章
28 第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为 (),p f V T = (1)式中()f V 是体积V的函数. 由自由能的全微分dF SdT pdV=--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有 ().T VS p p f V V T T ∂∂⎛⎫⎛⎫===⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0TS V ∂⎛⎫> ⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭(3)所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4)这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证:()0;HS a p ⎛⎫∂< ⎪∂⎝⎭()0.US b V ∂⎛⎫> ⎪∂⎝⎭ 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH=,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU=,得0.US p V T ∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T U V ∂⎛⎫=⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭解:对复合函数(,)(,(,))U T P U T V T p =(1)求偏导数,有.T T T U U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2)如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)292.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V ==(1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭(2) 因为0,0p C T >>,所以p S V ∂⎛⎫ ⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负.式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭P S S p S p T p V V p T p V p P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭(2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为.P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS=,故有.TP p SPS V T p T T S p C T ⎛⎫∂∂⎛⎫ ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-=⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH=,故有.T Pp HPH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2)最后一步用了式(2.2.10)和式(1.6.6).将式(1)和式(2)相减,得 0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭(3)而由式(1)可得30 .Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出00220022,.⎛⎫⎛⎫∂∂=+=- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰VpV V p p V p V pp p C C T dV C C T dp T T根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1)以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T V T ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2)其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程 pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫=⎪∂⎝⎭ 这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭(5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得 0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意31压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2)由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰(3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln =⎰+-⎰--=-⎰⎰+--V m m V m m m m V m m m mC dTF C dT U T dT RT V TS T C dT U TS RT V TT解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和mS 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m mm m C S dT R V S T=++⎰ (3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式,xdy xy ydx =-⎰⎰令,1,,==⎰V m x y C dT T可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数.解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为 ,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3)由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自32 由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为()(),,00,ln .V m m m V m m m m m C a F T V C dT T dT RT V b U TS TV =----+-⎰⎰(6)式(6)的(),mm F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m m m m m C F S dT R V b S T T ∂=-=+-+∂⎰(7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰(8)2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量.解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为 ()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1)因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量(2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V-图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的TS -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =-循环过程的效率为()()2212211211111.T S S Q T Q T S S T η-=-=-=-- (6)2.18 试证明磁介质H C 与M C 之差等于3320H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ=(1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→(2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭(4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5)(5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)如果磁介质遵从居里定律(),CVm H C T=是常量 (3) 易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6)吸收的热量为20.2CV H Q T S Tμ=∆=- (7)补充题1 温度维持为25C,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系34.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()222111∂∂⎛⎫⎛⎫∆==-=-+ ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰p p p P p p Tp S V S dp dp a bp dp P T ()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1)由范氏方程2m mRT ap V b V =--易得()232,.⎛⎫∂∂⎛⎫==-+ ⎪ ⎪∂-∂⎝⎭-⎝⎭m V m m mT m p R p RT a T V b V V V b(2)但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 所以()()323,2∂⎛⎫⎪∂-⎝⎭∂⎛⎫=-= ⎪∂⎛⎫∂⎝⎭-- ⎪∂⎝⎭m V m m m p m m m Tp T RV V b V T p RTV a V b V(3)代入式(1),得 (),,23.21p mV m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换 ,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3)将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为2.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT ⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(5)代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰350051,2bTL a T ⎛⎫=-- ⎪⎝⎭(6) 其中001.dL L dTα=过程中外界所做的功为2220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S L L T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭(2)将习题2.15式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1)其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦2021(,0).2d M S T dTμχχ=+ (4)单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5)。
热力学问答题 2
第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。
(1)流体的PVT 关系可以直接用于设计。
(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。
只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。
2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。
【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。
2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。
6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。
2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。
真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。
2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C V PC V PT T 0022==∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。
为了提高计算复杂分子压缩因子的准确度。
热学第二章课后答案
热学第二章课后答案
1. 什么是热力学第一定律?它的表述方式是什么?
热力学第一定律是能量守恒定律,表述为:能量不会自发消失
或产生,只会转化为其他形式或从一个物体传递到另一个物体。
2. 什么是“内能”?它的符号是什么?
内能是指一个物体分子或原子微观热运动所带的能量总和,符
号为E。
3. 什么是“功”,它的符号是什么?以及什么情况下它的值为正,什么情况下它的值为负?
功是指一个力在物体上产生的位移,并且力和位移在同一方向上,符号为W。
当物体受到的力和移动方向相同时,功就是正的;当物体受到的力和移动方向相反时,功就是负的。
4. 什么情况下物体的内能增加?
当物体受到外部做功的作用,或通过吸收热能,其内能会增加。
5. 什么是外界对物体做功所需的最小力?
外界对物体做功所需的最小力,是物体承受的重力和加速度所
决定的。
6. 什么是“焓变”,以及它常用的符号是什么?
焓变指的是在等压过程中,系统由初态到末态时,因吸收或放
出能量所引起的焓值的变化,符号为ΔH。
7. 什么是“焦耳定律”?
焦耳定律是热力学中的基本定律,指的是物体所吸收的热量正
比于物体的质量,以及其温度的变化。
8. 什么是“热容”?
热容指的是物体在温度变化下,需要吸收或释放的热量与温度变化的比例。
9. 什么是“定容热容”?
定容热容指的是物体在定容状态下,吸收或释放的热量与温度变化的比例。
10. 什么是“定压热容”?
定压热容是指在恒定压力下,物体吸收或释放的热量与温度变化的比例。
以上是热学第二章的课后答案,希望可以帮助大家更好地掌握课程知识。
热学第二章习题答案
第二章 气体分子运动论的基本概念2-1 目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2 钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m ,试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此00T P 与 11T P相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g 的氩气。
设混合气体的温度为150℃,求混合气体的压强。
热力学第二定律
第二章热力学第二定律一、判断题(说法正确否):1.自然界发生的过程一定是不可逆过程。
2.不可逆过程一定是自发过程。
3.熵增加的过程一定是自发过程。
4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
7.平衡态熵最大。
8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U= 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?10.自发过程的熵变∆S > 0。
11.相变过程的熵变可由计算。
12.当系统向环境传热时(Q < 0),系统的熵一定减少。
13.一切物质蒸发时,摩尔熵都增大。
14.冰在0℃,pθ下转变为液态水,其熵变 >0,所以该过程为自发过程。
15.自发过程的方向就是系统混乱度增加的方向。
16.吉布斯函数减小的过程一定是自发过程。
17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
18.系统由V1膨胀到V2,其中经过可逆途径时做的功最多。
19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得G = 0。
20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,∆U = 0,代入热力学基本方程d U = T d S - p d V,因而可得d S = 0,为恒熵过程。
21.是非题:⑴“某体系处于不同的状态,可以具有相同的熵值”,此话对否?⑵“体系状态变化了,所有的状态函数都要变化”,此话对否?⑶绝热可逆线与绝热不可逆线能否有两个交点?⑷自然界可否存在温度降低,熵值增加的过程?举一例。
⑸ 1mol理想气体进行绝热自由膨胀,体积由V1变到V2,能否用公式:计算该过程的熵变?22.在100℃、p时,1mol水与100℃的大热源接触,使其向真空容器中蒸发成100℃、p的水蒸气,试计算此过程的∆S、∆S(环)。
第二章热力学第二定律
第二章热力学第二定律第二章热力学第二定律一、单选题1) 理想气体绝热向真空膨胀,则()A. ?S = 0,?W = 0B. ?H = 0,?U = 0C. ?G = 0,?H = 0D. ?U =0,?G =02) 对于孤立体系中发生的实际过程,下式中不正确的是()A. W = 0B. Q = 0C. ?S > 0D. ?H = 03) 理想气体经可逆与不可逆两种绝热过程,则()A. 可以从同一始态出发达到同一终态。
B. 不可以达到同一终态。
C. 不能确定以上A、B中哪一种正确。
D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。
4) 求任一不可逆绝热过程的熵变?S,可以通过以下哪个途径求得?()A. 始终态相同的可逆绝热过程。
B. 始终态相同的可逆恒温过程。
C. 始终态相同的可逆非绝热过程。
D. B 和C 均可。
5) 在绝热恒容的系统中,H2和Cl2反应化合成HCl。
在此过程中下列各状态函数的变化值哪个为零?()A. ?r HmB. ?rUmC. ?rSmD. ?rGm6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=2dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。
此过程中氧气的熵变为: ( )A. ?S >0B. ?S <0C. ?S =0D. 都不一定7) 1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为:( )A.19.14J·K-1, -19.14J·K-1, 0B.-19.14J·K-1, 19.14J·K-1, 0C.19.14J·K-1, 0, 0.1914J·K-1D. 0 , 0 , 08) 1mol Ag(s)在等容下由273.2K加热到303.2K。
热学教程习题参考解(第二章)
《热学教程》习题参考答案第二章 习题2-1.假若把1g 水的分子均匀地覆盖在地球表面上,问:每平方米面积能分配到多少水分子?(答:27m 1055.6-⨯)解:1g 水含有的分子数等于它的摩尔数()mol 0556.010181033=⨯--乘以阿伏伽德罗常数1-25m ol 10022.6⨯,得2210348.3⨯个分子.若取地球的半径为m 1038.66⨯=R ,则其表面积为 2142m 10115.54⨯=R π.因此,可以得到,每平方米面积能分配到71055.6⨯个分子.2-2.设有乳浊液,由水(3101.0-⨯=ηkg/m ﹒s ,293.15=T K)和半径为a 的布朗粒子所组成.实验中,每隔30 s 作一次测量,测得一个布朗粒子前20步沿x 方向所作的位移(单位是10-6 m )分别为: +2.4,+1.2,-1.6, -0.9,-4.0,-1.5,+1.7, +1.0,+0.3,+1.3,-2.9, -3.1,-0.5,+1.5,+0.7,+1.9,-0.2,+0.1,-2.7.试求布朗粒子的半径a .(答:3.83×106-m)解:先把本题给出的每个位移值平方后相加,再除以20,可得2122m 103633-⨯=.Δx ;再应用爱因斯坦扩散方程,可知布朗粒子的半径 ()23Δx πηT τk a B =,式中的B k K /J 1038123-⨯=.是玻耳兹曼常数.代入已知的数据:K 15293.T =,30=τs 和s m /kg 10013⋅⨯=-.η,可得 m 108336-⨯=.a .2-3.设有悬浮在水中的﹑半径为r 的布朗粒子,在等时间间隔30秒内,实验观测到沿x 方向的方均位移 2122m 100.3-⨯=∆x ,若已知水温为273 K,水的粘滞系数3101.0-⨯=ηkg/m ﹒s ,试问此布朗粒子的半径为多少?(答:m 1029.46-⨯)解: 应用爱因斯坦扩散方程,可知布朗粒子的半径为:()()m 1029.41031033015.2931038.1x 3k 6123222----⨯=⨯⨯⨯⨯⨯⨯=∆=ππητT r B 2-4.皮兰在实验中测得半径为0.212m μ的藤黄树脂微粒沿x 轴方向的平均平方位移2x 的数值如下:若已知温度C 13,液体介质的粘滞系数3101.2-⨯=η Pa ﹒s ,试计算阿伏加德罗常数.解: 应用爱因斯坦扩散方程,可知阿伏加德罗常数等于:()()()(),mol 1092.9102.11012.2315.28631.831-2112372B A x x x a RT k R N ∆⨯==∆⨯⨯⨯⨯⨯=∆==--τπτηπτ故应用上式结果和本题附表中所列的数据,可以分别求得阿伏加德罗常数为:2310613.6⨯、2310881.6⨯、2310377.6⨯、2310105.6⨯.取此四个结果的平均值,得123mol 10494.6-⨯=A N .2-5.一个连续的弹丸流,每个弹丸的质量为5.0×10-4 kg ,以1.0 m/s 的速度射击天平的一个盘,速度的方向与法线成30度角,射击频率是每秒40次.设弹丸与天平盘发生完全弹性碰撞,碰撞一次就离开天平盘,不再跳回.为了平衡,在天平的另一盘上应放多少质量的砝码? (答:3.54×103-kgf)解: 按题意可知,连续不断的弹丸流作用于天平盘的冲力为 N θmv cos 2,其中的4100.5-⨯=m kg ,0.1=v m/s , 30=θ,1s 40-=N ,故依据动量定理可知,为平衡冲力,应加砝码重量等于()()kgf 1054.3N 0346.040130cos 1052cos 234--⨯==⨯⨯⨯⨯⨯=∆= t mvN G θ 2-6.已知温度为27℃的气体作用于器壁上的压强为105 Pa,试求此气体单位体积里的分子数.(答:2.411910⨯3-cm )解 应用理想气体压强公式可得:25235B 1041.215.3001038.110⨯=⨯⨯==-T k p n m -3。
工程热力学第二章习题详解
=
1kg × 260J/(kg ⋅ K) × 300.15K 0.5×106 Pa
=
0.1561m3
代入(a)
V2 = 2V1 = 0.3122m3
c2 = 2× (54.09J/kg ×1kg ×103 − 0.1×106 Pa × 0.1561m3 ) /10kg = 87.7m/s
2-3 气体某一过程中吸收了 50J 的热量,同时,热力学能增加 84J,问此过程是膨胀过程还是 压缩过程?对外作功是多少 J?
= 979J = 0.98kJ
Q = ∆U +W = 3.90kJ + 0.98kJ = 4.88kJ
2-8 有一橡皮球,当其内部气体的压力和大气压相同,为 0.1MPa 时呈自由状态,体积为
0.3m3 。气球受火焰照射而受热,其体积膨胀一倍,压力上升为 0.15MPa ,设气球的压力与
体积成正比。试求:(1)该过程中气体作的功;(2)用于克服橡皮气球弹力所作的功,若初
解 (1) p1 = pe,1 + pb = 9MPa + 0.101325MPa = 9.1MPa
p2 = pb − pv,2 = 0.101325MPa − 0.0974MPa = 0.3925×10−2 MPa
(2) 据稳流能量方程
Q = ∆H + Wt 每小时技术功
Pt =ψ − ∆H& =ψ − qm∆h = −6.81×105 kJ/h − 40×1000kg/h × (3441− 2248)kJ/kg = 4.704×107 kJ/h
第二章 热力学第二定律
第二章 热力学第一定律
2-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 气体分子运动论得基本概念2-1 目前可获得得极限真空度为10-13mmHg 得数量级,问在此真空度下每立方厘米内有多少空气分子,设空气得温度为27℃。
解: 由P=n K T 可知n =P/KT= =3、21×109(m –3)注:1mmHg=1、33×102N/m 22-2 钠黄光得波长为5893埃,即5、893×10-7m,设想一立方体长5、893×10-7m,试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT其中T=273K P=1、013×105N/m 2∴N=个2-3 一容积为11、2L 得真空系统已被抽到1、0×10-5mmHg 得真空。
为了提高其真空度,将它放在300℃得烘箱内烘烤,使器壁释放出吸附得气体。
若烘烤后压强增为1、0×10-2mmHg,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后得分子数为N 。
根据上题导出得公式PV = NKT 则有:因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此 与 相比可以忽略1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个 2-4 容积为2500cm 3得烧瓶内有1、0×1015个氧分子,有4、0×1015个氮分子与3、3×10-7g 得氩气。
设混合气体得温度为150℃,求混合气体得压强。
解:根据混合气体得压强公式有PV=(N 氧+N 氮+N 氩)KT其中得氩得分子个数:N 氩=(个)∴ P=(1、0+4、0+4、97)1015PammHg2-5一容器内有氧气,其压强P=1、0atm,温度为t=27℃,求(1) 单位体积内得分子数:(2) 氧气得密度;(3) 氧分子得质量;(4) 分子间得平均距离;(5) 分子得平均平动能。
解:(1) ∵P=nKT∴n=m-3(2)=g(3)m氧(4) 设分子间得平均距离为d,并将分子瞧成就是半径为d/2得球,每个分子得体积为v。
=V∴cm(5)分子得平均平动能为:(尔格)2-6在常温下(例如27℃),气体分子得平均平动能等于多少ev?在多高得温度下,气体分子得平均平动能等于1000ev?解:(1)(J)∵leV=1、6×10-19J∴(ev)(2)T=2-7一摩尔氦气,其分子热运动动能得总与为3、75×103J,求氦气得温度。
:解:∴2-8质量为10Kg得氮气,当压强为1、0atm,体积为7700cm3时,其分子得平均平动能就是多少?解: ∵而∴J2-9 质量为50、0g,温度为18、0℃得氦气装在容积为10、0L得封闭容器内,容器以v=200m/s得速率作匀速直线运动。
若容器突然静止,定向运动得动能全部转化为分子热运动得动能,则平衡后氦气得温度与压强将各增大多少?解:由于容器以速率v作定向运动时,每一个分子都具有定向运动,其动能等于,当容器停止运动时,分子定向运动得动能将转化为分子热运动得能量,每个分子得平均热运动能量则为∴△T=因为容器内氦气得体积一定,所以故△P=,又由得:∴△P=(atm )2-10 有六个微粒,试就下列几种情况计算它们得方均根速率:(1)六个得速率均为10m/s;(2) 三个得速率为5m/s,另三个得为10m/s;(3) 三个静止,另三个得速率为10m/s。
解:(1)(2)(3)2-11 试计算氢气、氧气与汞蒸气分子得方均根速率,设气体得温度为300K,已知氢气、氧气与汞蒸气得分子量分别为2、02、32、0与201。
解:m/s2-12 气体得温度为T = 273K,压强为 P=1、00×10-2atm,密度为ρ=1、29×10-5g(1) 求气体分子得方均根速率。
(2) 求气体得分子量,并确定它就是什么气体。
解:(1)(2)m=28、9该气体为空气2-13 若使氢分子与氧分子得方均根速率等于它们在月球表面上得逃逸速率,各需多高得温度?解:在地球表面得逃逸速率为V地逸=在月球表面得逃逸速率为V月逸=又根据∴当时,则其温度为TH2=TO2=当时TH2=TO2=2-14 一立方容器,每边长1、0m,其中贮有标准状态下得氧气,试计算容器一壁每秒受到得氧分子碰撞得次数。
设分子得平均速率与方均根速率得差别可以忽略。
解:按题设米/秒设标准状态下单位容器内得分子数为n,将容器内得分子按速度分组,考虑速度为vi 得第i组。
说单位体积内具有速度vi得分子数为ni,在时间内与dA器壁相碰得分子数为ni ·vixdt·dA,其中vix为速度vi在X方向上得分量,则第i组分子每秒与单位面积器壁碰撞次数为ni ·vix,所有分子每秒与单位面积器壁碰撞次数为:即在标准状态下n=2、69×1025m-3∴2-15 估算空气分子每秒与1、0cm2墙壁相碰得次数,已知空气得温度为300K,压强为1、0atm,平均分子量为29。
设分子得平均速率与方均根速率得差别可以忽略。
解:与前题类似,所以每秒与1cm2得墙壁相碰次数为:2-16 一密闭容器中贮有水及饱与蒸汽,水得温度为100℃,压强为1、0atm,已知在这种状态下每克水汽所占得体积为1670cm3,水得汽化热为2250J/g(1)每立方厘米水汽中含有多少个分子?(2)每秒有多少个水汽分子碰到水面上?(3)设所有碰到水面上得水汽分子都凝结为水,则每秒有多少分子从水中逸出?(4)试将水汽分子得平均动能与每个水分子逸出所需能量相比较。
解:(1)每个水汽分子得质量为:每cm3水汽得质量则每cm3水汽所含得分子数(2)可瞧作求每秒与1cm2水面相碰得分子数D,这与每秒与1cm2器壁相碰得分子数方法相同。
在饱与状态n不变。
(3)当蒸汽达饱与时,每秒从水面逸出得分子数与返回水面得分子数相等。
(4)分子得平均动能每个分子逸出所需得能量显而易见E,即分子逸出所需能量要大于分子平均平动能。
2-17 当液体与其饱与蒸气共存时,气化率与凝结率相等,设所有碰到液面上得蒸气分子都能凝结为液体,并假定当把液面上得蒸气分子迅速抽去时液体得气化率与存在饱与蒸气时得气化率相同。
已知水银在0℃时得饱与蒸气压为1、85×10-6mmHg,汽化热为80、5cal/g,问每秒通过每平方厘米液面有多少克水银向真空中气化。
解:根据题意,气化率与凝结率相等P=1、85×10-6mmHg=2、47×10-4Nm-2气化得分子数=液化得分子数=碰到液面得分子数N,由第14题结果可知:则每秒通过1cm 2液面向真空气化得水银质量2-18 已知对氧气,范德瓦耳斯方程中得常数b=0、031831mol -1,设b 等于一摩尔氧气分子体积总与得四倍,试计算氧分子得直径。
解:∴2-19 把标准状态下224升得氮气不断压缩,它得体积将趋于多少升?设此时得氮分子就是一个挨着一个紧密排列得,试计算氮分子得直径。
此时由分子间引力所产生得内压强约为多大?已知对于氮气,范德瓦耳斯方程中得常数a=1、390atm ﹒l 2mol -2,b=0、039131mol -1。
解:在标准状态西224l 得氮气就是10mol 得气体,所以不断压缩气体时,则其体积将趋于10b,即0、39131,分子直径为:内压强P 内=atm注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可能一个挨一个得紧密排列,因而气体体积不能趋于分子本身所有体积之与而只能趋于b 。
2-20 一立方容器得容积为V,其中贮有一摩尔气体。
设把分子瞧作直径为d 得刚体,并设想分子就是一个一个地放入容器得,问:(1) 第一个分子放入容器后,其中心能够自由活动得空间体积就是多大?(2) 第二个分子放入容器后,其中心能够自由活动得空间体积就是多大?(3) 第N A 个分子放入容器后,其中心能够自由活动得空间体积就是多大?(4) 平均地讲,每个分子得中心能够自由活动得空间体积就是多大?由此证明,范德瓦耳斯方程中得改正量b 约等于一摩尔气体所有分子体积总与得四倍。
解:假定两分子相碰中心距为d,每一分子视直径为d 得小球,忽略器壁对分子得作用。
(1) 设容器四边长为L,则V=L 3,第一个分子放入容器后,其分子中心与器壁得距离应,所以它得中心自由活动空间得体积V 1=(L-d)3。
(2) 第二个分子放入后,它得中心自由活动空间应就是V 1减去第一个分子得排斥球体积,即:(3)第N A 个分子放入后, 其中心能够自由活动得空间体积:(4) 平均地讲,每个分子得中心能够自由活动得空间为:2134)]}1(321[34{1]}34)1([)342()34({131********--=-+⋯⋯+++-=--⋯⋯+⋅-+-+=AA A A A A N d V N d V N N d N V d V d V V N V πππππ因为,,所以容积为V得容器内有N个分子,即容器内有一摩尔气体,按修正量b得定义,A每个分子自由活动空间,与上面结果比较,易见:即修正量b就是一摩尔气体所有分子体积总与得四倍。