23.1锐角三角函数(1)讲解
锐角三角函数_知识讲解
锐角三角函数—知识讲解责编:康红梅【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即s i n A aA c∠==的对边斜边;Ca b锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c o s A bA c∠==的邻边斜边; 锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c∠==的对边斜边;cos B a B c ∠==的邻边斜边;tan B b B B a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(1)-(2)】【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,c o s A=,sinB=,cosB=.a【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==12-(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称: 锐角三角函数 高清ID 号:395948 关联的位置名称(播放点名称):例1(3)-(4)】【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = , sinA = ,cosA =,sinB =,cosB = .【答案】∠B =45°,sinA =2, cosA =2,sinB =2, cosB =2.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD 与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°,又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴ PC CD PAAB=.又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CD PAAB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______. (3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB==得BC =3a ,∴4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD==.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BCWORD完美格式接近2AB,则sadA接近2但小于2,故sadA<2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.专业知识编辑整理。
23.1 锐角的三角函数
23.1 锐角的三角函数1.锐角的三角函数教学目标1、经历探索知道直角三角形中某锐角确定后,它的对边、邻边和斜边的比值也随之确定,理解角度与数值之间一一对应的函数关系。
2、能够正确地运用sinA,cosA,tanA 表示直角三角中两边之比。
教学重难点1、重点:正确地运用三角函数值表示直角三角中两边之比2、难点:理解角度与数值之间一一对应的函数关系 教学过程 1、复习回顾:♦ 直角三角形中边与角的关系:锐角的三角函数--正切函数♦ 在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定.♦ 在Rt △ABC 中,锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA,即2、探究新知如图,当Rt △ABC 中的一个锐角A 确定时,它的对边与邻边的比便随之确定.此时,其它边之间的比值也确定吗?在Rt △ABC 中,如果锐角A 确定时,那么∠ A 的对边与斜边的比,邻边与斜边的比也随之确定.在Rt △ABC 中,锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即在Rt △ABC 中,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即锐角A 的正弦,余弦和正切都是做∠A 的三角函数A C∠A 的对边∠A 的邻边 斜边B的邻边的对边A A A ∠∠=t an 斜边的对边A A ∠=sin 斜边的邻边A A ∠=cos3、例题例1、 如图:在Rt △ABC 中,∠B=90°,AC=200,sinA=0.6.求:BC 的长.解:在Rt △ABC 中,请你求出cosA,tanA,sinC,cosC 和tanC 的值.你敢应战吗?例2、如图:在Rt △ABC 中,∠C=90°,AC=10,求:AB 和sinB 的值.4、练习:1.在Rt △ABC 中,∠C=90°, (1)AC=3,AB=6,求sinA 和cosB (2)BC=3,sinA=513,求AC 和AB. 2.在Rt △ABC 中,∠C=90°,AB=15,sinA=35 ,求AC 和BC.3.在等腰△ABC 中,AB=AC=13,BC=10, 求sinB,cosB.4.如图:在等腰△ABC 中,AB=AC=5,BC=6. 求: sinB,cosB,tanB. 提示:过点A 作AD 垂直于BC 于D.5.在Rt △ABC 中,∠C=900,BC=20, 求:△ABC 的周长. 5、小结:锐角三角函数定义:AC10B .665121310=⨯=∴AB .131210cos :===AB AB AC A 解 AC 200B,6.0200sin ===BCAC BC A .1206.0200=⨯=∴BC 55A6BC.1312cos =A .131266510sin ===∴AB AC B 斜边的对边A A ∠=sin。
最全锐角三角函数概念超经典讲义完整版.doc
锐角三角函数知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。
3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。
4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。
sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。
考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。
7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 5B 25C 、12D 、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2019-2020年九年级数学上册 23.1 锐角的三角函数名师教案 (新版)沪科版
2019-2020年九年级数学上册 23.1 锐角的三角函数名师教案(新版)沪科版教学目标1.理解锐角三角函数(sin A,cos A,tan A)的定义.2.会求直角三角形中各锐角的三角函数值.3.了解坡度、坡角的定义,掌握坡度、坡角与三角函数之间的关系.教学重难点正切、正弦、余弦函数的概念及其应用;使学生知道当锐角固定时,它的对边、邻边与斜边的比值是固定值.教学过程导入新课杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5 m的斜塔大幅度摇摆22分之多,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1 m增加至5.2 m,而且还以每年倾斜1 cm的速度继续增加,随时都有倒塌的危险.为此,意大利当局从1990年起对斜塔进行维修纠偏,xx年竣工,使塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8 cm.根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的2.1 m增加至5.2 m”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了!推进新课一、合作探究1.问题引入梯子是我们日常生活中常见的物体,你能比较两个梯子哪个更陡吗?你有哪些办法?学生交流:如可用角的大小,梯子斜靠墙的高度等.给学生以发表意见的机会,教师予以引导.【问题1】探究梯子AB和EF哪个更陡?你是怎样判断的?请说出你的判断方法?学生可由铅直高度相等,水平长度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,又如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子AB 1的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子AB 1的倾斜程度.你同意小亮的看法吗?【问题4】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt△ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt△AB 1C 1……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BCAC,B 1C 1AC 1,B 2C 2AC 2……有怎样的关系?引导学生独立证明:易知,BC ∥B 1C 1∥B 2C 2∥B 3C 3∥…, ∴△ABC ∽△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽…, ∴BC AC =B 1C 1AC 1=B 2C 2AC 2=….因此,在这些直角三角形中,∠A 的对边与邻边的比值是一个固定值.通过引导,使学生自己独立掌握了重点,达到教学目标,同时培养学生的能力,进行了德育渗透.2.正切函数概念的提出在日常生活和数学活动中,上面所得出的结论是非常有用的.为了叙述方便,作出如下规定:如图,在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A=.注意:正切的定义是在直角三角形中,相对其锐角而定义的,实质是两条线段长度的比,它只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关.3.坡度和坡角对于问题2中“当水平长度和铅直高度都不相等时,判断坡度的大小”,你现在能判断了吗?结合图形,教师讲述坡度概念,并板书:坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),一般用i 表示,即i =h l,把坡面与水平面的夹角α叫做坡角(或称倾斜角).引导学生结合图形思考,坡度i 与坡角α之间具有什么关系? 答:i =h l=tan α.4.正弦、余弦的概念我们知道,在Rt△ABC 中,∠C =90°,当锐角A 确定时,∠A 的对边与邻边的比就随之确定了.问:其他边之间的比是否也确定了呢?为什么? 教师引导学生自己作出结论,其证明方法与上面证明对边比邻边为定值的方法相同,都是通过两个三角形相似来证明.学生证明过后教师进行总结:类似于正切的情况,当锐角A 的大小确定时,∠A 的对边与斜边的比、∠A 的邻边与斜边的比也分别是确定的.正弦:我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.余弦:我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=b c.锐角三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sin A 有唯一确定的值与它对应,所以sin A 是A 的函数.同样地,cos A ,tan A 也是A 的函数.二、巩固提高如图,在Rt△ABC 中,∠C =90°,BC =6,sin A =35,求cos A ,tan B 的值.分析:我们已经知道了直角三角形中一条直角边的值,要求余弦值、正切值,就要求斜边与另一条直角边的值.我们可以通过已知角的正弦值与对边值及勾股定理来求.解:sin A =BC AB, ∴AB =BCsin A =6×53=10. 又∵AC =AB 2-BC 2=102-62=8,∴cos A =AC AB =45,tan B =AC BC =43.三、达标训练 1.如图,菱形ABCD 中,对角线AC =6,BD =8,∠ABD =α,则下列结论中正确的是( ).A .sin α=45B .cos α=35C .tan α=43D .tan α=342.在Rt△ABC 中,各边长度都同时缩小为原来的一半,则锐角A 的余弦值和正切值( ).A .都扩大2倍B .都缩小一半C .都不变D .正切值扩大2倍,余弦值缩小一半3.一段坡面的坡角为60°,则坡度i =_____________________.4.已知直角三角形中较长的直角边长为30,这边所对角的余弦值为817,则此三角形的周长为__________,面积为__________.本课小结1.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.2.能利用锐角三角函数的概念求锐角三角函数值,或利用锐角三角函数值求边的长度. 3.对锐角三角函数概念的理解要准确,不要混淆正弦函数、余弦函数和正切函数,特别是正弦函数和余弦函数易混淆,正弦函数是对边比斜边,而不是邻边比斜边(余弦).1.对三角函数概念的理解(1)正切、正弦、余弦的定义是在直角三角形中,相对其锐角而定义的,其本质是两条线段长度的比,它只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关.(2)在直角三角形中,斜边大于直角边,且各边长均为正数,所以有如下结论:tan A >0,0<sin A <1,0<cos A <1.(3)“tan A”“sin A”“cos A”都是整体符号,不能写成“tan ·A”“sin ·A”“cos ·A”,对于用三个大写字母,如∠AOB ,应写成“tan∠AOB”“sin∠AOB”“cos∠AOB”.(4)由tan A =a b ,sin A =a c ,cos A =b c,变形可以得到a =b ·tan A,a =c ·sin A,b =c ·cos A,或者b =a tan A ,c =a sin A ,c =bcos A .(5)(sin A)2常写成sin 2A ,不能写成sin A 2. 2.三角函数的产生和发展 三角学开创之初,希腊人思考的是定圆各中心角所对应的弦长.如托勒密把圆心角分成360份,把直径分为120份,然后对圆心角求对应弦的长.而印度人则不同,他们研究一个角的倍角所对弦的一半,即角对应的半弦长.1631年邓玉函、汤若望和徐光启编译的《大测》一书,将sin us 译成正半弦或前半弦,简称正弦,此即为我国正弦一词的来源.正弦、余弦的现代定义起源于欧拉.正弦和余弦的符号也是经过长期的发展才成为我们现在所看到的这样.数学家毛罗利科早在1558年就已采用三角函数符号,但当时并无函数的概念,于是只称作三角线.1753年,生于瑞士的欧拉开始使用sin 和cos 表示正弦和余弦,这两个符号才算基本定型.公元727年,唐朝卓越的天文学家、高僧一行受唐玄宗之命撰写《大衍历》.为了求得全国任何一地方一年中各节气的日影长度,一行编出了太阳天顶距和八尺之竿的日影长度对应表,而太阳天顶距和日影长度的关系即为正切函数.希腊科学家海伦在计算正多边形面积时,就已经用到了余切三角函数值了.3.一般三角形中正弦函数的应用在锐角△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c .过A 作AD ⊥BC 于D ,如图,则sin B=,sin C=,即AD=c sin B ,AD=b sin C .于是c sin B=b sin C ,即.同理有,. 所以.(*)即在一个三角形中,各边和它所对角的正弦的比相等. 解决以下问题:在锐角三角形中,若已知三个元素a ,b ,∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c ,∠B,∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件a ,b ,∠A――――→用关系式__________――→求出∠B;第二步:由条件∠A,∠B――――→用关系式__________――→求出∠C;第三步:由条件__________――――→用关系式__________――→求出c .分析:灵活运用结论a sin A =b sin B =csin C .解:第一步:∵a sin A =b sin B ,∴sin B=bsin Aa.第二步:∵∠A+∠B+∠C=180°, ∴∠C=180°-(∠A+∠B).第三步:a ,∠A,∠C 或b ,∠B,∠C,c sin C =a sin A 或b sin B =csin C.奥赛链接如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处,已知AB =8,BC =10,则tan∠EFC 的值为( ).A .34B .43C .35D .45 解析:AF =AD =10,∴BF=102-82=6.又∵∠AFE=∠D=90°, ∴∠AFB+∠EFC=90°. ∴∠BAF=∠EFC.∴tan∠EFC=tan∠BAF=BF AB =68=34.答案:A-----如有帮助请下载使用,万分感谢。
23.1锐角的三角函数第一课时+课件+2024—2025学年沪科版数学九年级上册
坡面的倾斜程度吗?
比较坡面的长度、铅直高度、水平长度三者中的任何一个都不
能判断哪个坡面更陡.
新课探究
既然只用一边不行,如何改进呢?我们尝试综合考虑两条边.
如图,坡面的长度、铅直高度、水平长度
构成了一个直角三角形。两个锐角一样大的
直角三角形对应的坡面的倾斜程度是一样的,
改变。∠A的对边与∠A的邻边的比(即 )随∠A的变化而变化,并且对于
∠A的每一个值,都有唯一确定的值与之对应。你认为与∠A这两个变量之
间是一种什么关系? (函数关系)
新课探究
如图,在Rt△ABC中,我们把锐角A的对边与邻边的比叫做
∠A的正切(tangent),记作tan A,即
tan A
∴ = 2 + 2 = 36 + 4 = 2 10 米 .
D.6米
课堂练习
3. 如图所示,A,B,C三点在正方形网格线的交点处,
网格中,小正方形的边长均为1,若将△ACB绕着点A
1
逆时针旋转得到△AC'B',则tan B'的值为_______.
3
B′
C′
A
C
B
锐角的正切问题,必须放在直角三角形中.
正切:
课堂小结
在Rt△ABC中,我们把锐角A的对边与邻边的比叫做
∠A的正切(tangent),记作tan A,即
正
切
tan A
∠A的对边 BC a
.
∠A的邻边 AC b
坡度:
坡面的铅直高度h和水平长度l的比叫做坡面的坡度
h
i
(坡度通常写成h∶l的形式) .
23.一般锐角的三角函数值PPT课件(沪科版)
B C = C D 4 .2 5 .9 (千 米 ), sin C BA sin 45
【方法总结】解决问题的关键是作出辅助线,构造直 角三角形,利用三角函数关系求出有关线段的长.
例4:如图,课外数学小组要测量小山坡上塔的高度 DE,DE所在直线与水平线AN垂直.他们在A处测得塔 尖D的仰角为45°,再沿着射线AN方向前进50米到达B 处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡 顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组 算一算塔高DE大约是多少米 (结果精确到个位).
解:延长DE交AB延长线于点F,则∠DFA=90°.
∵∠A=45°,
∴AF=DF.
设EF=x,
∵tan25.6°= EF ≈0.5,
BF
∴BF=2x,则DF=AF=50+2x,
故tan61.4°=
DF BF
50 2x 2x
=1.8,
解得x≈31.
故DE=DF-EF=50+31×2-31=81(米).
所以,塔高DE大约是81米.
归纳总结
解决此类问题要了解角之间的关系,找到 与已知和未知相关联的直角三角形,当图形中 没有直角三角形时,要通过作高或垂线构造直 角三角形.
巩固练习
1. 已知下列锐角三角函数值,用计算器求其相应 的锐角: (1)sinA=0.627 5,sinB=0.054 7;
∠A=38°51′57″ ∠B=38°8″
锐角三角函数-正切教学设计
23.1锐角的三角函数1. 锐角的三角函数第一课时正切教学目标◆知识与技能1.初步了解角度与数值的一一对应的函数关系。
2.会求直角三角形中某个锐角的正切值。
3.了解坡度的有关概念。
◆过程与方法让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。
◆情感态度通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。
教学重点:1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
教学难点:锐角三角函数的概念的理解。
教学准备多媒体课件制作教学设计一、导入新课导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。
大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?(导入课题锐角三角函数)二、推进新课1.交流合作【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的?学生可由水平长度相等,铅直高度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B 1哪个更陡?你又是如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?请同学们小组合作测量并计算它们的近似值,看看会有什么发现?同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。
锐角三角函数--讲义资料
锐角三角函数 讲义一、基础知识点: 1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;ca A =sin 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;cb A =cos 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ;ba A =tan 2、三角函数值(1)特殊角的三角函数值角度 三角函数 0° 30° 45° 60° 90° s inA 0 12 22 321cosA 1 32 22 12 0tanA313不存在(2)锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<s inα<1,0<c os α<1,当0°≤α≤45°时,sin α,tan α随角度的增大而_______,co sα随角度的增大而_______.(3)当0°<α<45°时,sin α_____c os α;当45°<α<90°时,sin α______c os α.3、 同角、互余角的三角函数关系:(1)同角三角函数关系:1cos sin 22=+A A .; AA A cos sin tan =;(2)互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。
1、 解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。
直角三角形的可解条件及解直角三角形的基本类型如下表: 已知条件 解法 一条边和一个锐角 斜边c和 锐角A290,sin ,cos ,sin cos B A a c A b c A S c A A ο=-===直角边a 和锐角A 90,,,tan sin a aB A b c A Aο=-==两条边两条直角 边a 和b 22c a b =+,1,90,2A B A S ab ο=-=直角边a和 斜边c22,sin ,,90ab c a A A B A cο=-==-备注:a 、b、c 为三角形的三边;A 、B 、C 为三角形的三个内角、S 为三角形的面积 三、典型例题:1. 锐角三角函数的相关概念例1、如图1,在RT △A BC中,∠C=90°,si nA =53,则tanB 的值为(ﻩ)A .34ﻩ B.54 ﻩC .45 ﻩﻩD .43例5例2、如图,⊙O 是△A BC 的外接圆,A D是⊙O的直径,若⊙O 的半径是23,AC=2,则sinB 的值是( )A.32ﻩﻩ B.23ﻩﻩﻩC .43 ﻩﻩD .34ﻩ例3:已知在Rt ABC △中,∠C 为直角,A C = 4cm ,BC = 3cm ,sin ∠A = . 例4:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .例5:如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A的值是( ) A.错误! B.错误! C.错误! D .错误!A CB图1A BCDO例2ACB ACBDBACDE 例6:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则B C的长为 ___c m. 例6例7:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )A.55ﻩ B.255ﻩ C.12ﻩﻩD.2 典型例题题型一:求锐角三角函数的值例1 在Rt △ABC 中,∠C =90°,sin B=35,点D 在BC边上,且∠ADC=45°,DC=6,求∠BAD 的正切值.变式训练1 如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( ) A.2 B .2C .6ﻩD .3变式训练2如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( )A.83B.15ﻩC.3D.3题型三:化简计算例1(1))计算:20113015(1)()(cos68)338sin 602π---+++-.ABO例7变式1图 变式2图变式:已知α是锐角,且s in(α+15°)=32。
(完整)锐角三角函数—知识讲解
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系"及“锐角三角函数值随角度变化的规律".【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF";另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°〈∠A〈90°间变化时,,,tanA >0.要点二、特殊角的三角函数值锐角Ca bc30°45°160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:; (3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=, ∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;ACa bc(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2=322+.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA )2﹣2﹣(3+tanC )0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB ﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB,∴ PC CD PA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a,∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=, ∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。
沪科版数学九年级上册23.1《锐角的三角函数》教学设计4
沪科版数学九年级上册23.1《锐角的三角函数》教学设计4一. 教材分析《锐角的三角函数》是沪科版数学九年级上册第23.1节的内容。
本节主要介绍了锐角三角函数的定义及应用。
通过本节的学习,学生能够理解锐角三角函数的概念,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了三角函数的基础知识,对函数的概念和性质有一定的了解。
但是,对于锐角三角函数的具体定义和应用,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握锐角三角函数的概念和计算方法。
三. 教学目标1.了解锐角三角函数的定义及计算方法。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.锐角三角函数的定义及计算方法。
2.运用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生从实际问题中抽象出锐角三角函数的概念。
2.案例教学法:通过具体的案例,讲解和演示锐角三角函数的计算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义和计算方法。
2.案例材料:准备一些实际的案例,用于讲解和演示锐角三角函数的应用。
3.练习题:准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用课件展示一些实际的例子,如建筑物的角度测量、滑翔机的起飞角度等,引导学生思考这些例子与三角函数的关系,从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和计算方法,引导学生从实际问题中抽象出锐角三角函数的概念。
3.操练(10分钟)学生分组讨论和解决一些实际的案例,如滑翔机的起飞角度问题、房屋建筑的倾斜度问题等,巩固学生对锐角三角函数的理解和应用。
4.巩固(10分钟)学生独立完成一些练习题,检测学生对锐角三角函数的掌握程度。
锐角三角函数重点知识梳理
锐角三角函数重点知识梳理锐角三角函数是三角学的基础内容,掌握锐角三角函数的有关概念及性质是学习解直角三角形的关键。
因此,学习时需注意掌握以下几个重点内容。
一. 理解锐角三角函数的定义教材中在研究锐角三角函数的定义时,是将锐角放在直角三角形中给出的。
如图1所示,在Rt ABC ∆中,∠=C 90°,∠A 、∠B 、∠C 对应的边分别为a 、b 、c ,锐角A 的正弦、余弦、正切、余切函数,分别记作sin cos A a c A b c ==,,tan A a b =,cot A b a =。
由此可见,锐角三角函数值是一个比值,四个三角函数值随角度的变化而变化。
当锐角固定时,它的四个三角函数值也就确定了。
aA b C图1例1. 在∆ABC 中,AB=AC=3,BC=2,则cos B =____________。
解析:由题设可知,△ABC 不是直角三角形,不能直接运用锐角三角函数的定义,故需构造直角三角形(构造直角三角形是要求大家掌握的解题技巧)。
如图2所示,过点A 作AD BC ⊥于D ,由AB=AC 可知,△ABC 是一个等腰三角形,根据等腰三角形的“三线合一”性质,可知BD BC ==121,故cos B BD AB ==13。
二. 熟记特殊角的三角函数值任意锐角的三角函数值都可以用计算器求得,但特殊角(30°、45°、60°)的三角函数值应当熟练掌握,以便于运用它们进行计算,求值或解直角三角形。
例2. 在△ABC 中,∠A 、∠B 都是锐角,且sin A =12,cot B =3,则△ABC 的形状是( )B D CA. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定解析:根据特殊角的锐角三角函数值,易知∠A=∠B=30°,则∠C=120°,故△ABC 为钝角三角形。
应选C 。
三. 弄清锐角三角函数间的关系1. 同角三角函数间的关系:(1)平方关系:sin cos 221αα+=;(2)倒数关系:tan cot αα⋅=1; (3)商数关系:tan sin cos cot cos sin αααααα==,。
23.1《锐角的三角函数》教案
cos245°+tan 60°cos 30°.
教师说明cos245°表示(cos 45°)2,类似地,
sin2A表示(sinA)2,tan2A表示(tanA)2.
问题2:已知特殊角的三角函数值,求锐角.
例2:(1)已知sinA= ,则∠A=________;
(2)已知tanA=1,则∠A=________;
第3课时用计算器求锐角三角函数值
【教学目标】
1.会使用计算器求锐角三角函数的值.
2.会使用计算器根据锐角三角函数的值求对应的锐角.
【重点难点】
重点:利用计算器求锐角三角函数的值.
难点:计算器的按键顺序.
┃教学过程设计┃
教学过程
设计意图
一、创设情境,导入新课
如图,有一个斜坡,现在要在斜坡OC上植树造林,如果保持沿斜坡方向每隔2米挖一个坑(已知斜坡坡面的倾斜角为36°,即下图中的
巩固特殊角的三角函数值.
学会通过三角函数值求特殊角.
体验知识的形成过程,强化对知识的理解.
三、运用新知,解决问题
计算:
(1)tan 30°·cos 30°=________;
(2)3tan 30°+cos 60°-2tan 45°+2sin 60°;
(3) +|1-sin 30°|.
进一步巩固所学知识.
∠COD),你能求出CB的距离吗?
引导学生得出CB的距离:CB=sin 36°·AC.
进而提问学生如何进行计算.
引出新课.
二、师生互动,探究新知
1.提出问题:怎样能求出sin 36°的值呢?
引导学生操作:步骤1:用刻度尺和量角器,作出Rt△ABC,使∠C=90°,∠A=36°.
沪科版初中九年级数学上册23-1-3一般锐角的三角函数值课件
23.1 锐角的三角函数
23.1.3 一般锐角的三角函数值
基础过关全练
知识点1 用计算器求一般锐角的三角函数值
1.求cos 9°的值,以下按键顺序正确的是 ( A )
A.cos 9 =
B.cos 2ndF 9 =
C.9 cos =
D.9 cos 2ndF =
解析 计算cos 9°时,先按cos,再按9,最后按=.故选A.
AB 5.5
∵60°<66.4°<75°,∴此时人能够安全使用这架梯子.
素养探究全练
13.(创新意识)(教材变式·P123T4) (1)用计算器计算并比较sin 25°+sin 46°与sin 71°之间的大小 关系; (2)若α,β,α+β都是锐角,猜想sin α+sin β与sin(α+β)的大小关 系; (3)请借助如图所示的图形证明上述猜想.
知识点2 已知锐角的三角函数值求锐角的度数 7.已知cos A=0.559 2,运用科学计算器在开机状态下求锐角A 时,按下的第一个键是(M9123003)( A ) A.2ndF B.cos C.ab/c D.D·M'S
解析 根据锐角三角函数值求角度时,应先按2ndF键,故选A.
8.已知sin A=0.56,用计算器求∠A的大小,下列按键顺序正确 的是(M9123003)( A ) A.2ndF sin-1 0 ·5 6 = B.2ndF 0 ·5 6 sin-1 = C.sin-1 2ndF 0 ·5 6 = D.sin-1 0 ·5 6 2ndF =
6.(1)猜想下列两组数值的关系. 2sin 30°·cos 30°与sin 60°; 2sin 22.5°·cos 22.5°与sin 45°; (2)试一试:你自己任选一个锐角,用计算器验证上述结论是 否成立. (3)如果结论成立,试用α表示一个锐角,写出这个关系式.
沪科版九年级数学上册《锐角的三角函数》课件
l
2.坡面与水平面的夹角叫做坡角(或称倾斜角),记 作α,于是有i=tan α= h .
l
感悟新知
知3-导
3. 拓展:(1)坡度等于坡角的正切值,所以坡角越大, 坡度越大,坡面越陡. (2)坡度一般写成1∶m的形式,比的前项是1,后项可 以是小数或带根号的数.
∠A=30°,∠B=60°.
设BC=1,则AB=2,AC= 3 (为什么?). 于是有
sin 30°=
,cos 30°=
,tan 30°=
;
sin 60°=
,cos 60°=
,tan 60°=
.
课时导入
如图(2),在Rt△ABC中,∠C=90°,
∠A=∠B=45°.
设BC=1,则AC=1,AB= 2(为什么?). 于是有
解:
cos A AC 12 , AB 13
tan A BC 5 . AC 12
知2-练
感悟新知
知2-练
1.如图,已知在 Rt△ ABC 中,∠C=90°,AB=5,
BC=3,则 cos B 的值是( A )
3
4
3
4
A.5
B.5
C.4
D.3
感悟新知
知2-练
2.如图,在 Rt△ ABC 中,∠C=90°,AB=13,
所以它没有单位.
感悟新知
例1
如图,在Rt△ABC中,∠C=90°,
15
则tan A=____8____.
AB 17 BC 15
知1-练
导引:由正切定义可知tan A= BC ,在本题已知两边之比
AC
的情况下,可运用参数法,由
人教版初三数学:锐角三角函数—知识讲解
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA >0.B Ca b c要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【高清课程名称:锐角三角函数 高清ID 号: 395948 关联的位置名称(播放点名称):例1(1)-(2)】【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .Ca bc【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模)6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2322【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(3)-(4)】【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵ AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a , ∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=,∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6.CBAO则劣弧BC的弧长为6033=1803ππ,故选A. 图(2)【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm ,侧面展开图是半圆,求:(1)圆锥的底面半径r 与母线R 之比; (2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.A EB DC F P【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图(3),有两个直角三角形,直角边 AC与DF表示水平面,AB与DE表示两个不同的 坡面,坡面AB与DE哪个更陡?你是怎么判断 的?
30 80 100 40
交流:
B1
B2
C1
C2
如图,BC AC, BC 1 1 AC , B2C2 AC ,....垂足分别为C.C1.C2 .....
4
3. 如图,汽车从引桥下端点A行驶200m 后到达高架的点B,已知高架桥的垂直高度 BC为12m.求引桥的坡度.(精确到0.01)
A
B C
解: 由题可知, AB 200m,BC 12m,
则AC AB BC
2 2 2
得AC 199.64 BC 则引桥的坡度 tan A 0.06 AC
tanA=
∠A的对边
∠A的邻边
BC a AC b
1. tanA是一个完整 的符号,不表示tan 乘以∠A。 2.它表示∠A的正切, 记号里习惯省去角的 符号∠,用三个字母 表示角不能省符号 ∠ 。 3. tanA没有单位, 它表示一个比值。 4. tanA是正数
∠A的对边a ∠A的邻边b
问题:∠B的正切怎么表示?
如何来描述坡面的坡度呢? 坡面的铅直高度h和 水平长度l的比叫做 坡面的坡度(或坡 比)记作i,即
h
l
h i l
(坡度通常写成
i h:l
的形式)
坡面与水平面的夹角叫做坡角,记作
于是有
h i tan l
例1:如图,在Rt∆ABC中,∠C=90°, AC=4,BC=3,求tanA和tanB.
23.1 锐角的三角函数
思考:
怎样描述山坡陡的程度呢?
交流: 如图(1),有两个直角三角形,直角边 AC与DF表示水平面,AB与DE表示两个不同的 坡面,坡面AB与DE哪个更陡?你是怎么判断 的?
30 20 100 100
交流:
如图(2),有两个直角三角形,直角边 AC与DF表示水平面,AB与DE表示两个不同的 坡面,坡面AB与DE哪个更陡?你是怎么判断 的?
在这些直角三角形中,锐角A的对边与邻边的比 BC B1C1 B2C2 , , ...究竟有怎样的关系? AC AC1 AC2
从中你能得到什么结论?
B1
B2
C1
C2
在这些直角三角形中,当锐角A的大小确 定后,无论直角三角形的大小怎样变化, ∠A的对边与邻边的比值总是一个固定的值。
定义:
如图,在Rt△ABC中, ∠C=90°我们把锐角A 的对边与邻边的比叫做∠A的正切(tangent), 记作tanA,即 说明:
练一练
1.计算图23-2、图23-3中坡面AB和A1B1的坡度.
图23-2
20 i1 1:5 100 30 i2 3 : 10 100
图23-3
20 i1 1:5 100 30 i2 3:8 80
2.在Rt∆ABC中,∠C=90°, 3 AC=12, ta度约为0.06.
4.河堤横断面如图所示,堤高BC=5米,迎水坡 AB=10米,则AC= 米,斜坡AB的坡比i=
这节课我们学习了什么?