平行四边形动点及存在性问题

合集下载

(教学反思)二次函数综合(动点)问题平行四边形存在问题

(教学反思)二次函数综合(动点)问题平行四边形存在问题

《二次函数综合(动点)问题——平行四边形存在性问题》
教学反思
本节课是在学习二次函数y=ax2+bx+c的图像和性质及平行四边形性质的基础上来探究二次函数中动点问题与平行四边形模型的一节复习课;通过教学,让熟练掌握二次函数y=ax2+bx+c的图像和性质;熟练掌握平行四边形的性质;并会对平行四边形模型进行探究,分类讨论不同的情况;在整个教学中,我首先在学生掌握二次函数
y=ax2+bx+c的图像和性质的基础上,先脱离二次函数,再回到二次函数的情景中研究;先从简单入手探究平面直角坐标系中动点情况下平行四边形的存在问题,然后回到二次函数前提下的平行四边形存在问题。

利用几何画板,充分运用数形结合、转化、方程等数学思想来帮助解题。

在整个教学过程中培养了学生的处理图像综合运用的能力;让学生养成从特殊到一般,从简单到复杂的学习方法;形成对图形的处理能力,形成解题技巧,树立对解决此类问题的信心。

平行四边形动点及存在性问题

平行四边形动点及存在性问题

环球雅思学科教师辅导讲义组长签字:【例3】 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当三角形△ODP 是腰长为5的等腰三角形时,P 的坐标为 ;DBCA O xy P【练习2】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足212116b a a =-+-+.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标; (2)当t 为何值时,四边形PQCB 是平行四边形并求出此时P 、Q 两点的坐标;(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形并求出P 、Q 两xy ABBEADQ P C6、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A <OB )是方程组⎩⎨⎧=-=632y x yx 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD =52。

(1)求直线AB 的解析式及点C 的坐标; (2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形若存在,请直接写出点Q 的坐标;若不存在,请说明理由.动点问题题型⒈如图D-01,四边形ABCD 中,AD ∥CB ,且AD>BD ,BC=6cm ,动点P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,几秒后四边形ABQP 是平行四边形图D-01⒉如图D-02,在ABC中,点O是AC边上一动点,过O作直线MN∥BC,设MN交∠ACB的平分线于E,交∠ACB的外角平分线于F,①求证:OE=OF②当点O运动到何处时,四边形AECF是矩形证明你的结论〖提示〗易证∠1=∠2=∠3,得OE=OC同理OF=OC,得证OE=OF⒊如图D-03,矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A向B以2cm/s的速度移动;点Q沿DA边从点D向A以1cm/s的速度移动;如果P、Q同时出发,t(s)表示移动时间(0<t<6),那么:①当t为何值时,QAP为等腰直角三角形②求四边形QAPC的面积,并提出一个与计算结果有关的结论4.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.图D-035.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.6.如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.7.(1)BD的长是______;8.(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______.9.7.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q。

【存在性系列】平行四边形存在性问题

【存在性系列】平行四边形存在性问题

【存在性系列】平⾏四边形存在性问题平⾏四边形存在性问题,主要考察⼀个四边形为平⾏四边形需要满⾜的判定条件。

这部分考察的较多的主要分为“三定⼀动”,“两定两动”类型。

今天来详细讨论下平⾏四边形的存在性问题。

理论准备知识储备:1.点在平⾯直⾓坐标系中的平移2.左右平移横变纵不变,上下平移纵变横不变坐标平移⼝诀:上加下减,左减右加3. 平⾏四边形平⾏且相等4. 平⾏四边形对⾓线互相平分【处理策略⼀】利⽤对⾓新互相平分【⽅法运⽤】该⽅法适⽤于“三定⼀动”、“两定两动”类型的动点问题【处理策略⼆】利⽤对边平⾏且相等,构造全等【⽅法运⽤】该⽅法适⽤于“三定⼀动”、“两定两动”类型的动点问题常见类型以下主要讲解按照对⾓线讨论的处理⽅法类型⼀:三定⼀动【引例】如图,A(1,2),B(6,3),C(3,5)为坐标系中三个定点,问平⾯内是否存在点D,使得四边形ABCD为平⾏四边形.【处理⽅法】⼀般我们习惯分对⾓线进⾏讨论我们设D的坐标为(m,n)1.当AC为对⾓线时可以得到平⾏四边形D1ABC ∴ 1+3=6+m ,m=-2, 2+5=3+n, n=4∴D1的坐标为(-2,4)2.当BC为对⾓线时可以得到平⾏四边形ACD2B ∴ 1+m=6+3,m=8,2+n=3+5,n=6∴D2的坐标为(8,6)3.当AB为对⾓线时可以的到平⾏四边形ACBD3 ∴ 1+6=3+m,m=4,2+3=5+n,n=0∴D3的坐标为(4,0)类型⼆:两定两动【引例1】已知A(2,1)、B(4,2),点C在x轴上,点D在y轴上,且以A、B、C、D为顶点的四边形是平⾏四边形,求C、D坐标.【处理⽅法】对于两个动点的问题我们也是采取分对⾓线进⾏讨论即可设C的坐标为(m,0),D的坐标我(0,n)1.当AB为对⾓线时2+4=m+0,m=61+2=n+0,n=3∴C的坐标为(6,0),D的坐标为(0,3)2.当AC为对⾓线时2+m=4,m=21+0=2+n,n=-1∴此时C的坐标为(2,0),D的坐标为(0,-1)3.当AD为对⾓线时2+0=m+4,m=-21+n=0+2,n=1∴C的坐标为(-2,0),D的坐标为(0,1)【引例2】如图,在平⾯直⾓坐标系中,有两点A(1,3),B(3,6),C为x轴上的⼀个动点。

平行四边形的存在性问题

平行四边形的存在性问题

平行四边形存在性问题【知识概括】确定平行四边形:对于A 、B 、C 三点固定,若存在点D 使得四边形ABCD 是平行四边形,则点D 只有一种情况,如图①;若存在点D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 有三种情况,如图②。

图 ① 图 ②【方法思路分析】一、必须明确以下情况:①、四边形ABCD 是平行四边形,AC 、BD 一定是对角线,即明确字母顺序,那么对角线就确定了;②、以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,对角线不确定,则需要分类讨论。

二、有关解析法的知识:①两点之间的距离公式:若A ) ,(11y x ,B ) ,(22y x ,则|AB|=特别地,若AB ∥x 轴,则||AB = ,若AB ∥y 轴,则||AB = ②中点坐标公式:若A ) ,(11y x ,B ) ,(22y x ,则A 、B 的中点M 为 ③①ABCD①,设四个顶点坐标分别是) (A A y x A ,,) (B B y x B ,,) (C C y x C ,,) (D D y x D ,,则满足:【方法运用】一、三定一动,探究平行四边形存在性1、已知)3 ,1(A ,)4 ,6(B ,)6 ,4(C ,在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形。

二、两定两动,探究平行四边形存在性2、已知)1 ,1(A 、)2 ,3(B ,点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,求D C 、的坐标。

【解题步骤要点总结】先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据性质写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.三、拓展延伸已知A 为(0,3),B 为(4,2),点C 在x 轴上,D 是平面直角坐标系内一点,(1)若以A 、B 、C 、D 四点为顶点的四边形是矩形,求点D 的坐标。

双动点型平行四边形存在性问题

双动点型平行四边形存在性问题

计算方法
N1
(A●-1,0)O
(3,0)
N2 B
N3 x N
点的坐标平移规律
M1

D(2,-3)
y=-3
如图,抛物线 y x2 2x 3 与x轴交于A,B两点
(点A在点B左侧),D(2,-3)在抛物线上,连接
AD.点M在抛物线上,点N在x轴上,且以A,D,
M,N为顶点的四边形是平行四边形,请求出点N
E
A

C F
E F
实例精析:
如图,抛物线 y x2 2x 3 与x轴交于A,B两点
(点A在点B左侧),D(2,-3)在抛物线上,连接
AD.点M在抛物线上,点N在x轴上,且以A,D,
M,N为顶点的四边形是平行四边形,请求出点N
的坐标. N (?,?)
定线段AD为边时
y
M
操作手段
平移
M2
M3
y=3
F在抛物线上, E在对称轴上, A、C、E、F
A(-3,0) E3
E1
构成平行四边
形. F1 E(?,?)
F E2
B (1,0)
F2
y x2 2x 3
经典考 题
P(m,n)n>0在抛物线上,
E在直线 y 1 x
y
2
上,A、B、E、 P P构成平行四边形. P1
P2
E(?,?)

(-5,0)
∴M1(0,-3)
(∵∴(21y由))当当N对平=AA0称D移D为轴为得对:边:角x=线时y1M时,=A,-AD3D∥或与M3NM,NA互D=相M平N分y∴当∴∴∴NMxNy112M2(=((=-14313--,-√时0√√77)7,,,30x))x2M2N=-3213((x+14-√++37√√=773

二次函数有关平行四边形的存在性问题

二次函数有关平行四边形的存在性问题

有关平行四边形的存在性问题一.知识与方式积存:1.已知三个定点,一个动点的情形在直角坐标平面内确信点M,使得以点M、A、B、C为极点的四边形是平行四边形,请直接写出点M的坐标。

二.例题解析:如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A 、B 两点,31tan =∠OCA ,6=∆ABC S . (1)求点B 的坐标; (2)求抛物线的解析式及极点坐标;(3)设点E 在x 轴上,点F 在抛物线上,若是A 、C 、E 、F 组成平行四边形,请求出点E 的坐标.巩固练习:1. 已知抛物线322++-=x x y 与x 轴的一个交点为 A(-1,0),与y 轴的正半轴交于点C . 问坐标平面内是不是存在点M ,使得以点M 和抛物线上的三点A 、B 、C 为极点的四边形是平行四边形?假设存在,请求出点M 的坐标;假设不存在,请说明理由.2. 假设点P 是x 轴上一点,以P 、A 、D 为极点作平行四边形,该平行四边形的另一极点E 在y 轴上,写出点P的坐标.3.如图,抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,极点为D .(1)直接写出(2)连接BC 于点F ,设点P CAB Oyx4. 已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,极点为M .直线12y x a =-别离与x 轴,y 轴相交于B C ,两点,而且与直线AM 相交于点N .在抛物线22y x x a =-+(0a <)上是不是存在一点P ,使得以P A C N ,,,为极点的四边形是平行四边形?假设存在,求出P 点的坐标;假设不存在,试说明理由.5.如图,已知抛物线)0(2≠++=a c bx ax y 的极点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右边),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,假设点E 在x 轴上,点F 在抛物线上, 问是不是存在以A 、P 、E 、F 为极点的平行四边形?假设存在, 求点F 的坐标;假设不存在,请说明理由.6. 如图,抛物线21y ax bx =++与x 轴交于两点A (-1,0),B (1,0),与y 轴交于点C . (1)求抛物线的解析式;(12+-=x y )(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;四边形ACBD 的面积S =12AB •OC +12AB •DE 112123422=⨯⨯+⨯⨯= (也可直接求直角梯形ACBD 的面积为4)(3)在x 轴下方的抛物线上是不是存在一点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为极点的三角形与△BCD 相似?假设存在,那么求出点M 的坐标;假设不存在,请说明理由.。

三定一动的平行四边形存在性问题总结

三定一动的平行四边形存在性问题总结
为顶点的四边形是平行四边形。
第二类型:两个动点平行四边形存在性问题
例2如图,在平面直角坐标系中,抛物线A(-1,0),B (3,0)C(0,-1)三点。
(1)求该抛物线的表达式;
(2)点Q在y轴上,在抛物线上是否存在一点P ,使Q、P、 A、B为顶点的四边形是平行四边形。若存在,请求出点P 的坐标;若不存在,请说明理由。
A 1个
B 2个
C 3个
D 4个
三定点确定的三条线段肯定有一条是平D行四边 形的对角线
但是哪一条不确定,
故分情况讨论:
⑴BC为对角线,
A
⑵AC为对角线。
⑶AB为对角线。
C
D
B
D
已知三个顶点的坐标,求第四个顶点的坐标,使其构成平行四边形
2.如图,在平面直角坐标系中,点A坐标(-1,0),B(3,0),C(0,2), 点D是平面内一点,若A、B 、C 、D四点恰好构成一个平 行四边形,则在平面内符合这样条件的点D的坐标为
C(0,2)
四个顶点的顺序已确定 故D点是唯一确定的.
(-1,0) A O
B(3,0) D (2,-2)
(2008•江西)如图:在平面直角坐标系中,有A(0,1), B(﹣1,0),C(1,0)三点坐标. (1)若点D与A,B,C三点构成平行四边形, 请写出所有符合条件的点D的坐标; (2)选择(1)中符合条件的一点D,求直线BD的解析式.
三定一动确定
平行四边形的方法
C
D
A
B
三定一动确定平行四边形的方法
三定点确定的三条线段肯定有一条是平行四边 形的对角线 但是哪一条不确定, 故分三种情况讨论:有三种结果. ⑴BC为对角线, ⑵AC为对角线。 ⑶AB为对角线。

专题:二次函数中的动点问题(平行四边形存在性问题)

专题:二次函数中的动点问题(平行四边形存在性问题)

二次函数中的动点问题(二)平行四边形的存在性问题一.技巧提炼如图1,点人(召,开)、3(忑,儿)、C(X3Os)是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D,使得以A、B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点D的坐标。

如图2,过A、B、C分别作BC、AC、AB的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

3、平面直角坐标系中直线和直线12:当h时k尸k2;当h丄I2时ki-k2=-14、二次函数中平行四边形的存在性问题:解题思路:(1)先分类(2)再画图(3)后计算二、精讲精练1、已知抛物线y=ax-+bx+c与x轴相交于A、E两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB:OC=1:3:3,AABC的面积为6,(如图1)(1)求抛物线的解析式:(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,在直线BC±方的抛物线上是否存在一动点P,ABCP面枳最大?如果存在,求出最人面积,2、如图,己知抛物线经过A(-2,0),B(・3,3)及原点6顶点为C(1)求抛物线的函数解析式:(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。

【变式练习】7如图,对称轴为直线x二一的抛物线经过点A(6,0)和B(0,4)・2(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四彖限,四边形0EAF是以0A为对角线的平行四边形, 求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形0EAF是否为菱形?②是否存在点E,使平行四边形0EAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.、方法规律1、平行四边形模型探究如图1,点&(內,开)、3(七,儿)、C(X3,”)是坐标平面内不在同一直线上的三点。

初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思

初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思

《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。

对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。

2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。

3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。

针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。

效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。

其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。

教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。

在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。

2、注重板书。

通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。

3、注重数学思想方法的渗透。

数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。

动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。

方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。

数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

18.2.3三定一动的平行四边形存在性问题总结

18.2.3三定一动的平行四边形存在性问题总结

(2005•武汉)如图,在平面直角坐标系中,点A、B、C的坐标 分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象 限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标 是 . (2,5)
2.如图,在平面直角坐标系中,点A坐标(-2,1),B(3,-3),C(4,0),点D 是平面内任意一点,若A、B 、C 、D四点恰好构成一个平行四 边形,求在平面内符合这样条件的点D的坐标.
(1) m=1 y=x+1 y= x - 2x + 1 O (2)点C、D是定点,点P、E两个动点 设P点坐标(X,x+1 得 ( x+1)- ( ),则点E坐标(X, x - 2x + 1 )由 PE=DC x - 2x + 1
2 2 2
A P D B E C
)=2
练习
二次函数 y= 2x - 2 的图象与X轴交于A 、B两点,如图所示,与y 轴交于C点.直线x=m(m>1)与X轴交于点D. (1)求A 、B 、C三点的坐标。 (2)在直线x=m(m>1)上取一点P(点P在第一象限),要使以 PDB为顶点的三角形与以B为顶点的三角形相似,求P点得坐标 (用含m的代数式表示) 2 (3)在(2)成立的条件下,问抛物线 y= 2x - 2 的图象上是否 存在一点Q,使四边形ABPQ是平行四边形?若存在,请求出此时 m的值;若不存在,请说明理由。 y
C D
三定点确定的三条线段肯定有一条是平行四边 D 形的对角线 但是哪一条不确定, 故分情况讨论: ⑴BC为对角线, A ⑵AC为对角线。 ⑶AB为对角线。 D
B
已知三个顶点的坐标,求第四个顶点的坐标,使其构成平行四边形 2.如图,在平面直角坐标系中,点A坐标(-1,0),B(3,0),C(0,2), 点D是平面内一点,若A、B 、C 、D四点恰好构成一个平 行四边形,则在平面内符合这样条件的点D的坐标为

平行四边形存在性问题(三定一动)

平行四边形存在性问题(三定一动)
1
平行四边形存在性问题
平行四边形存在性问题 第一篇
主讲人: 日 期:2022-11-15
2
平行四边形存在性问题
平行四边形存在性问题分类
类型一、三定点一动点
此种情况是三个点固定,另外一个动点可能在正比例函数、一次函数、反比例 函数、二次函数上,也可能在x轴、y轴或者坐标平面上。
问题是先找动点位置,再求出动点坐标可以使这四个点构成平行四边形;
B、P两点为对点,则B、P中点坐标 5 x0 , 2 y0
2
2
4 2 5 x0
2
2
2
2
2
5
平行四边形存在性问题
例题解析:如图,抛物线y= - x2 + x +2 与x轴的交点为A、B,与y轴的交点为C
,点P是平面内一点,判断有几个点P能使以点A、B、C、P为顶点的四边形是平
C
则P1、P2、P3就是所求的动点的具体位置,可以使四 边形ABCP为平行四边形。
4
1 平行四边形存在性问题
问题二:如图,在平面直角坐标系中,已知□ABCD的顶点坐标分别是A(-4,2), B(-5,-2),C(2,1),如何确定点P(x0,y0)?
y
A(-4,2)
7
O
7
B(-5,-2)
P(x0,y0)
顶点的四边形是平行四边形,求出P点坐标。
y
第一步:先求出A(1,0),B (0,1),C(-1,-1),
连接A、B、C组成三角形
P1
第二步:过A点做BC平行线,
(0,1)B
P3
O
C
(-1,-1)
A(1,0)
过B点做AC平行线,
过C点做BC平行线, 则三条平行线的三个交点即为P1、P2、 x 第P三3 步:利用点的平移法或者对点法进行点P坐标求解 ∴ P1(2,2),P2(-2,0),P3(0,-2)

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题1、如图,将矩形OABC放置在平面直角坐标系中,OA=8,OC=12,直线与x轴交于点D,与y轴交于点E,把矩形沿直线DE翻折,点O恰好落在AB边上的点F处,M是直线DE上的一个动点,直线DF上是否存在点N,使以点C,D,M,N为顶点的四边形是平行四边形求符合题意的点N的坐标。

2、如图,在平面直角坐标系中,直线与交于点A,与x轴分别交于点B和点C,D是直线AC上一动点,E是直线AB上一动点.若以O,D,A,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

3、如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,且∠ABC=60°,若点D在直线AB上运动,点E在直线BC上运动,且以O,B,D,E为顶点的四边形是平行四边形,求符合题意的点D的坐标。

4、如图,在平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°,把矩形沿直线DE翻折,使点C落在点A处,DE与AC相交于点F,若点M是直线DE上一动点,点N是直线AC上一动点,且以O,F,M,N为顶点的四边形是平行四边形,求符合题意的点N的坐标。

5、如图,直线分别交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D.若在平面内存在点E,使得以点A,C,D,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

6、如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于A,B两点,点P是直线AB上一动点,则在坐标平面内是否存在点Q,使得以O,A,P,Q为顶点的四边形是菱形(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题( );符合题意的点P有( )个;符合题意的点Q的坐标为( )。

7、如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,点P是y轴上一动点,则在坐标平面内是否存在点Q,使得以A,B,P,Q为顶点的四边形是菱形(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题( )A.△ABQ B.△ABP C.△APQ D.△BPQ符合题意的点P有( )个;符合题意的点Q的坐标为( )。

有关平行四边形的动点问题

有关平行四边形的动点问题

有关平行四边形的动点问题
平行四边形是由两组相邻的平行线和它们之间的四条线段组成的四边形。

在平行四边形中,我们可以考虑一个点在它沿着一个方向移动的同时,沿着另一个方向的轨迹。

这个点被称为“动点”。

如果动点沿着平行四边形的一条边上移动,那么它所相应的高度和底边也会相应地改变。

因此,如果我们将平行四边形分成许多小长方形,并在这些小长方形的顶点处放置动点,则可以形成一条光滑的曲线。

这个曲线被称为平行四边形的“径线”。

如果动点同时沿着两个方向移动,则可以得到一个新的曲线,称为“余弦曲线”。

这个曲线看起来像是一个上下波动的曲线,与平行四边形的一条对角线平行。

有趣的是,这两个曲线都是周期性的,其周期等于平行四边形的面积除以它沿着这个方向的速度。

因此,我们可以通过这些曲线来计算平行四边形的面积和周长。

通过研究这些平行四边形的动点问题,我们能够深入了解其内在的几何性质和性质之间的相互关系。

这不仅有助于帮助我们更好地理解平行四边形,还可以为其他更复杂的几何形状和问题提供有用的洞见和启示。

《平行四边形的存在性问题》教学设计

《平行四边形的存在性问题》教学设计

《平行四边形的存在性问题》教学设计一、教学分析:本节内容是北师大版八下数学第六章复习课,平行四边形的存在性问题是中考常考知识点,本节主要采用第三章图形平移的知识去处理两类存在性问题:三定点一动点和两定点两动点,体现了知识间的联系性和渗透性,注重数形结合和分类讨论思想的应用,培养学生善于将未知转化为已知的能力。

二、教学目标:1、知识与技能①通过本节学习,让学生掌握用判定和坐标平移法去处理平行四边形的存在性问题。

②让学生学会用运动变化的观点去处理数学问题,在变化中体现不变性。

进一步培养学生归纳、总结的能力。

2、过程与方法通过小组讨论与交流,培养学生积极思考,主动表达自己的见解与想法,大胆质疑的精神,进一步培养学生分析问题、解决问题的能力。

3、情感、态度与价值观通过解决有一定挑战性的问题,培养敢于面对困难、克服困难的信心和勇气;通过交流展示,敢于发表自己的观点,尊重理解他人的见解,并从交流中获益。

三、教学重点和难点教学重点:用坐标法解决平行四边形的存在性问题。

教学难点:在用坐标法去处理平行四边形的存在性问题时,分类讨论思想的应用。

四、教学过程1、复习回顾:(1).在平面直角坐标系中,直线的解析式为 ,直线 的解析式为。

若 ∥ ,则 ;反之亦然。

L21L 11b x k y +=2L 22b x k y +=1L 2L 1K 2K(2). 在如图所示的单位正方形网络中,已知线段CD是由线段AB的平移得到。

点A(-1,2)的对应点为点C(3,5),则点B(1,0)的对应点D的坐标为 ___。

2、问题导入:如图,直角坐标系中的网格由单位正方形构成,以A,B,C,D为顶点组成平行四边形,A点坐标为(1,0),B点坐标为(5,0),C点坐标为(2,2).(1)画出所有符合条件的平行四边形。

(2)求点D的坐标.3、新知探究如图,在平面直角坐标系中,直线 与x 轴、y 轴相交于A 、B 两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转到CD ,此时点D 恰好落在直线AB 上时,过点D 作轴于点E 。

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题1、如图,将矩形OABC放置在平面直角坐标系中,OA=8,OC=12,直线与x轴交于点D,与y轴交于点E,把矩形沿直线DE翻折,点O恰好落在AB边上的点F处,M是直线DE上的一个动点,直线DF上是否存在点N,使以点C,D,M,N为顶点的四边形是平行四边形?求符合题意的点N的坐标。

2、如图,在平面直角坐标系中,直线与交于点A,与x轴分别交于点B和点C,D 是直线AC上一动点,E是直线AB上一动点.若以O,D,A,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

3、如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,且∠ABC=60°,若点D在直线AB上运动,点E在直线BC上运动,且以O,B,D,E为顶点的四边形是平行四边形,求符合题意的点D的坐标。

4、如图,在平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°,把矩形沿直线DE翻折,使点C落在点A处,DE与AC相交于点F,若点M是直线DE上一动点,点N是直线AC上一动点,且以O,F,M,N为顶点的四边形是平行四边形,求符合题意的点N的坐标。

5、如图,直线分别交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D.若在平面内存在点E,使得以点A,C,D,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

6、如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于A,B两点,点P是直线AB上一动点,则在坐标平面内是否存在点Q,使得以O,A,P,Q为顶点的四边形是菱形?(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题?( );符合题意的点P有( )个;符合题意的点Q的坐标为( )。

7、如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,点P是y轴上一动点,则在坐标平面内是否存在点Q,使得以A,B,P,Q为顶点的四边形是菱形?(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题?( )A.△ABQ B.△ABP C.△APQ D.△BPQ符合题意的点P有( )个;符合题意的点Q的坐标为( )。

平行四边形动点及存在性问题

平行四边形动点及存在性问题



A N
y
y
D
B
C
B
C
M
D
D
O
AxOAx来自BC【练习 1】如图,在平面直角坐标系中,矩形 OACB 的顶点 O 在坐标原点,顶点 A、B 分别在 x 轴、y 轴的 正半轴上,OA=3,OB=4,D 为边 OB 的中点. (1)若 E 为边 OA 上的一个动点,当△CDE 的周长最小时,求点 E 的坐标; (2)若 E、F 为边 OA 上的两个动点,且 EF=2,当四边形 CDEF 的周长最小时,求点 E、F 的坐标.
y
学习好资料
欢迎下载
学员编号: 学员姓名: 授课日期及时段
教学目标
学习好资料
欢迎下载
环球雅思学科教师辅导讲义
年 级:八年级 辅导科目: 数学
组长签字: 课时数:3 学科教师: 赵文娜
重点难点
教学内容
平行四边形动点及存在性问题
【例 1】正方形 ABCD 的边长为 8,M 在 DC 上,且 DM=2,N 是 AC 上的一动点,DN+MN 的最小值
学习好资料
欢迎下载
【例 3】 如图,在平面直角坐标系中,矩形 OABC 的顶点 A、C 的坐标分别为(10,0),(0,4),点 D 是 OA
的中点,点 P 在 BC 上运动,当三角形△ODP 是腰长为 5 的等腰三角形时,P 的坐标为

y
P C
B
O
D
Ax
【练习 2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且 a,b 满足 b a 21 21 a 16 .一动点 P 从点 A 出发,在线段 AB 上以每秒 2 个单位长度的速度向点 B 运动; 动点 Q 从点 O 出发在线段 OC 上以每秒 1 个单位长度的速度向点 C 运动,点 P、Q 分别从点 A、O 同时出 发,当点 P 运动到点 B 时,点 Q 随之停止运动.设运动时间为 t(秒) (1)求 B、C 两点的坐标; (2)当 t 为何值时,四边形 PQCB 是平行四边形?并求出此时 P、Q 两点的坐标; (3)当 t 为何值时,△PQC 是以 PQ 为腰的等腰三角形?并求出 P、Q 两点的坐标.

九年级中考 专题06 动点与平行四边形存在性问题题型讲义(学生版)

九年级中考 专题06 动点与平行四边形存在性问题题型讲义(学生版)

动点与平行四边形存在性问题一、典例解析例1.【2020·浙江湖州】如图,已知在平面直角坐标系xOy 中,抛物线y=-x2 +bx+c (c>0)的顶点为D,与y 轴的交点为C.过点C 的直线CA 与抛物线交于另一点A(点A 在对称轴左侧),点B 在AC的延长线上,连结OA,OB,DA 和DB.(1)如图1,当AC∥x 轴时,①已知点A 的坐标是(-2,1),求抛物线的解析式;②若四边形AOBD 是平行四边形,求证:b2 =4c.(2)如图2,若b=-2,35BCAC,是否存在这样的点A,使四边形AOBD 是平行四边形?若存在,求出点A 的坐标;若不存在,请说明理由.例2.【2020·辽阳】如图,抛物线y=ax2﹣2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿E F折叠,点B的对应点为点B',△EFB'与△OBE 的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.例3.【2020·黑龙江牡丹江】如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数ky x=图象的一支经过点C ,求k 的值; (3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.例4.【2020·重庆A 卷】如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -. (1)求该抛物线的函数表达式;(2)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.二、刻意练习1.【2020·湖南常德】如图,已知抛物线y =ax 2 过点A (﹣3,94).(1)求抛物线的解析式; (2)已知直线l 过点A ,M (32,0)且与抛物线交于另一点B ,与y 轴交于点C ,求证:MC 2=MA •MB ; (3)若点P ,D 分别是抛物线与直线l 上的动点,以OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,求所有符合条件的P 点坐标.2.【2020·安徽】在数学探究活动中,敏敏进行了如下操作:如图,将四边形ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ,再将△PCQ ,△ADQ 分别沿PQ 、AQ 折叠,此时点C ,D 落在AP 上的同一点R 处,请完成下列探究: (1)∠PAQ=(2)当四边形APCD 是平行四边形时,ABQR的值为 .3.【2020·甘肃天水】如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB . (1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.4.【2020·广西玉林】如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D 的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.5.【2020·贵州黔东南州】已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0,3)C -,顶点D 的坐标为(1,4)-. (1)求抛物线的解析式.(2)在y 轴上找一点E ,使得EAC ∆为等腰三角形,请直接写出点E 的坐标.(3)点P 是x 轴上的动点,点Q 是抛物线上的动点,是否存在点P 、Q ,使得以点P 、Q 、B 、D 为顶点,BD 为一边的四边形是平行四边形?若存在,请求出点P 、Q 坐标;若不存在,请说明理由.6.【2020·黑龙江大兴安岭】综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.【2020·湖北黄冈】已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P 的坐标;8.【2020·湖南郴州】如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C .已知直线y =kx +n 过B ,C 两点. (1)求抛物线和直线BC 的表达式;(2)点P 是抛物线上的一个动点.如图2,抛物线的对称轴l 与x 轴交于点E ,过点E 作EF ⊥BC ,垂足为F .点Q 是对称轴l 上的一个动点,是否存在以点E ,F ,P ,Q 为顶点的四边形是平行四边形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.9.【2020·江苏苏州】如图,二次函数的图象与轴正半轴交于点,平行于轴的直线与该抛物线交于、两点(点位于点左侧),与抛物线对称轴交于点. (1)求的值;(2)设、是轴上的点(点位于点左侧),四边形为平行四边形.过点、分别作轴的垂线,与抛物线交于点,、,.若,求、的值.2y x bx =+x A x l B C B C (2,3)D -b P Q x P Q PBCQ P Q x 1(P x '1)y 2(Q x '2)y 12||2y y -=1x 2x10.【2020·青海】如图1(注:与图2完全相同)所示,抛物线y=−12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)11.【2020·山东菏泽】如图,抛物线与轴相交于,两点,与轴相交于点,,,直线是抛物线的对称轴,在直线右侧的抛物线上有一动点,连接,,,.(1)求抛物线的函数表达式;(2)若点在轴的下方,当的面积是时,求的面积; (3)在(2)的条件下,点是轴上一点,点是抛物线上一动点,是否存在点,使得以点,,,为顶点,以为一边的四边形是平行四边形,若存在,求出点的坐标;若不存在,请说明理由.26y ax bx =+-x A B y C 2OA =4OB =l l D AD BD BC CD D x BCD ∆92ABD ∆M x N N B D M N BDN12.【2020·山东聊城】如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.(1)求出二次函数和所在直线的表达式;(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;13【2020·四川甘孜州】如图,在平面直角坐标系xOy 中,直线y =kx +3分别交x 轴、y 轴于A ,B 两点,经过A ,B 两点的抛物线y =﹣x 2+bx +c 与x 轴的正半轴相交于点C (1,0).(1)求抛物线的解析式;(2)若P 为线段AB 上一点,∠APO =∠ACB ,求AP 的长;(3)在(2)的条件下,设M 是y 轴上一点,试问:抛物线上是否存在点N ,使得以A ,P ,M ,N 为顶点的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.24y ax bx ==++x (1,0)A -(4,0)B y C D BC E x l BC P F l x B 24y ax bx =++BC l DEFPP14.【2020·四川遂宁】如图,抛物线的图象经过,,三点.(1)求抛物线的解析式.(2)为抛物线上的一动点,为对称轴上动点,抛物线上是否存在一点,使、、、为顶点的四边形为平行四边形?若存在,求出点的坐标;若不存在,请说明理由.15.【2020·湖南怀化】如图所示,抛物线y =x 2﹣2x ﹣3与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点D 是抛物线对称轴上的动点,点G 是抛物线上的动点,是否存在以点B 、C 、D 、G 为顶点的四边形是平行四边形.若存在,求出点G 的坐标;若不存在,试说明理由.2(0)y ax bx c a =++≠(1,0)A (3,0)B (0,6)C P Q P A D P QP。

八年级下册数学-平行四边形中动点路径问题、最值问题与存在性问题

八年级下册数学-平行四边形中动点路径问题、最值问题与存在性问题

第14讲 平行四边形中动点路径问题、最值问题与存在性问题知识导航1.最值问题解题依据有:三角形两边之和大于第三边或两边之差小于第三边;点到直线上各点的连线中,垂线段最短;函数式在特定自变量取值范围内存在最值;2.动态点的问题探究时,常先分析起点、终点、中间某一个特殊点,再由特殊到一般的方法求解;3.存在性问题,根据已知条件,结合图形,得出相关结论,列方程求解.【板块一】动点最值问题方法技巧:一动点到两定点的距离和或差,可以作对称点,运用三角形的三边关系,化折为直求最值.题型一 做对称点,运用三角形的三边关系求最值【例1】如图正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( )AB .C .D【例2】如图,在正方形ABCD 中,点E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是 .BA E方法技巧 遇直角三角形求最值,找直角三角形斜边中点,连斜边中线,该中线长等于斜边一半,为定值. 题型二 连斜边中线求最值【例3】如图,∠ACB =90°,BC =8,AC =6,点P 为AC 上一动点,连接BP ,CM ⊥BP 于点M ,求AM 的最小值.C方法技巧通过构造全等三角形,将动线段转化到特定位置,这一位置上能求出最值.题型三 构造全等求最值【例4】如图,△ABC 是等边三角形,AB =4,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,求AF 的最小值.AF方法技巧求四边形周长的最值,或者求三条线段和的最值,两动点间距离一定,另两点为定点,将两动点进行平移,再做一定点的对称点,将问题转化成两线段和问题,然后求解.题型四 平移线段求最值【例5】如图,正方形ABCD 的边长为4,E 在CD 上,DE =1,点M ,点N 在BC 上,且MN =2,求四边形AMNE 的周长的最小值.B E针对练习11.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,求PK +QK 的最小值.BD P2.如图,等边△ABC 的边长为6,P 为BC 上的一动点,点P 关于AC ,AB 的对称点分别为点N ,M ,连接MN ,求MN 的最小值.ANMP3.如图,正方形ABCD 中,点E 为边BC 上的一动点,作AF ⊥DE 分别交DE ,DC 与点P ,F ,连接PC .(1)若点E 为BC 的中点,求证:F 点为CD 的中点;(2)若点E 为BC 的中点,PE =6,PC =,求PF 的长;(3)若正方形边长为4,直接写出PC 的最小值为 .B AF4.矩形ABCD 中,AB =3,BC =4,E 为直线BC 上一点.(1)如图1,当E 在线段BC 上,且DE =AD 时,求BE 的长;(2)如图2,点E 为BC 边延长线上一点,且BD =BE 时,连接DE ,M 为DE 的中点,连接AM ,CM ,求证:AM ⊥CM ;(3)如图3,在(2)的条件下,点P ,Q 为AD 边上的两个动点,且PQ =2.5,连接PB ,MQ ,则四边形PBMQ 周长的最小值为 .A D A D A E CC Q P(图1) (图2) (图3)【板块二】动点路径问题【例1】如图,在平面直角坐标系中,点C (8,0),P 为线段OC 上一动点,以OP ,PC 为边在x 轴同侧作正方形OPEF 和正方形PCAD ,若线段OA 的中点为M ,求当点P 从点O 运动到点C 时点M 运动的路径长.x【例2】如图,在平面直角坐标系中,正方形ABCO 的顶点C ,A 分别在x ,y 轴上,A (0,6),点Q 为对角线BO 上一动点,D 为边OA 上一点,DQ ⊥CQ ,点Q 从点B 出发,沿BO 方向移动,若移动的路径长为3,直接写出CD 的中点M 移动的路径长为 .x针对练习21.如图,A (0,4),B (2,0),C 为AB 的中点,动点P 沿A →O 从点A 运动到点O ,CP =CD ,且∠PCD =90°(点P ,C ,D 逆时针排列),则点D 的运动路径长为 .x2.如图,正方形ABCD 的边长为4,点E 从点A 出发,沿AB 运动到点B 停止.(1)如图1,当点E 是AB 的中点,点F 时AD 上的一点,且AF =14AD ,求证:CE 平分∠BCF ; (2)如图2,若点Q 时AD 的中点,连接EQ 并延长交射线CD 于点G ,过Q 作EG 的垂线交射线BC 于点P ,连接PE ,PG .①设AE =x ,△PEG 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; ②若点M 时PQ 的中点,直接写出点M 的运动的路线的长.C(图1) (图2)【板块三】存在性问题【例1】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),(,)B ac ,(,0)C b ,并且a ,b 满足16b =.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,PQC∆是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.x【例2】如图,矩形ABCD中,对角线AC,BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若3=,P从点A出发.以1/cm秒的速度向点D匀速运动.设点P运动时间为t秒,AD cm=,4AB cm问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环球雅思学科教师辅导讲义
组长签字:
学员编号: 年 级:八年级 课时数:3 学员姓名: 辅导科目: 数学 学科教师: 赵文娜 授课日期及时段 教学目标
重点难点
教学内容
平行四边形动点及存在性问题
【例1】正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。

M
B C
A
D
N
D
O C
x y
B
A D
O C
x
y
B A
【练习1】如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.
(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;
(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.
【例3】 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当三角形△ODP 是腰长为5的等腰三角形时,P 的坐标为 ;
D
B
C
A O x
y P
【练习2】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足
212116b a a =-+-+.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标;
(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标;
(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.
【例4】(1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为 ; (2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标.
M
O
E (4,3)
x y F
N
C
B
A
x
y
【练习3】如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),矩形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,且F 点的坐标是(2,4).
(1)求G 点坐标;
(2)求直线EF 解析式;
(3)点N 在x 轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.
O x
y A
B C
G
B
O (D )
y
x
A
C
F E
【例5】在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /s 的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts (0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由.
F
B
C
A D
E
【练习4】如图,等腰三角形OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA =OB ,动点P 从原点O 出发,在线段OB 上以每秒2个单位的速度向点B 匀速运动,动点Q 从原点O 出发,沿y 轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q 作x 轴的平行线分别交OA ,AB 于E ,F ,设动点P ,Q 同时出发,当点P 到达点B 时,点Q 也停止运动,他们运动时间为t 秒(0t ≥) (1)点E 的坐标为 ,F 的坐标为 ; (2)当t 为何值时,四边形POFE 是平行四边形;
(3)是否存在某一时刻,使△PEF 为直角三角形?若存在,请求出此时t 的值;若不存在,请说明理由.
Q F
E B
A (6,8)
O
x
y
P
【巩固练习】
1、菱形ABCD 中,AB =2, ∠BAD =60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值为 。

E
D
A
B
C
P
D
G
F
B
C
A
F
G
D
C
A
B
E
l
C
B
A
第1题图 第2题图 第3题图 第4题图
2、如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =43,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG ,在旋转过程中,DG 的最大值是_________;最小值是__________.
3、已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,连接AE ,BG ,若BC =DE =4,将正方形DEFG 绕点D 旋转,当AE 取最小值时,AF = .
4、在三角形纸片ABC 中,已知∠ABC =90°,AB =6,BC =8。

过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为____.
5、如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =16cm ,AB =12cm ,BC =21cm ,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t (秒).
(1)当t 为何值时,四边形PQDC 是平行四边形;
(2)当t 为何值时,以C ,D ,Q ,P 为顶点的梯形面积等于60cm ²?
(3)是否存在点P ,使△PQD 是等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.
B
E
A
D
Q
P C
6、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A <OB )
是方程组⎩
⎨⎧=-=632y x y
x 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD =52。

(1)求直线AB 的解析式及点C 的坐标;
(2)求直线AD 的解析式;
(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.
动点问题题型
⒈如图D-01,四边形ABCD 中,AD ∥CB ,且AD>BD ,BC=6cm ,动点P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,几秒后四边形ABQP 是平行四边形?
⒉如图D-02,在ABC中,点O是AC边上一动点,过O作直线MN∥BC,设MN交∠ACB的平分线于E,交∠ACB的外角平分线于F,
①求证:OE=OF
②当点O运动到何处时,四边形AECF是矩形?证明你的结论
〖提示〗易证∠1=∠2=∠3,得OE=OC
同理OF=OC,得证OE=OF
⒊如图D-03,矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A向B以2cm/s的速度移动;点Q沿DA边从点D向A以1cm/s的速度移动;如果P、Q同时出发,t(s)表示移动时间(0<t<6),那么:
①当t为何值时,QAP为等腰直角三角形?
②求四边形QAPC的面积,并提出一个与计算结果有关的结论
图D-03
4.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A 重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为______时,四边形AMDN是矩形;
②当AM的值为______时,四边形AMDN是菱形.。

相关文档
最新文档