运筹学期末论文01837

合集下载

运筹学论文

运筹学论文

一、学习运筹学的心得体会《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜千里之外”。

运筹学的英文名原名为Operations Research,由此可见运筹学主要在于“研究〔Research〕”,研究在经营管理等活动中该如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”的问题。

中国学者把这门学科意译为“运筹学”,便是取自古语“运筹帷幄,决胜千里”之意,运算筹划,出谋献策,从而以最正确策略取胜。

这就极其恰当地概括了这门学科的精髓。

运筹学是近几十年来发展起来的一门新兴学科。

它的目的是为行政人员在做决定时提供科学的依据,是实现管理现代化的有力工具,在生产管理、工程技术、军事作战、科学试验、财政经济以及社会科学中都得到了极为广泛的应用。

它主要研究上述活动中能用数量来表达的有关策划、管理方面的问题。

它是一门具有多科学交叉特点的边缘科学,至今没有一个统一的定义。

综合种种定义,从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化依据的系统知识体系。

”在现代商业社会中,人们更加讲求运筹学的应用。

作为一名数学院的学生,为了使自己未来的人生中更有胜算,让自己步入社会后更具备优势竞争力,就更应该尽可能地去熟练地掌握、运用运筹学的精髓,用运筹学的思维去思考问题。

那么,我就必须抓住运筹学的特点:利用数学、管理科学、电脑科学技术等研究事物的数量化规律,应用分析、试验、量化的方法,对实际生活中人、财、物、时、空、信息等有限资源进行统筹安排和充分合理的运用。

运筹学的具体内容包括:规划论〔包括线性规划、非线性规划、整数规划和动态规划〕、库存论、图论、决策论、对策论、排队论、、博弈论、可靠性理论等。

在其实际运用时,还包括管理运筹的思想与建模方法,线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。

大学生运筹学论文

大学生运筹学论文

大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。

当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。

关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。

而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。

再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。

真的会这样吗?我半信半疑地进行了一点近似的计算。

按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。

(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。

运筹学建模论文

运筹学建模论文

摘要运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。

通过对数据的调查、收集和统计分析,以及具体模型的建立。

收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。

此题研究的主要内容是根据早餐供应点早餐进货带来的一系列问题进行合理规划。

目的是依据各种食物的成本、标准要求规划各种食品的总利润,考虑每种早餐如何进货才能达到基准,如何进货才能使预期总利润最高,这完全符合运筹学线性规划的理论。

按照目标规划,添加整数约束,加入存储成本,求解计算出既科学又合理的最优进货方案:在使预期销量达到基准的情况下,用食品单价乘以餐配量计算出总花费,根据各种限定性因素得出目标函数和各个约束条件,运用运筹学计算软件(主要是指Lindo软件)求解所建立的运筹学模型。

所以对基本情况的分析,经过抽象和延伸,建立起了食品搭配研究的线性规划模型。

结合模型的特点,对模型的求解进行了讨论和分析,将模型应用于案例的背景问题,得出相应的最优解决方案,就可以对问题一一进行解答。

关键词:目标规划存储问题整数规划 lingo软件目录一、问题的提出1.1、意义 (2)1.2、背景 (2)1.3、问题的提出 (2)二、问题的实现2.1、问题思路总概 (2)2.2、基于问题的调查 (3)2.3、问题的实现 (4)三、问题的解决3.1、问题的分析 (6)3.2、问题的假设 (6)3.3、建模 (7)3.4、lingo软件求解 (8)四、结果分析及拓展4.1、结果分析 (14)4.2、联系实际分析 (15)4.3、建议方案 (15)五、心得体会 (16)六、附录 (17)一、问题1.1、意义:早餐是一天三餐中的第一餐。

俗话说:一年之计在于春,一日之计在于晨。

早餐不仅要营养丰富,而且很重要的一点是,一定要多样化,因为上午是一天中学习和工作任务最繁重的一个时段。

运筹学与最优化方法期末论文

运筹学与最优化方法期末论文
约定: b 0, m n ,秩 A m 。 如何化标准形: 目标函数实现极大化,即 min z cx ,令 w z ,则 max w cx ; 约束条件为不等式 约束条件为“ ” 不等式,则在约束条件的左端加上一个非负的松弛变量; 约束条件为“ ” 不等式,则在约束条件的左端减去一个非负的松弛变量。 若存在无约束的变量 xk ,可令 x k x k ' xk ' ' ,其中 xk ' 0, xk ' ' 0 。 3.3 单纯形法求解 第一步:加入松弛变量,化为标准形(要求 b 0 ),确定初始基 B ,建立初始单纯形表:
cj
CB
2 b 15 4 6/4
x1
1
x2
0
x3
0
x4
0
x5

x3
x1 x2
0 2 0
0 1 0 0
5 2/6 1 1
1 0 0 0
0 1/6 -1/4 -1/3
0 0 6/4 0
cj zj
然后再用 x1 行减去 2/6 倍的 x2 行,X3 行减去 5 倍的 x2 行。并且重新计算检验数。
cj
k 所在列实施最小比值法,确定出主元,并把主元加上小括号。
主元是最大正检验数 k 所在列,用常数项 bi (i 1,2,..., m) 与进基变量 xk 所对应的列向量 中正分量的比值
be 最小者; aek
(3)换基:用进基变量 xk 替换出基变量 xe ,从而得到新的基变量。也就是主元所在列的 非基变量进基,所在行的基变量出基; (4)利用矩阵的行初等变换,将主元变为 1,其所在列其他元素都变为零,从此得到新的 单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解 决为止。 3.4 单纯形法求解例示

运筹学结课论文

运筹学结课论文

运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。

关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。

在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。

在如此短的时间内, 如何预警和拦截成为一大难题。

1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。

1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。

因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。

其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。

然而“运筹”发展到现代已成为一门重要的学科“运筹学”。

由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。

所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。

博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。

运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

运筹学论文

运筹学论文

运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。

首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。

1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。

运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。

本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。

2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。

它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。

2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。

常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。

3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。

通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。

3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。

运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。

3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。

通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。

4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。

运筹学课程论文

运筹学课程论文

运筹学课程论文运筹学在现代社会中的应用班级:运筹学2班年级:2014级学院:园艺园林教师:陈涛姓名:宋春雄学号:222014325052030摘要:运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。

运筹学在管理方面有着很突出的作用。

管理就是“运筹帷幄之中,决胜千里之外"的最佳解释。

关键字:企业管理,生活,筹划正文:运筹学是现代管理学的一门重要专业基础课。

它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。

该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。

运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。

研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。

而在应用方面,多与仓储、物流、算法等领域相关.因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关.运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

运筹学的思想在古代就已经产生了。

敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外"的说法。

但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却相对较晚.也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支.运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等.运筹学在商业中的应用.(1)市场销售.主要应用在广告预算和媒介的选择、竞争性定价、新产品开发、销售计划的制定等方面。

运筹学期末论文

运筹学期末论文

运筹学期末论文运筹学基础及应用论文学校: XXX班级:XXX 姓名:XXX 学号:XXX运筹学在实际生活中的应用——运输问题的表上作业法【摘要】运筹学,是应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。

运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。

运输问题可以用求解线性规划的方法来解决。

但是一般来说,运输问题用普通的线性方法求解更麻烦得多,而表上作业法则是一种简单方便的方法。

【关键词】运筹学、最佳解答、改善优化、表上作业法一、理论依据运输问题的表上作业法步骤1、制作初始平衡表用“西北最大运量,然后,每增加角方法”:即在左上角先给予最大运量,然后,每增加一个运量都使一个发量或手里饱。

如果所有运量的数字少于?m?n?1?,则补0使之正好?m?n?1?个。

注:补零时不能使这些书构成圈。

2、判断初始方案是否最优(1)求位势表:对运价表加一行一列,圈出运价表中相应于有运量的项,在增加的行列上分别添上数,使这些元素之和等于圈内的元素。

这些元素称为位势数。

(2)求检验数:?ij?Ai?Bj?Cij?Ai,Bj分别表示行、列位势? 从而得到检验数表。

结论:若对任意的i,j,?ij?0,则方案最优,否则转3进行调整。

3、调整(1)找回路:在?ij?0(若有多个?ij?0选大者)对应的运量表上对应元素为起点,沿横向或纵向前进,如遇到有运量的点即转向,直至起点,可得到一个回路。

(2)找调整量:沿上述找到的回路,从起点开始,在该回路上奇数步数字的最小者作为调整量?0。

(3)调整方式:在该回路上奇数步-?0,偶数步+?0,得到新回路。

重复上述步骤,使所有?ij?0,即得最优方案。

二、背景1.1鉴于市场竞争日益激烈,消费者需求渐趋多样,工厂作为市场消费品的产出源头,唯有对这种趋势深刻理解、深入分析,同事具体的应用于实际中,才能使自身手艺,断发展壮大,不被新新行业所淘汰。

运筹学论文

运筹学论文

运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。

2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。

3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。

4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。

5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。

6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。

7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。

8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)关于运筹学论文范例整理分享(共5篇)运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件.第1篇:新业态下民航类专业运筹学教学模式改革研究从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。

在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。

航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。

新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。

信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。

运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

通常以最优、最佳等作为决策目标,避开最劣的方案[1]。

近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。

本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。

一、运筹学教育教学现况郑州航院交通运输(航空物流)专业、安全工程(民航方向)及工业工程(航空方向)着重培养能够从事民航运输管理、机场运营管理、航空安全管理、跨境电商等经营与管理应用型人才。

运筹学期末论文

运筹学期末论文

运筹学的发展与运用【摘要】运筹学是系统工程学的一门重要专业基础课。

它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。

他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。

通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。

【Abstract】Systems Engineering Operations Research is important for a basic course. It is the beginning of the 1930s developed a new discipline, its main purpose is to provide decision-making in the scientific basis for the management is to achieve effective management, one of the important methods correct decision and modern management. His emergence, development and application of specific implementation are with their promotion in various fields and popular. . Through the discipline of study, I deeply understand the importance and usefulness of operations research ideas and applied their future learning, life and work.【关键词】运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌。

运筹学论文

运筹学论文

纳什均衡的效率及选择摘要: 对策论主要研究策略选择问题, 强调的是个人理性。

纳什均衡在非合作博弈理论中起着核心作用, 但其均衡的多重性限制了纳什均衡的应用。

就纳什均衡的经济含义及多重均衡的效率选择进行简要描述和分析。

纳什均衡既符合人们的理性要求, 又是稳定的博弈结果,所以它作为局中人的一致预测能帮助局中人制定决策。

关键词: 纳什均衡; 效用函数; 博弈; 策略1 博弈问题与纳什均衡从独立决策问题到博弈问题, 决策者面临的困难增加了, 决策者进行决策面临的外部条件是不确定的,而且该决策者的行为还会影响其他局中人的利益, 进而影响他们的行为, 局中人之间形成互动关系。

在独立决策中, 优化理论符合人们追求自身利益的最大化的理性要求, 它的解告诉在什么条件下选择什么策略, 所以它的决策方法能预测人们的某些经济行为。

同样, 研究利益相关和互动关系问题的博弈理论, 局中人也各自追求自身利益的最大化。

从表1中可见, 对两个犯罪嫌疑人整体而言(抵赖, 抵赖)是两个犯罪嫌疑人最佳的策略组合, 但在两犯罪嫌疑人被抓后分别关押且彼此不知道对方会采取什么策略时, 每个犯罪嫌疑人就会在警察所给的策略下选择自己的最优策略/坦白0, 于是/囚徒困境0中的纳什均衡解正好是策略组合(坦白, 坦白)。

警察最终达到了预定的目的。

囚徒困境这个简单的博弈模型之所以经典, 在于它颠覆了新古典经济学中一个重要的结论, 即个人理性的选择会自然而然的达到集体理性这个结论。

从而为主流经济学的建立打下了现实的基础。

求解囚徒困境博弈的困难在于个人激励与群体目标并不一致, 因而, 要求参与人把个人目标放在第二位, 而把集体目标放在第一位[ 1] 。

2 纳什均衡的多重性及其经济含义2.1 纳什均衡的多重性纳什均衡满足所有局中人的个人理性要求是局中人的一致预测, 它似乎解决了这种互动决策问题, 然而相当多的博弈问题存在多个纳什均衡,均衡的多重性限制了纳什均衡的应用, 纳什均衡是一个局部最优而非全局最优的均衡概念, 并不关注均衡的效率。

运筹学论文

运筹学论文

浅谈企业管理中的运筹学***********学院摘要:运筹学自二战以来开始打来那个应用在除战争以外的许多领域,尤其在企业管理中表现的尤为突出。

运筹学的思想贯穿了企业管理的始终,在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用,对企业管理的发展产生重要影响。

本文主要通过对运筹学和企业管理的分析,浅谈了运筹学在企业管理中的具体应用以及运筹学对企业管理的影响。

关键词:运筹学;企业管理;企业发展运筹学是一门定量优化的决策科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。

运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。

它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。

运筹学早期应用在军事领域,二战后转为民用,并且在企业管理中的越来越广泛,取得了良好的经济效益。

运筹学的思想贯穿了企业管理的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。

优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。

只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。

作为企业的管理者,把握并运用好运筹学的理念定会取得“运筹帷幄之中,决胜千里之外”之功效。

一、运筹学的原则及工作步骤、企业管理的基本阐述运筹学在其发展过程中形成了一些原则,如:合伙原则、催化原则、互相渗透原则、独立原则、宽容原则、平衡原则。

而这些原则在企业管理中也得到了充分的应用。

比如说,在管理学中,“协调”是管理的重要职能之一,强调彼此之间的合作,管理者必须在组织分工的基础之上努力争取合作,使个人、部门目标与企业整体目标保持一致[1]。

运筹学论文

运筹学论文

1.线性规划1.1图解法1.1.1解题步骤1.图解法步骤2.建立坐标系3.找出可行域4.绘出目标函数图形5.求出最优解1.2单纯形法1.2.1 解题思想:保持最优性不断改善解的可行性1.2.2 解题步骤1.找到初始可行解确定基变量,没有合适的基变量时,引入人工变量。

2.列出单纯型表,通过检验系数σ=Cj-C B B-Pj 确定进基变量,通过θ=B-b-B-a 确定出基变量,不断迭代达到最优解。

3.判断标准:在Max的条件下,σ全部小于0时,停止迭代,达到最优解。

1.2.3 解的几种情况在终表上的体现1.唯一最优解:终表上所有非基检验数均小于0。

2.多重最优解(无穷):终表上存在非基检验数等于0,通过终表可以写出一个最优解X* Max Z。

3.无界解:终表上,存在正检验数相应的系数列中的所有系数均为非正(两出基θ均小于0)。

4.无解(只出现在使用人工变量的情况下)Ⅰ.大M法:最优解有X人工(X人工不等于0).Ⅱ.两阶段法:Minω不等于0,无解。

1.3对偶单纯形法1.3.1 解题思想:保证最优性,改善可行性1.3.2 解题步骤1.前提:保障最优性:σ=c j-z j=c j-C B B-1≤0。

2.检查可行性:检查B-1b(常数项),若非负,则得到最优解,若还有负数,则开始下一步。

3.判断出基变量:找出B-1b中负数最小值,min(B-1b I B-1b<0),这个数所在对应变量Xi就是出基变量。

4.判断进基变量:看出基变量Xi所在行的每一个系数aij,若aij≥0,则无可行解,若存在aij<0,则计算θ=min((σ/aij)I aij<0).5.主元迭代(初等行变换),直到B-1b≥0时结束。

2.对偶问题2.1对偶问题的一般性质1.对偶性:对偶问题的对偶问题是原问题。

2.弱对偶性:若拔X是原问题的可行解,则拔Y是对偶问题的可行解,cX≤Yb(出让价格大于盈利)。

3.无界性:若原问题(对偶)为无界解,则其对偶问题(原问题)无可行解。

运筹学论文(合集5篇)

运筹学论文(合集5篇)

运筹学论文(合集5篇)第一篇:运筹学论文摘要:运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

运筹学可以用来很好的解决生活中的许多问题。

运筹学有着广泛的应用,对现代化建设有重要作用。

关键词:运筹学;应用;最优方案人们无论从事任何工作,不管采取什么行动,都希望所制订的工作或行动方案,是一切可行方案中的最优方案,以期获得满意的结果诸如此类的问题,通常称为最优化问题。

运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

求解最优化问题的关键,一是建立粗细适宜的数学模型,把实际问题化为数学问题;二是选择正确而简便的解法,以通过计算确定最优解和最优值。

最优解与最优值相结合,便是最优方案。

人们按照最优方案行事,即可达到预期的目标。

运筹学是现代数学的一个重要分支,属于信息科学和数学的综合科学,是20世纪4O年代发展起来的一门具有较强实践性的综合学科,它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物等的组织管理、筹划调度问题,以发挥系统的最大效益。

它的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。

对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。

通常在遇到这些复杂繁琐的事的时候,人们不会考虑太多,仅是凭着第一直觉去处理,结果也因为处理方式的不同而不同。

有的人第一直觉好,就能把事情处理的很好,而有的人却只能接受糟糕的结果。

生活中,如果我们能理智的去分析问题,找到处理问题的最佳办法,那么我们将会避免很多损失和烦恼,取得更大的成功和收获。

运筹学期末论文

运筹学期末论文

运筹管理学论文引言:运筹学是一门寻求由于运筹学研究的广泛性和复杂性,人们至今没有形成一个统一的定义。

以下给出几种定义:运筹学是一种科学决策的方法。

运筹学是依据给定目标和条件从众多方案中选择最优方案的最优化技术。

运筹学是一门寻求在给定资源条件下,在给定资源条件下,如何设计和运行一个系统的科学决策的方法。

运筹学与管理科学(Management Science MS)关系:管理科学涵盖的领域比运筹学更宽一些。

可以说,运筹学是管理科学最重要的组成部分。

运筹学研究的特点:科学性(1)它是在科学方法论的指导下通过一系列规范化步骤进行的;(2)它是广泛利用多种学科的科学技术知识进行的研究。

运筹学研究不仅仅涉及数学,还要涉及经济科学、系统科学、工程物理科学等其他学科。

实践性运筹学以实际问题为分析对象,通过鉴别问题的性质、系统的目标以及系统内主要变量之间的关系,利用数学方法达到对系统进行最优化的目的。

更为重要的是分析获得的结果要能被实践检验,并被用来指导实际系统的运行。

系统性运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达到最优状态。

综合性运筹学研究是一种综合性的研究,它涉及问题的方方面面,应用多学科的知识,因此,要由一个各方面的专家组成的小组来完成。

下面我们通过一个运筹学案例和它的分析过程,来反应运筹学的一些特点和性质。

配矿计划编制一、问题的提出某大型冶金矿山公司共有14个出矿点,年产量及各矿点矿石的平均品位(含铁量的百分比)均为已知(见表1)。

定的品位值T Fe进行不同品位矿石的混合配料,然后进入烧结工序,最后,将小球状的烧结球团矿送入高炉进行高温冶炼,生产出生铁。

该企业要求:将这14个矿点的矿石进行混合配矿。

依据现有生产设备及生产工艺的要求,混合矿石的平均品位T Fe规定为45%。

问:如何配矿才能获得最佳的效益?二、分析与建立模型我们可以很快判定此项目属于运筹学中最成熟的分支之一——线性规划的范畴。

运筹学论文

运筹学论文

运筹学论文论文摘要:运筹学是一门定量决策科学,它利用定量分析的方法(数学、管理科学、计算机科学)进行科学决策以实现最有效的管理来获得满意的经济效益,是现代管理的重要理论基础。

以下是结合个人所学专业,经济学,对运筹学的一些理解。

一、运筹学的产生人们一般认为运筹学最早出现在第二次世界大战初期,英国军事部门迫切需要研究如何将非常有限的屋子以及人力分配与使用到各种军事活动中,已达到最好的作战效果。

在世界第二次大战期间,德国已经拥有一支强大的空军,飞机从德国起飞17分钟即到达英国本土。

在如此短的时间内,如何预警和拦截成为一大难题。

1935年,为了对付德国空军力量的严重威胁,德国在海岸的鲍德西成立了关于作战控制技术的研究机构。

1938年,鲍德西科学小组负责人把他们从事的工作称为运筹学。

因此,人们把鲍德西作为运筹学的诞生地,将1935—1938年这一段时间作为运筹学产生的酝酿时期。

第二次世界大战期间,运筹学成功地解决了许多重要作战问题,显示了科学的巨大物质威力,这也为运筹学后来的发展铺平了道路。

当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。

对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。

二、运筹学在当今社会的发展与应用运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。

运筹学毕业论文

运筹学毕业论文

运筹学毕业论文运筹学毕业论文运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涵盖了数学、统计学和计算机科学等多个学科的知识,通过建立数学模型和运用各种优化方法,帮助人们解决实际问题。

作为一门交叉学科,运筹学在现代社会中扮演着重要的角色,对于提高效率、优化资源利用以及解决各种决策问题具有重要意义。

一、运筹学的基本原理运筹学的基本原理可以概括为三个要素:模型建立、优化方法和决策分析。

首先,模型建立是运筹学的基础。

通过对问题进行抽象和建模,将实际问题转化为数学问题,从而能够运用数学方法进行求解。

模型建立需要考虑问题的目标、约束条件以及相关的变量和参数,以此来描述问题的本质和特点。

其次,优化方法是解决运筹学问题的核心。

优化方法包括线性规划、整数规划、动态规划、图论等多种方法,根据问题的性质和特点选择不同的方法进行求解。

优化方法的目标是寻找问题的最优解,即在满足约束条件的前提下,使目标函数达到最小或最大值。

最后,决策分析是对优化结果进行评估和决策的过程。

通过对优化结果进行分析,评估其对问题的解决程度和可行性,从而为决策者提供决策依据。

决策分析需要综合考虑问题的经济、社会和环境等方面因素,以及决策者的偏好和目标。

二、运筹学在实际问题中的应用运筹学在各个领域都有广泛的应用,下面以物流管理和生产调度为例,介绍其在实际问题中的应用。

物流管理是指对物流过程进行规划、组织、实施和控制的管理活动。

在物流管理中,通过建立供应链网络模型和运用优化方法,可以实现最优的物流路径选择、仓库位置布局、运输调度等,从而降低物流成本、提高物流效率。

例如,通过运筹学方法,可以确定最佳的配送路线和配送车辆数量,使得物流成本最小化,同时满足客户需求。

生产调度是指对生产过程进行规划和控制的管理活动。

在生产调度中,通过建立生产调度模型和运用优化方法,可以实现最优的生产计划和生产调度,从而提高生产效率、降低生产成本。

例如,在工厂生产调度中,通过运筹学方法可以确定最佳的生产顺序和机器调度,使得生产效率最大化,同时满足交货期限和资源约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学基础及应用
论文
学校: XXX
班级:XXX
姓名:XXX
学号:XXX
运筹学在实际生活中的应用 ——运输问题的表上作业法
【摘要】运筹学,是应用数学和形式科学的跨领域研究,利用像
是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。

运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。

运输问题可以用求解线性规划的方法来解决。

但是一般来说,运输问题用普通的线性 方法求解更麻烦得多,而表上作业法则是一种简单方便的方法。

【关键词】运筹学、最佳解答、改善优化、表上作业法
一、理论依据
运输问题的表上作业法步骤
1、制作初始平衡表
用“西北最大运量,然后,每增加角方法”:即在左上角先给予最大运量,然后,每增加一个运量都使一个发量或手里饱。

如果所有运量的数字少于()1-+n m ,则补0使之正好()1-+n m 个。

注:补零时不能使这些书构成圈。

2、判断初始方案是否最优
(1)求位势表:对运价表加一行一列,圈出运价表中相应
于有运量的项,在增加的行列上分别添上数,使这些元素之和等于圈内的元素。

这些元素称为位势数。

(2)求检验数:()分别表示行、列位势,j i ij j i ij B A C B A -+=λ 从而得到检验数表。

结论:若对任意的0,,≤ij j i λ,则方案最优,否则转3进行调整。

3、调整
(1)找回路:在0>ij λ(若有多个0>ij λ选大者)对应的运量表上对应元素为起点,沿横向或纵向前进,如遇到有运量的点即转向,直至起点,可得到一个回路。

(2)找调整量:沿上述找到的回路,从起点开始,在该回路上奇数步数字的最小者作为调整量0ε。

(3)调整方式:在该回路上奇数步-0ε,偶数步+0ε,得到新回路。

重复上述步骤,使所有0≤ij λ,即得最优方案。

二、背景
1.1鉴于市场竞争日益激烈,消费者需求渐趋多样,工厂作为市场消费品的产出源头,唯有对这种趋势深刻理解、深入分析,同事具体的应用于实际中,才能使自身手艺,断发展壮大,不被新新行业所淘汰。

对于今天的重点研究对象食品工厂而言,由于在不同产品在原料使用、物料损耗、市场价格等方面均存在各种差异,如何确定各产
品的生产配比,以及在最优的生产配比方案之下工厂能够达到最大的产值,都是值得进行探讨研究的现实问题。

三、实证分析
问题:设A1、A2、A3处分别有某种物资70t 、80t 、50t ,需要 运往B1、B2、B3、B4处的需要量及Ai 到Bj 的运费(元/t )如下表,如何安排运输可使得运价最省?
解法1:(1) 初始平衡表。

可用“西北角法”。

注意不要33x 处加零,这样算位势表(否则,可能对某0i0j0
≥λ,找不到回路)。

初始平衡表
(2)判别(在运价表进行)。

圈出有运量的运价,且增加一行一列,得到位势表,每一圈出的数对应行,列位势之和。

(3)求检验数。

位势表(一)
检验数表(一)
ij i C B A -
+=)列位势(行位势)(j ij λ
计算运费得650元
这里22142231
取最大值,0
,0,0λλλλ>>>,在运量表上找
出回路,调整量30,对调整后的运量表重复前面步骤。

调整量30
——————
运量表(一)
位势表(二)
检验数(二)
计算运费为530元
调整量40
——————
运量表(二)
位势表(三)
检验数(三)
计算运费得490元
解法2:在解法1的初始平衡表中从31x 开始,这里: 412231
=<=λλ
调整量40
———
运量表(三)
检验数(四)
计算运费为610元
调整量3
———_
位势表(五)
检验数表(五)
运费为490元
按步骤依次类推得出则该模型最优解为:A1处的物资全部运往B3地,即70t,A2处的物资分别往B2和B4运送30t和10t,A3处的物资分别往B1和B4 运送40t和50t,此时运费为490元。

参考文献:
[1]胡运权,《运筹学基础及应用》(第五版)[M],哈尔滨工业大学出版社
[2]胡运权,《运筹学习题集》[M],清华大学出版社
[3]卢向华,《运筹学教程》[M],高等教育出版社
[4]陈汝栋,于延荣,《数学模型与数学建模》(第二版),[M],国防工业出版社
Operational research in practical application
——The optimal solution 【abstract】Operations research, applied mathematics and form scientific and interdisciplinary research, using methods, such as statistics, mathematical model and algorithm to find the optimal or approximate optimal solution of complex problems. Operations research is often used to solve complex problems in real life, especially to improve or optimize the efficiency of existing systems. Study the basic knowledge of operational research including real analysis, matrix theory, foundation of the theory of stochastic process, discrete mathematics, and
algorithm. While in the aspect of application, associated with warehousing, logistics, algorithms, and other fields.
【key words】Operations research, the best solutions, to improve the optimization。

相关文档
最新文档