1.5 可测集与可测函数(讲义)
可测函数
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE ix E x x E E χ∈⎧=⎨∈-⎩ 注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。
实变函数课件第四章可测函数 (2)
E Ei上,且f x在每个Ei上都可测,则f x在E上也可测.
i 1
定义3 设f x的定义域E可分为有限个互不相交的可测集
s
E1,E2, ,Es ,E Ei ,使f x在每个Ei上等于常数ci,
i 1
则称f x为简单函数.
定理4 设f x ,g x 在E上可测,则下列函数( 假定它们在
作业:13
定理2 设f (x)是E R上a.e.有限的可测函数,则对任意的 0, 存在闭集F E及整个R上的连续函数g(x)(F及g(x)依赖于 ), 使得在F上g(x) f (x),且m(E \ F) .此外还可要求
sup g(x) sup f (x) 及inf g(x) inf f (x).
注:一个函数在其定义域中的每一个孤立点都是 连续的.
定理2 可测集E Rn上的连续函数都是可测函数.
例1 区间[a,b]上的连续函数和单调函数都是可测函数.
定理3 (1)设f x是可测集E上的可测函数,而E1 E为E的 可测子集,则f x 看作定义在E1上的函数时,它是E1上的可
测函数;
(2)设f x定义在有限个可测集Ei(i 1, 2, , s)的并集
R
F
R
F
作业:P51,1,P52,2
第4节 依测度收敛
定义 设{ fn}是E Rq上的一列a.e.有限的可测函数,若 有E上的a.e.有限的可测函数f (x)满足下列关系:
对任意
0,有lim mE[| n
fn
f
| ] 0,
则称函数列{ fn}以测度收敛于f ,或度量收敛于f ,
记为fn (x) f .
(4) 对任意有限实数a,b(a b), E[a f b] 都可测(但充要性要假定f (x)是有限函数).
1.5 可测集与可测函数(讲义)
1.5 可测集与可测函数1.5.1 可测集与可测函数定义1.5.1 设X 是基本空间,R 是X 上的σ-代数,且E X E ∈=R, 则称(,)X R 是可测空间(measurable space),R 中的元素E 是(,)X R 上的可测集(measurable set)。
特别地,当1X =R ,=R L 时,称1(,)R L 是Lebsgue 可测空间;Lebsgue 可测空间上的可测集称为Lebsgue 可测集;当1X =R ,()==0R S R B 时,称1(,)R B 是Borel 可测空间;Borel 可测空间上的可测集(即:Borel 集)称为Borel 可测集.注 定义可测空间、可测集时,严格地说,并不要求在σ-代数R 上已经具有某个测度,即把可测空间、可测集的概念本质上当作集合论范畴的概念,这已是通行的看法。
定义1.5.2 设(,)X R 是可测空间,E X ⊂,f 是定义在E 上的有限实函数。
若对一切实数c ,集(){(),}E c f x c f x x E ≤=≤∈都是(,)X R 上的可测集(即:()E c f ≤∈R ),则称f 是E 上关于R 的可测的函数,简称E 上的可测函数(measurable function)。
特别地,当1(,)(,)X =R R L 时,称f 是E 上关于L 的Lebsgue 可测函数; 当1(,)(,)X =R R B 时,称f 是E 上关于B 的Borel 可测函数。
定理1.5.1 设(,)X R 是可测空间,f 是定义在E X ⊂上的有限实函数。
则f 是E 上的可测函数的充分必要条件是:对任意实数,c d ,集()E c f d ≤<是可测集。
证 设f 是可测函数,由于()()()E c f d E c f E d f ≤<=≤-≤,而()E c f ≤和()E d f ≤都是可测集,所以()E c f d ≤<是可测集。
第四章可测函数
§1 可测函数及其性质 §2 叶果洛夫定理 §3 可测函数的构造 §4 依测度收敛
§1 可测函数及其性质
要点:可测函数是利用勒贝格可测集来刻画的,勒贝格可 测函数是勒贝格积分的基本对象。
记号:一个定义在 E Rn 上的实函数 f (x) 确定了E的一组
子集
E f a x | xE, f (x) a
不是一个函数值,而是一个集合
可测函数等价定义 设f (x)是定义在可测集E上的实函数,对于任何有限实数a,b (a b)
f (x) 在E上可测 (1)E f a 都可测。
(2) E f a 都可测。 (3) E f a 都可测。 (4)Ea f b 都可测。
推论:设 f (x)在E上可测,则 E f a 总可测,不论 a 是有 限实数或 即:可测集E上的常值函数是可测函数。
函数 n 的极限函数,其中 1(x) 2(x)
注:1°简单函数仅取有限个实数值,且每个值是在一个可测子集上取的。 2°简单函数列的极限函数不一定是简单函数,甚至某些点处极限函数
可能为 ,然而简单函数一定是可测函数。
5、几乎处处成立
设 是一个与集合E的点 x 有关的命题,如果存在E的子集 M,适合 mM 0 ,使得 在E\M上恒成立,即E\E[ 成 立]=零测度集,则我们称 在E上几乎处处成立, 或说
n
fn
(x)
G(x)
lim n
fn (x)
也在E上可测,特别当
F ( x)
lim n
fn(x) 存在时,
它也在可测。
4、简单函数及其性质
(1)定义:设f (x) 的定义域E可分为有限个互不相交的可测集
s
E1,..., Es 即 E Ei ,使 f (x)在每个 Ei上都等于某常数 c ,则称 f (x)
第二章,第二节
S1
A
S2
B C D T
有m T = m ( A U B U C U D )
∗ ∗ ∗ ∗ ∗ ∗
∗
∗
= m ( A U B ) + m (C U D) (因为S1可测) = m ( A U B ) + m C + m D (因为S 2可测) = m ( A U B U C ) + m D (因为S1可测)
i =1
有m T = m (T ∩ E ) + m (T ∩ E )
* c
∗
∗
= m (T ∩ E ) + m (T ∩ E )
c *
∗
即Ac可测
现证推论2.2.1— 现证推论2.2.1—2.2.3 因 A ∪ B 可测已证明,则 A ∩ B = ( A c ∪ B c ) c
Q ∴ ∪ ∩
∞ ∞ i = 1
这 里 lim An = ∪ An
n→ ∞ n =1 ∞
n →∞
n →∞
(b) 若An 是递减的可测集列且
n →∞ n →∞
mA1 < +∞
这 里 lim A n = ∩ A n
n→ ∞ n =1 ∞
则m( lim An ) = lim mAn
注:左边的极限是集列极限, 而右边的极限是数列极限, (b)中的条件 mA < +∞ 不可少
i =1 n i =1 ∞ n n
从而m T ≥ ∑ m (T ∩ Ai ) + m (T ∩ (∪ Ai )c ) (*)
* i =1 i =1
∗
∞
∗
≥ m∗ (T ∩ (∪ Ai ) + m* (T ∩ (∪ Ai )c )
可测函数
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE ix E x x E E χ∈⎧=⎨∈-⎩ 注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。
borel可测函数
borel可测函数目录第一章 Measure theory1.1 Ring和Algebra1.2 测度 & 外测度 & 测度的完备化1.3 外测度的构造 & Lebesgue测度 & Lebesgue-Stieltjes测度1.4 Metric Space &Metric Outer Measure1.5 Lebesgue测度再讨论1.6 带号测度(Signed Measure)& Hahn分解 & Jordan分解第二章可测函数(measurable function)2.1 可测函数的定义Section 1 预备知识定义1 (测度空间)设 X 是空间, \frak{a} 是 X 上的某个 \sigma 代数, \mu 是定义在\frak{a}上的测度,则称三元组(X,\mathfrak{a},\mu) 是测度空间。
在不强调\frak{a}和\mu 的情况下,简单记作 (X,\mathfrak{a}) 或 X 。
那么,若集合属于\frak{a},则称该集合是 \mu 可测的(\mu\text{-}measurable ),有时简称可测的(measurable),要注意分辨。
注: E\in \mathfrak{a} 和 E 是可测的,是同一件事。
例子1(Lebesgue测度空间)若取 X 为 \mathbb{R}^n ,取\frak{a}为Lebesgue集 L ,取 \mu 为Lebesgue测度 m ,则称三元组(\mathbb{R}^n,L,m) 为Lebesgue测度空间(Lebesgue measure space)。
定义2(测度子空间)设有测度空间(X,\mathfrak{a},\mu),令 Y 为可测集。
定义\mathfrak{a}_Y 为 Y 的所有可测子集,定义 \mu|_Y 是 \mu 在 Y 上的限制。
则三元组 (Y,\mathfrak{a}_Y,\mu|_Y) 也是测度空间,称为 (X,\mathfrak{a},\mu) 的测度子空间。
第四章可测函数解析
第四章 可测函数教学目的:1.熟练掌握可测函数的定义及其基本性质,可测函数的一些重要性质.2.掌握通过Egoroff 定理证明Lusin 定理,它表明Lebesgue 可测函数可以用性质较好的连续函数逼近.3.掌握几乎处处收敛,依测度收敛和几乎一致收敛,以及几种收敛性之间的蕴涵关系.通过学习使学生对可测函数列的几种收敛性和相互关系有一个较全面的了解. 重点难点:1.可测函数有若干等价的定义.它是一类范围广泛的函数,并且有很好的运算封闭性.2.可测函数可以用简单函数逼近,这是可测函数的构造性特征.3.引进的几种收敛是伴随测度的建立而产生的新的收敛性.一方面, L 可测集上的连续函数是可测的,另一方面,Lusin 定理表明,Lebesgue 可测函数可以用连续函数逼近. Lusin 定理有两个等价形式.4.依测度收敛是一种全新的收敛,与熟知的处处收敛有很大的差异.Egoroff 定理和Riesz 定理等揭示了这几种收敛之间的关系.Riesz 定理在几乎处处收敛和较难处理的依测度收敛之间架起了一座桥梁.§4.1 可测函数及相关性质由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨论其性质和结构.设f 是可测集D 上的函数,若对任何R ∈∀α,{}α>∈)(:x f D x 记=αD 是可测集,则称f 是可测集D 上的可测函数.我们知道,f 在D 上连续⇔R ∈∀α,{}α>∈)(:x f D x 、{}α<∈)(:x f D x 都是开集.所以由可测函数的定义,区间D 上的连续函数f 是可测函数.又如:设E 是D 的可测子集.则E 上的特征函数为=)(x f )(x E λ⎩⎨⎧=01ED x Ex -∈∈由于 {}αα>∈=)(:x f D x D⎪⎩⎪⎨⎧=D E φ0101<<≤≥ααα是可测集,所以E λ是D 上的可测函数.即定理4.1.1 可测集的特征函数是可测的.今后,在不致混淆时,将{}α>∈)(:x f D x 简记为{}α>f .类似, {}α≥f 、{}α≥f 、{}α<f 、{}α≤f 、{}α=f 等的意义同上. 问:定义中α>f 可否换成α<f ?答:可以.定理4.1.2 设函数f 定义在可测集D 上,则下面四件事等价. (i)f 在D 上可测;(ii)对任何R ∈α,{}α≥f 可测; (iii)对任何R ∈α,{}α<f 可测; (iv)对任何R ∈α,{}α≤f 可测.其证明就是利用集合的运算. 证明:(i)⇒(ii) {}α≥f ⎭⎬⎫⎩⎨⎧->=∞=n f n 11α ,由(i), ⎭⎬⎫⎩⎨⎧->n f 1α可测,从而⎭⎬⎫⎩⎨⎧->∞=n f n 11α 可测,即{}α≥f 可测.(ii)⇒(iii){}α<f -=D {}α≥f(iii)⇒(iv){}α≤f ⎭⎬⎫⎩⎨⎧+<=∞=n f n 11α(iv)⇒(i) {}α>f -=D {}α≤f定理4.1.3 设函数f 和g (i){}λ=f 、{}βα<<f 、{}βα<≤f 、{}βα≤≤f 、{}βα≤<f 都是可测集,其中+∞≤<≤∞-βα,λ是广义实数. (ii){}g f >是可测集.证明: (i)先设λ是实数,则{}λ=f {}λ≥=f {}λ>-f 是可测集;若∞=λ,则{}∞=f {}n f n >=∞=1可测;若-∞=λ,则{}-∞=f {}n f n -<=∞=1可测.可见, 对任何广义实数λ,{}λ=f 是可测集.对于其它集的可测性由定理3.1.2与集合的运算立即可得.(ii)分析:⇒>g f x ∃,使)()(x g x f >,若∞=)(x f ,则∞≠)(x g ,可∞-,不管怎样,f 、g 之间可以插进有理数.即:若{}1≥n n r 是有理数全体,则{}g f >{}{}{}g r r f n n n >>=∞= 1再利用函数f 和g 都是可测函数,可得右侧为可测集,即{}g f >是可测集.在数学分析中,我们已经知道连续函数对于极限运算不封闭,即连续函数的极限可能不是连续函数,只有一致收敛的连续函数列的极限函数连续,否则未必.如:n n x x f =)(,]1,0[∈x .)()(x f x f n →⎩⎨⎧=01101<≤=x x不连续.而可测函数对于极限运算是封闭的,这点也体现了它的优越性.定理 4.1.4 设{}1)(≥n n x f 是可测集D 上的一列可测函数,则函数)(sup 1x f n n ≥、)(inf 1x f n n ≥、)(lim x f n n ∞→、)(lim x f n n ∞→都是可测函数. 证明:任取R ∈α,则})({sup 1α>≥x f n n })({1α>=∞=x f n n 可测.(此等式表明至少有一个α>)(x f n ,否则都α≤,就说明α为上界,由上确界是最小上界,便会得出α≤≥)(sup 1x f n n )})(inf {1α<≥x f n n })({1α<=∞=x f n n 可测.(至少有一个α<)(x f n ,否则都α≥,α为下界,其最大下界α≥≥)(inf 1x f n n ) 再由)(l i m x f n n ∞→)(s u p i n f 1x f k nk n ≥≥=、)(lim x f n n ∞→)(inf sup 1x f k nk n ≥≥=知)(lim x f n n ∞→、)(lim x f n n ∞→都是可测函数.(n x 的上极限k nk n n n x x ≥≥∞→=sup inf lim1,k nk x ≥sup ↓;n x 的下极限k nk n n n x x ≥≥∞→=inf sup lim 1,k nk x ≥inf ↑)实变函数的第一个“差不多”是可测集与开集、闭集差不多;第二个“差不多”就是可测函数与连续函数差不多. 为研究实变函数中的第二个“差不多”,前述内容中最重要的是定理4.1.4—可测函数对极限运算封闭.§4.2 可测函数的其它性质设D 是可测集,)(x p 是一个与D 中每一点有关的命题.若除了D 的一个零测子集E 外,使)(x p 对每一E D x -∈都成立,则称)(x p 在D 上几乎1xy处处成立,用a.e.表示.(即almost everywhere).例如,{}x n sin 在R 上几乎处处收敛于0或说0sin lim =∞→x n n a.e.在R(因为只有2ππ+=k x 时,极限不为0,其为可数集,当然为零测集);Cantor 集上的特征函数0)(=x C λ a.e.在]1,0[(因为Cantor 集为零测集).若说)(x f 在R 上a.e.有限,意即)(x f 不有限的点的集合为零测集. 为讲第二个“差不多” ,先讲连续函数,数学分析中求R 积分时,把曲的变成直的, 并称其为阶梯函数,此处我们称为简单函数, 它是由特征函数决定的. 设f 是可测集D 上的一个函数,若)(D f是由有限个实数1a ,2a ,…,n a 组成,并且{}k k a x f D x E =∈=)(: n k ,,2,1 =都是可测集,则我们称f 是D 上的一个简单函数.由此f 可以表示为)()(1x a x f K E k nk λ=∑=其中)(x kE λ可记作)(x k λ,为k E 上的特征函数.由可测函数定义,简单函数都是可测的.(定理3.3.4至多可数个可测集之并可测).易知,若f 、g 都是简单函数,则f λ、||f 、fg 、g f +、g f -等都是简单函数(因其值域是有限个实数),当然都是可测的.下面说明可测函数一定是简单函数的极限.定理4.2.1 设f 是可测集D 上的可测函数,则有D 上的简单函数列{}1≥k k ϕ,使对每一D x ∈,)()(x f x k →ϕ,此外(i)当0≥f 时,可使上述{}1≥k k ϕ满足对每一D x ∈,{}1≥k k ϕ单增收敛于)(x f ;(ii)当f 有界时, 可使上述{}1≥k k ϕ在D 上一致收敛于f . (即对任何0>ε,有K ,K k >∀,有εϕ<-|)()(|x f x k )提问:试举例说明,一列函数在每一点都收敛于)(x f ,但不一致收敛.答:如k k x x f =)( ]1,0[=D ,则⎩⎨⎧=01)(x f101<≤=x x ,这时)(x f k 在每一点都收敛,但不一致收敛.其原因是极限函数不连续.上述定理说明,可测函数和简单函数“差不多”.通过上图,我们形象地描述一下上述定理的证明思路.第一次:在-1和1之间取阶梯函数,每段长21; 第二次:在-2和2之间取阶梯函数,每段长221,其中-1和1之间是将第一次的段分一半,分细了,这段的一部分向上移了,所以-1和1之间的第二个阶梯函数部分比第一个大……,即)(1x ϕ⎪⎪⎩⎪⎪⎨⎧--=12111k1)(2)(211)(11-<<≤-≥x f kx f k x f 2,1,0,1-=k(k 的取法可由中间一段得出,因此时)(x f 必在-1和1之间,左等右不等,由1211-=-k 得1-=k ,由121=k得2=k ,所以2,1,0,1-=k .第二次k 的取法类似).)(2x ϕ⎪⎪⎩⎪⎪⎨⎧--=22122k2)(2)(212)(22-<<≤-≥x f kx f k x f 8,,6,7 --=k证明:对每一1≥n ,令)(x n ϕ⎪⎪⎩⎪⎪⎨⎧--=nk nn 21 n x f k x f k n x f n n -<<≤-≥)(2)(21)(若若若 n n n n k 2,,12⋅+⋅-=(i)显然{}1≥n n ϕ是一列简单函数,现固定D x ∈.若∞=)(x f ,则对每一1≥n ,有n x n =)(ϕ,从而)()(x f x n →ϕ; 若-∞=)(x f ,则对每一1≥n ,有n x n -=)(ϕ,从而)()(x f x n →ϕ; 最后,若)(x f 是一个实数,则当n 充分大时,存在唯一的n k ,使得n n n n k n 212⋅≤≤+⋅-,并且nnn n k x f k 2)(21<≤- 于是)(x n ϕn n k 21-=,nn x x f 21)()(0<-≤ϕ.令∞→n ,即得)()(x f x n →ϕ. 特别,设f 非负.由)(x n ϕ的构造方法(如图x 轴上方),易知:)(x n ϕ单增.(ii)最后若f 有界,M 是||f 的一个上界,则当M n >时,{}n f ≥及{}n f -<都是空集,从而对一切D x ∈,有nn x f x 21)()(<-ϕ,故{}1)(≥n n x ϕ一致收敛于)(x f .注1.由可测函数的定义,f 在可测集D 上是否可测,与f 在D 上的一个零测子集上的值无关.f 可测⇔{}α>∈)(:x f D x R ∈∀α 是可测集.若0)(=E m ,D E ⊂,即使f 在E 上乱动,对{}α>∈)(:x f D x 可测没有影响.即只要f 在E D -上可测,就说f 在D 上可测(在E 上无定义也可).说明:若)(1x f )(2x f = a.e.D ,则当1f ,2f 中有一个可测时,另一个也可测.而连续函数斤斤计较,动一点则不连续.注 2.设是D 上的可测函数列, 0)(=E m ,D E ⊂.若对每一个E D x -∈,)()(x f x f n →,由定理4.1.4知f 在E D -上可测,从而由注1, f 在D 上可测.这个结论也可以说成“可测函数列{}1≥n n f 在D 上几乎处处收敛的极限f 在D 上可测”.注 3.设f 和g 都是D 上的可测函数,若对某D x ∈,∞=)(x f ,且-∞=)(x g 或-∞=)(x f 且∞=)(x g ,则)()(x g x f +就没有意义.但如果所有使)()(x g x f +没有定义的点x 的全体是零测集,则我们同样可以讨论g f +的可测性,对g f -也如此.定理4.2.2 设f 和g 都是可测集D 上的可测函数,λ是实数,则f λ、f 、fg 都是可测函数.此外若g f +和g f -几乎处处有定义,则它们也是可测的.证明思路.以f 为例.因f 是可测集D 上的可测函数,从而有简单函数列)()(x f x f n →,进而简单函数列)()(x f x f n →,所以极限函数f 可测.再如证fg 可测,由已知,因)()(x f x f n →,)()(x g x g n →,)(x f n 、)(x g n 为简单函数列,所以)(x f n )(x g n 也是简单函数列,且)(x f n )(x g n )()(x g x f →,因此极限函数)()(x g x f 可测.一定注意:可测与否与零测集无关.例题4.2.1 ]1,0[上的实函数是否一定可测?答:不一定.找]1,0[中的不可测子集E ,其上的特征函数不可测.即:取不可测集合]1,0[⊂E ,令⎩⎨⎧==01)()(x x f E λE x E x -∈∈]1,0[则{}α>∈)(:]1,0[x f x ⎪⎩⎪⎨⎧=]1,0[E φ0101<<≤≥ααα ——→不可测.所以)(x E λ在]1,0[上不可测.例题4.2.2 零测集上的实函数是否一定可测?答:因{}E x f E x ⊂>∈α)(:,故也是零测集,从而零测集上的实函数一定可测.例题 4.2.3 设D E ⊂,其中D 可测,0)(=E m .若f 在E D -上可测,是否f 在D 上可测?答:{}α>∈)(:x f D x ={}α>-∈)(:x f E D x {}α>∈)(:x f D x 可测. 复述定理4.2.1f 在D 上可测⇒有D 上的简单函数列)()(x f x f n →,D x ∈∀且 (i)0≥f 时,)()(x f x f n ↑→(ii)当f 有界时, )(x f n )(x f .之后三个“注”说明可测函数与零测集无关.这样,若可测函数列)()(x f x f n → a.e.,则)(x f 是可测函数.可见,对可测函数来说,总的要求是宽的.重复定理4.2.2设f 和g 都是可测集D 上的可测函数,λ是实数,则f λ、f 、fg 都是可测函数.此外若g f +和g f -几乎处处有定义,则它们也是可测的.什么叫g f +几乎处处有定义?即{}( ∞=)(x f {})-∞=)(x g {}( -∞=)(x f {})∞=)(x g 是零测集. 其证明思路:①可测函数一定是一列简单函数列处处收敛的极限. ②也可用定义.如{}αλ>f 由)0}({>>λλαf 或)0}({<<λλαf 来证. 此处用方法①最清楚.简单函数)()(x f x f n →,)()(x g x g n →,则)()(x f x f n λλ→,)()(x f x f n →, )(x f n )(x g n )()(x g x f →,)(x f n +)(x g n )()(x g x f +→ a.e.D(简单函数是处处有定义的,有限个实数是其值域,无∞±的情况,简单函数不允许取∞±)g f +在E D -可测,0)(=E m ,由注1, g f +在D 可测(即例题3).例题4.2.4 f 在D 上可测,f sin 在D 上是否可测? 答:因f 可测,则有简单函数列)()(x f x f n →D x ∈∀ 所以 )(sin )(sin x f x f n →由于n f 是简单函数,取有限个实数,当然)(sin x f n 也取有限个实数,因而n f sin 也是简单函数,所以f sin 可测.由此可见,不光可测函数的“+、-、×、数乘、绝对值”可测,还有些复合函数也可测,但复合函数比较复杂.sin 连续故必可测.但若随便问))((x f g 可测吗?一下子说不清楚.f 、g 可测,则有简单函数f f n →、g g n →,这时))((x f g n n 也是简单函数,但))((x f g n n →))((x f g ? g 若连续,有))(())((x f g x f g n →g 若不连续,则没有))(())((x f g x f g n →,更不用说))((x f g n n →))((x f g 了.所以,连续函数的复合还连续,而可测函数的复合却不一定可测. 要点: 1.可测函数与零测集无关.2.可测函数是简单函数列处处收敛的极限.§4.3 可测函数用连续函数来逼近称F 是一个紧集,若F 的任何开覆盖存在有限子覆盖.其充分必要条件是F 是有界闭集.定理4.3.1 设F 是一个紧集,{}1≥n n f 是一列沿F 连续的函数.若{}1≥n n f 在F 上一致收敛于f ,则f 也沿F 连续(F x ∈∀,)()(lim 00x f x f Fx xx =∈→). 前面曾提到n x →⎩⎨⎧01101<≤=x x ]1,0[∈x ,由极限函数不连续⇒n x 不一致收敛.定理的证明思路与数学分析同.问: 数分怎样证明“连续函数)(x f n 在],[b a 一致收敛⇒)(x f 连续?” 证明:],[0b a x ∈∀,0>∀ε,0>∃δ,∀),(0δx x ∈=-)()(0x f x f )()()()()()(000x f x f x f x f x f x f n n n n -+-+-)()(x f x f n -≤+)()(0x f x f n n -+)()(00x f x f n -3ε<3ε+3ε+ε=若改为),(b a 也一样.本节中非常重要的一个结果:定理4.3.2(Egoroff)设f 和n f )1(≥n 都是测度有限的集D 上几乎处处有限的可测函数.若n f 在D 上几乎处处收敛于f ,则对任何0>ε,有D 的闭子集F,使ε<-)(F D m ,并且n f 在F 上一致收敛于f .(也称基本上一致收敛,有点象数分中的内闭一致收敛)证明:令{})()(lim )()(:1x f x f x f x f D x D n n n =∈=∞→都有限且和,则由条件知,1D 是可测集且0)(1=-D D m .令)(r nA 1D =⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧<-∞=r x f x f k n k 1)()( ,2,1,=r n()(r n A 是1D 里那样的点: ⎭⎬⎫⎩⎨⎧<-r x f x f k 1)()(与r k ,有关, r 不动,取∞+= ,1,n n k ,现在看这种集合有什么性质)对每一1≥r ,{}↑→≥1)(n r n A 1D ,且每一个)(r n A 都可测.(首先,每一个)(r n A 都是1D 子集,由{}↑≥1)(n r n A知)(1)(lim r n n r nn AA∞=∞←= ,也就是要证1)(1D A r n n =∞= ),易见)(1r n n A ∞= 1D ⊂,这是因为每个1)(D A r n ⊂,现在对1D x ∈∀,取01>r,由)()(lim x f x f n n =∞→知N∃,Nk >∀,有rx f x f k 1)()(<-,说明}1)()({rx f x f x k N n <-∈∞= ,当然1D x ∈}]1)()({[rx f x f k Nn <-∞= )(r N A =.所以)(1r nn Ax ∞=∈ ,因此⊂1D )(1r nn A ∞= ,于是得到1)(1D A r n n =∞= .即1)(lim D A r n n =∞←. 由测度性质(定理3.3.6(i)))(lim )(r n n A m ∞→)lim ()(r n n A m ∞→=)(1D m = (1)又∞<=)()(1D m D m ,所以对每一1≥r ,有r n ,使)()()(1r n r A m D m -)()(1r n rA D m -=12+<r ε (2)(对 (1)式利用极限定义,再根据测度的减法,∞<)(A m 时,)()()(A m B m A B m -=-)此时n f 在)(1r n r rA E ∞== 上一致收敛于f .(即0>∀ε有N ,N n ≥∀,E x ∈∀,有ε<-)()(x f x f n (下证)0>∀ε ,有00>r ,使ε<01r ,从而当0r n n >时,对一切)(00r n r A x ∈,有ε<<-01)()(r x f x f n .显然)(00r n r A E ⊂所以上述结论对E x ∈∀都成立.即n f 在)(1r n r rA E ∞== 上一致收敛于f .))(E D m -)(1E D m -=)()(11r n r rA D m ∞=-= ))(()(11r n r rA D m -=∞= (由)(11r n r r AD ∞=- )()(11r n r rA D -=∞= ) )()(11r n r rA D m -∑<∞= 112+∞=∑<r r ε2ε=此时有E 的闭子集F ,使2)(ε<-F E m ,则n f 在F 上一致收敛于f 且)]()[()(F E E D m F D m --=- )()(F E m E D m -+-≤ε<.思路是:几乎处处收敛→处处收敛→一致收敛→闭集上↑ ↑ ↑ ↑ D ⊃ 1D ⊃ E ⊃ F注:上述定理中要求D 测度有限即∞<)(D m .此条件非常重要.若∞=)(D m ,则没有上述定理.如:)()(),(x x f n n +∞=λ,)(0)(x f x f n =→)(∞→n .问:是否有闭集F 使1)(<-F R m 而且n f 在F 上一致收敛于0?这是不可能的.因为{}∞=≥∈1:n f R x m 做不到0→n f a.e.R引理4.3.1 设F 是R 中的闭集,函数f 沿F 连续,则f 可以开拓成R上的连续函数*f ,并且)(sup *x f Rx ∈)(sup x f Fx ∈=.n R证明:此时),(1n n n cb a F ∞== ,其中(){}n n b a ,两两不交.(f 在F 上有定义,不妨设在c F 上没有定义,故f 在端点n a ,n b 上有定义,在其内部无定义,重新定义:将端点连成线段即可) .(可能f 在c F 有定义不连续,同样重新定义) 今定义⎪⎪⎩⎪⎪⎨⎧=)()()()(*n n b f a f x f x f 线性 -∞=∈∞=∈∈∈n n n n n n n n n n a b a x b b a x b a b a x F x 其中其中有限其中),,(),,(,),,( ⎪⎪⎭⎫ ⎝⎛---+)()()()(n n n n n n a x a b a f b f a ff*a nnn b n 1122kk显然*f 是R 上的连续函数.它是f 的开拓,且=∈)(sup *x f Rx )(sup x f Fx ∈.引理 4.3.2 设f 是可测集D 上的简单函数,则对任何0>ε,有沿D 连续的函数*f ,使{}()ε<≠*f f m .(是说简单函数和连续函数“差不多”,为可测函数与连续函数“差不多”作准备)证明:设{}n k k a D f ≤≤=1)((因f 为简单函数),其中k a 都是实数且两两不同.令{}k k k a f E == n k ,,2,1 =,则k E 可测,其中{}n k k E ≤≤1两两不相交,k nk E D 1== .对每一k ,有闭集k k E F ⊂,使F E m k k ε<-)((因可测集与闭集“差不多”)则f 沿F F k nk ==1连续.(对k nk F F x 10==∈∀ ⇒00k F x ∈⇒x 充分接近0x 时即 ⇒<),(0x x d ),(min 0,,2,10k k k n k F x d ≠=⇒00k k E F x ⊂∈所以0)(k a x f =.⇒从而)()(lim 00x f x f Fx x x =∈→.⇒即f 沿F 连续.)由引理4.3.1,f 可以开拓成D 上的连续函数*f .{}())(*F D m f f m -≤≠)(11k nk k nk F E m ==-=)]([1k k nk F E m -≤=)(1k k nk F E m -∑≤=ε<(由第一章习题:-∞=n n A 1n n B ∞=1-⊂∞=n n A (1)n B ,由于在F 上,f f =*,所以可能不等的地方在F 外,即{}F D f f -⊂≠*).定理 4.3.3(Lusin)设f 是可测集D 上几乎处处有限的可测函数,则对任何0>ε有沿D 连续的函数*f 使{}()ε<≠f f m *,并且≤∈)(s u p *x f Dx )(s u p x f Dx ∈.证明:不妨设f 处处有限.先设∞<)(D m (为了应用Egoroff 定理),此时有简单函数列{}n f ,使对任何D x ∈,)()(x f x f n →.现对每一个1≥n ,由引理4.3.2,存在沿D 连续的函数*n f ,使{}()1*2+<≠n n n f f m ε,2,1=n令{}*1n n n f f E ≠=∞= ,则)(E m ∞=∑≤1n {}()11*2+∞=∑<≠n n nn ff m ε2ε=此时对每一E D x -∈(即{}*1n n n f f =∞= ),有)()(*x f x f n n = ,2,1=n从而对每一E D x -∈,)()(*x f x f n → (因∞<-)(E D m 故可用Egoroff 定理)由Egoroff 定理,,有有界闭集E D F -⊂使2)(ε<--F E D m而且*n f 在F 上一致收敛于f .由定理 4.3.1,f 在F 上连续,再由引理4.3.1,f 可以开拓成D 上的连续函数*f .此时{}()f f m ≠*)(F D m -≤()[]E F E D m --=)()(E m F E D m +--≤ε<这样我们在∞<)(D m 即D 有界的条件下证明了定理.若∞=)(D m ,令)1,[+=n n D D n ,2,1,0±±=n则∞<)(n D m .由已证,对每一n ,有n D 的闭子集n F ,使f 沿n F 连续,而且2||2)(+<-n n n F D m ε,2,1,0±±=n此时,n n F F +∞-∞== 是闭集而且f 沿n F 连续.(一般,可数个闭集的并不一定是闭集,称σF 集.如:]2,1[1nn ∞= ]2,0(=.开集是σF 集是由于]1,1[),(1nb n a b a n -+=∞= .此处n n F F +∞-∞== 是闭集是因F x n ∈∀,x x n →有F x ∈(下证)由于R x ∈,故)1,[00+∈n n x .现x x n →,故又由F x n ∈,当n 充分大时0n n F x ∈.由0n F 闭且x x n →知F F x n ⊂∈0.)由引理4.3.1,f 作为F 上函数可以开拓成D 上的连续函数*f ,并且{}()*f f m ≠)(F D m -≤)(n n n n F D m ∞-∞=∞-∞=-=)]([n n n F D m -≤∞-∞=2||2+∞-∞=∑<n n εε<对于)(sup *x f Dx ∈)(sup x f Dx ∈≤,由引理4.3.1)(sup *x f D x ∈)(sup x f F x ∈=)(sup x f Dx ∈≤而得(因D F ⊂).记住:只有Egoroff 定理限定∞<)(D m .推论:若f 是],[b a 上几乎处处有限的可测函数,则对任何0>ε,有],[b a 上的连续函数*f ,使{}()ε<≠*f f m ,并且)(max *],[x f b a x ∈)(sup ],[x f b a x ∈≤.例:⎩⎨⎧=01)(x D无理数有理数x x 处处不连续.令0)(*≡x D ,则{}()ε<=≠0)()(*x D x D m .这提供了一种方法,研究可测函数命题可以先研究连续函数,二者“差不多”.000§4.4 测度收敛)()(x f x f n Dn ∞→−→−已经学过三种,即()()()()⎪⎪⎩⎪⎪⎨⎧测度收敛一致收敛几乎处处收敛逐点收敛4321 {}()εδεδε<≥-⇒>∀∃>∀>∀⇔⇒∈∀>∀∃>∀=-∈∀∈∀f f m N n N f f Dx N n N E m E D x Dx n n ,,0,0,,,00)(,第四种即今天要学习的测度收敛.设f 和n f )1(≥n 都是D 上几乎处处有限的可测函数.若对任何0>δ,{}()0→≥-δf f m n ()∞→n ,则称n f 在D 上测度收敛于f .记为f f n ⇒. 例 4.4.1.对每一1≥n ,把]1,0[n 等分,得到n 个小区间],1[n kn k -,n k ,,2,1 =.令 0≡f1)()(]1,0[1≡=x x f λ)()(]21,0[2x x f λ= )()(]1,21[3x x f λ=)()(]31,0[4x x f λ= )()(]32,31[5x x f λ= )()(]1,32[6x x f λ=………………图形见演示文稿《测度收敛反例》 此时对任何0>δ{}()δ≥-f f m n {}()δ≥=n f m 0−→−()∞→n .(因n 越大,n f 等于1的区间越小)即f f n ⇒.但对任何]1,0[∈x ,{}1)(≥n n x f 中有无穷项为1,无穷项为0,可见n f 不收敛.例 4.4.2.对每一1≥n ,令)()(),[x x f n n ∞=λ,0)(≡x f ,R x ∈.此时对∀R x ∈,)()(x f x f n →,但对21=δ,})21|({|≥-f f m n })21({≥=n f m )),((∞=n m ∞=.所以n f ⇒f .以上二例说明:测度收敛与几乎处处收敛和逐点收敛没有因果关系.但还是有关系的.即定理4.4.1(Riesz)设f 和)1(≥n f n 都是可测集D 上的几乎处处有限的可测函数,则(i)若f f n ⇒,则{}1≥n n f 中有子列{}1≥k n kf 几乎处处收敛于f .(ii)若∞<)(D m ,并且n f 几乎处处收敛于f ,则f f n ⇒. 证明:(i)此时对每一1≥k ,})21|({|k n f f m ≥-)(0∞→→n ,因此有k n 使 kk n f f m k 21})21|({|<≥- ,2,1=k <<<<k n n n 21 11f 1f 2f 3f 4f 5f 6f 7f 8f 9f 10令})21|{|(1kn pk p f f E k≥-=∞=∞= (即集合序列的上极限) 则对每一1≥p})21|{|()(k n p k f f m E m k ≥-≤∞= })21|({|k n p k f f m k≥-∑≤∞=kp k 21∞=∑< 121-=p 令∞→p 得0)(=E m .即E 为零测集. 此时 cEE D -=})21|{|(1kn pk p f f k ≥-=∞=∞= 从而对每一E D E x c-=∈,必有10≥p 使∈x }21|{|0k n p k f f k<-∞= ,即0p k ≥∀有kn x f x f k 21|)()(|<-.也即)()(x f x f kn → )(∞→k .说明kn f 在c E 上处处收敛于f ,也就是说kn f 在D 上几乎处处收敛于f .(ii) (注意条件∞<)(D m ,否则即使n f 处处收敛于f ,也未必f f n ⇒)任给0>δ,0>ε,由于∞<)(D m ,由Egoroff 定理,有D 的可测子集E 使ε<-)(E D m 并且n f 在E 上一致收敛于f .于是有N,使δ<-|)(|f x f n E x ∈∀ N n >∀此时 {}δ≥-)()(x f x f n E D -⊂故 {}()δ≥-)()(x f x f m n ()E D m -≤ε< N n > 即f f n ⇒.例4.4.3.设)()(x f x f n ⇒,)()(x g x f n ⇒,则)()(x g x f =在E 上几乎处处成立.证明:由于)()(x g x f -)()()()(x g x f x f x f k k -+-≤,故对任何自然数n ,}1|:|{n g f E x ≥-∈⊂}21|:|{n f f E x k ≥-∈ }21|:|{ng f E x k ≥-∈, 从而})1|:|({n g f E x m ≥-∈≤})21|:|({n f f E x m k ≥-∈})21|:|({ng f E x m k ≥-∈+令∞→k ,即得})1|:|({ng f E x m ≥-∈0=. 但是}:{g f E x ≠∈}1|:|{1ng f E x n ≥-∈=∞=故0}):({=≠∈g f E x m ,即)()(x g x f = a.e.于E.讲可测函数最重要的一条是其与连续函数“差不多”,即Lusin 定理.我们所说的“差不多”是{}()ε<≠f f m *而不是f f =* a.e . 不要混同.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈 兴于《诗》,立于礼,成于乐——孔子 己所不欲,勿施于人——孔子 读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹 立身以立学为先,立学以读书为本——欧阳修 读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿 书卷多情似故人,晨昏忧乐每相亲——于谦 书犹药也,善读之可以医愚——刘向 莫等闲,白了少年头,空悲切——岳飞 发奋识遍天下字,立志读尽人间书——苏轼 鸟欲高飞先振翅,人求上进先读书——李苦禅 立志宜思真品格,读书须尽苦功夫——阮元 非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。
可测函数及其性质(最新版)
94页第2题 设{fn}是可测函数列,则它的收敛点全 体和发散点全体是可测集.
f n lim f n ] 证明:发散点全体为 E[lim n n
收敛点全体为 E[lim f n lim f n ]
n n
再 在利用 lim f n和 lim f n是可测函数即可
n n
(4)先证f 是可测函数。( a 0) R,
2
E[ f 2 a ] E[ f a ] E[ f a ], 所以E[ f 2 a ]是可测集。
a(<0) R, E[ f 2 a ] E , 所以E[ f 2 a ]是可测集, 1 因此f 2是可测函数。fg [( f g) 2 ( f g) 2 ], 所以fg也是 4 可测函数。
定义1:设f(x)是可测集E上的实函数(可取
),
若 a R, E[ f a] 可测,则称f(x)是E上的可测函数 例 (1) 零集上的任何函数都是可测函数。
设mE=0.a R,E[f>a] E, 所以E[f>a]也为零测度集,故是可测集
例(2) 简单函数是可测函数
若f的定义域E可分为有限个互不相交的可测 集 E Ei ,f x 在每个Ei 上取常值ci,则称f x
xE [ f a ]
反之,G=
xE[ f a ]
U ( x, x ) G E[ f a]
E[ f a] G E[ f a] G E,
故E[ f a] G E为可测集
定理1 设f(x)是可测集E上的实函数,下列任一条件都是f(x) 在E上可测的充要条件 (2) a R, E[ f a]可测 (1) a R, E[ f a]可测
《实变函数论 》第二章可测集与可测函数
证明1):当F为闭集时 F Fn , 其中Fn F (n) ,所以F为Fσ集
n 1
构造Gn
{x | d (x, F )
1}为开集 n
则F= Gn为G 型集
n 1
通过取余将 Gδ型集与 Fσ型集相互转化(并与交,开集与闭集互 换)得开集也既是Gδ型集又是Fσ型集
可数集可看成可数个单点集的并,而单点集是闭集;可数集是Fσ集 无理数集通过有理数集取余是Gδ集
故m(E F ) 0
“(3)=>(1)已” 知: F型集F0 E, m*(E F0 ) 0
从而(E F0 )可测,即E F0 (E F0 )为可测集
定理2.3.5: 里外接近
(1)E可测
(2) 0, 闭集F,开集G满足F E G,m *(G F )
(3)F型集F0,G型集G0满足F0 E G0且m *(G0 F0 ) 0
取闭集 F Gc (EC )C E
m(E F) m(E F c ) m(F c E) m(G Ec)
“(2)=>(3)”,对任意的1/n,
闭集Fn,使得E
Fn且m (E
)
1 n
令F Fn,则F为F 型集,E F且
n 1
0
m ( E
F)
m (E
Fn
)
1 n
,n
1,
2, 3,
E
i 1
Ei
其中mEi
对每个Ei应用上述(a)的结果
开集Gi,使得Ei
Gi且m(Gi
Ei )
2i
令G
i1
Gi
,
则G为开集,E
G,且
m(G
E)
m( i1
Gi
可测函数
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE i x E x x E E χ∈⎧=⎨∈-⎩注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有 00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。
可测函数的定义及性质(精)
若 lim f ( x) f ( x0 )
x x0
( ) (
)
(
)
即 0, 0,当| x x0 | 时,有 | f ( x) f ( x0 ) |
即 0, 0,当x O( x0 , ) 时,有f ( x) O( f ( x0 ), )
第四章 可测函数
第一节 可测函数的定义及性质
主讲:胡努春
新的积分(Lebesgue积分,从分割值域入手)
yi yi-1
Ei {x : yi 1 f ( x) yi }
yi 1 i yi
用 mEi 表示 ]
f ( x)dx lim i m Ei
注:Dirichlet函数是简单函数
0 1
(3)可测集E上的连续函数f(x)必为可测函数
设f(x)为E上有限实函数,称f(x) 在 x0 E 处连续 若 0, 0, 使得f (O( x0 , ) E) O( f ( x0 ), )
对比:设f(x)为(a,b)上有限实函数,f ( x)在x0 (a, b)处连续
即O( x, x ) E E[ f a]
令G O( x , x )
xE[ f a ]
f(x0)+ε f(x0) f(x0)-ε a
则G为开集,当然为可测集,且
xE[ f a ] xE[ f a ]
x 另外G E ( O( x , x ) ) E (O( x, x ) E ) E[ f a ]
0
i 1
n
问题:怎样的函数可使Ei 都有“长度”(测 度)?
1可测函数定义 定义:设f(x)是可测集E上的实函数(可取 若
可测函数及其性质(最新版)
证明:由于
f (x 1 f ( x x) f ( x) n ) f ( x) f ' ( x) lim lim 1 x o n x n
从而f `(x)是一列连续函数(当然是可测函数) 的极限,故f `(x)是可测函数. 利用了可测函数列的极限函数仍为可测函数.
(4)先证f 是可测函数。( a 0) R,
2
E[ f 2 a ] E[ f a ] E[ f a ], 所以E[ f 2 a ]是可测集。
a(<0) R, E[ f 2 a ] E , 所以E[ f 2 a ]是可测集, 1 因此f 2是可测函数。fg [( f g) 2 ( f g) 2 ], 所以fg也是 4 可测函数。
i 1
n
E ( x)
i
1 xEi 0 xE Ei
注:[0,1]上的Dirichlet函数是简单函数。
例(3)可测集E上的连续函数f(x)必为可测函数
设f(x)为E上有限实函数,称f(x) 在 x0 E 处连续
若 0, 0, 使得f (U ( x , ) E ) U ( f ( x ), )
一般情况,a R, E[ f g a] E[ f - g +a],
由(1)知-g是可测函数,所以-g +a也是E上的可测函数。 由引理可知,E[ f - g +a]是可测集,即E[ f g a]是可测集, 因此f g是E上的可测函数。
E[ f 0] E[ f 1 / a ], a 0 (3)E[1 / f a ] E[ f 0] \ E[ f ], a 0 E[ f 0] E[ f 1 / a ], a 0
可测集与可测函数
G
F
a
E
b
E
a
b
将曲边梯形看作平面点集E, 每一个矩形就是一个 的区间,所有内接矩形之集记为开集F , 所有外接矩形 之集记为开集G, 则F E G.若记E的面积为mE,则 m内E sup{ F 开F E}, m外 E inf { G 开G E}.
可用开集F从内部逼近E, 也可用开集G从外部逼近E.
第二章.可测集与可测函数
在绪论中我们知道D( x)在[a, b]不可积,是由于
黎曼积分总是将[a, b]分成若干小区间造成的.
若将[a, b]分成小集合:E1,E2, ,En,使得在每 个Ei 上f (x)的值变化不大, 即对值域进行分割,则
采用这样的分割,有界函数总是可积的. 但由于Ei 不一定是区间,它很不规则,那么Ei的
由的任意性知m* A m* B m* ( A B).
(4).证当d ( A, B) 0时,有m* ( A B) m* A m* B. 由(3)知,m* ( A B) m* A m* B; 下证当d ( A, B) 0, 有m* ( A B) m* A m* B. * 由m ( A B ) inf { G 开G A B}知,对 0, 开G A B, 使得 G m* ( A B) .
* * * * n 1 n 1
n 1
由此知:、有限集、可数集外测度皆为0.
证明:m* ([0,1] Q) 1. 例2.
证明:由于[0,1] ([0,1] Q) ([0,1] Q),又
m* ([0,1] Q) 0, ,1] Q [0,1], 所以 [0 1 m*[0,1] m*[([ 0,1] Q) ([0,1] Q)] * * * m ([0,1] Q) m ([0,1] Q)] m ([0,1] Q)
14、可测函数定义及简单性质(一)
⎧− f ( x), f ( x) ≤ 0 f ( x) = − min { f ( x), 0} = ⎨ ⎩ 0, f ( x) > 0
−
− f + ( x), f ( x) 都是集合E上的非负函数,分别称为f(x) 的正部和负部
注2
f ( x) = f + ( x) − f − ( x), f ( x) = f + ( x) + f − ( x)
∞
(1) ⇒ (2) E[ x | f ( x) ≤ a] = E[ x | f ( x) > a]C
1 (2) ⇒ (3) E[ x | f ( x) < a ] = ∪ E[ x | f ( x) ≤ a − ] k k =1
∞
(3) ⇒ 定义E[ x | f ( x) ≥ a] = E[ x | f ( x) < a]C
∑ξ
i =1
n
i
mE
i
ቤተ መጻሕፍቲ ባይዱ
怎样的函数可使Ei可测?
C
Ei = { x | f ( x) ≥ yi −1} ∩ { x | f ( x) < yi } = { x | f ( x) ≥ yi −1} ∩ { x | f ( x) ≥ yi }
一 、可测函数定义
1、 定义: 设f(x)是可测集E上的实函数(可取 ± ∞ 测,则称f(x)是E上的可测函数。
例3 (104页6) 证明如果f(x)是上
R n 的连续函数,则f(x)在 R n上任何可测子集E都可测。
证
对任意常数a ∈ R,集合R n [ x | f ( x) ≥ a]为闭集,
因此E[ x | f ( x) ≥ a] = E ∩ R n [ x | f ( x) ≥ a]仍可测
可测集与可测函数解析
.
m ( Ei ) Gi Gi (m Ei
* * i 1 i 1
i 1
i 1
2
i
)
m Ei
* i 1 i 1 i 1 * n
i 1
2i
m*Ei ,
i 1 i 1 n
i 1
由的任意性知, m* ( Ei ) m* Ei . 由上面证明知, m ( Ei ) m* Ei也成立.
若E [0,1] Q, 显然用开集 F从内部逼近 E是不可能 的, 因为E无内点,但用开集 G从外部逼近E总是可行
的.即
m外 E inf { G 开G E}.
总是有意义的,称 m外E为E的外测度,即有: 定义2.1.1 :对任意集合 E,称 inf { G 开G E} 为E的(勒贝格)外测度,记为 m*E, 即
i 1
) (3).次可加性:m* ( Ei ) m* Ei (具有任意性
i 1
(3).由于 m* Ei inf{ G 开G Ei }(i N ),
i 1
所以对 0, 开Gi Ei , 使得 Gi m Ei
*
2
i
于是 开 Gi Ei , 使得
第二章.可测集与可测函数
在绪论中我们知道 D( x)在[a, b]不可积,是由于
黎曼积分总是将[a, b]分成若干小区间造成的.
若将[a, b]分成小集合: E1,E2, ,En,使得在每 个Ei上f ( x)的值变化不大 , 即对值域进行分割,则
采用这样的分割,有界 函数总是可积的 . 但由于Ei 不一定是区间,它很不 规则,那么 Ei的T Tຫໍສະໝຸດ GFEa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5 可测集与可测函数1.5.1 可测集与可测函数定义1.5.1 设X 是基本空间,R 是X 上的σ-代数,且E X E ∈=R,则称(,)X R 是可测空间(measurable space),R 中的元素E 是(,)X R 上的可测集(measurable set)。
特别地,当1X =R ,=R L 时,称1(,)R L 是Lebsgue 可测空间;Lebsgue 可测空间上的可测集称为Lebsgue 可测集;当1X =R ,()==0R S R B 时,称1(,)R B 是Borel 可测空间;Borel 可测空间上的可测集(即:Borel 集)称为Borel 可测集.注 定义可测空间、可测集时,严格地说,并不要求在σ-代数R 上已经具有某个测度,即把可测空间、可测集的概念本质上当作集合论范畴的概念,这已是通行的看法。
定义1.5.2 设(,)X R 是可测空间,E X ⊂,f 是定义在E 上的有限实函数。
若对一切实数c ,集(){(),}E c f x c f x x E ≤=≤∈都是(,)X R 上的可测集(即:()E c f ≤∈R ),则称f 是E 上关于R 的可测的函数,简称E 上的可测函数(measurable function)。
特别地,当1(,)(,)X =R R L 时,称f 是E 上关于L 的Lebsgue 可测函数; 当1(,)(,)X =R R B 时,称f 是E 上关于B 的Borel 可测函数。
定理 1.5.1 设(,)X R 是可测空间,f 是定义在E X ⊂上的有限实函数。
则f 是E 上的可测函数的充分必要条件是:对任意实数,c d ,集()E c f d ≤<是可测集。
证 设f 是可测函数,由于()()()E c f d E c f E d f ≤<=≤-≤,而()E c f ≤和()E d f ≤都是可测集,所以()E c f d ≤<是可测集。
反之,若已知对任意实数,c d ,集()E c f d ≤<是可测集,则由1()()n E c f E c f c n ∞=≤=≤<+立即得()E c f ≤是可测集。
证毕!例 1.5.1 定义在闭区间[,]E a b =上的任何一个连续函数f 都是E 上的Lebsgue 可测函数。
证 对任意实数c ,由f 的连续性,集(){(),[,]}E c f x c f x x a b ≤=≤∈是[,]a b 中的闭集(自习),因此()E c f ≤是可测集;故f 都是[,]a b 上的可测函数。
例1.5.2 设函数f 定义在(,)E =-∞∞上,,(1,2,,)i i a b i n = 是一组互不相交的区间,函数1,,(1,2,,),()0,(,),i i i ni ii x a b i n f x x a b α=⎧⎪⎪⎨⎪⎪⎩∈==∈-∞∞-称为阶梯函数,它是E 上的Lebsgue 可测函数。
证 因为对任意实数c ,(){(),(,)}E c f x c f x x ≤=≤∈-∞∞或是全直线,或是空集,或是有限个区间的并,而这些都是Lebsgue 可测集,所以f 是(,)-∞∞上的可测函数。
例 1.5.3 设(,)X R 是可测空间,,i E E ∈R ,1,2,,i n = ,1i i E E∞=⊂ ,且,i j E E i j =∅≠ . f 是定义在E 上的函数,且1,(1,2,,),0,,()i i ni i x E i n x X E f x α=⎧⎪⎨⎪⎩∈=∈-=则f 是E 上的可测函数。
例1.5.4 (不可测函数的例) 1(,)R L 是Lebsgue 可测空间,Z 是Lebsgue 不可测集,()f x 是Z 的特征函数()Z x χ,1x ∈R . 因为(){}111122(),Z Z x x x Z χχ≤=≥∈=R R是Lebsgue 不可测集,所以函数()Z x χ不是1R 上的Lebsgue 可测函数。
例1.5.5 也有这样的可测空间(,)X R ,定义在X 上的所有函数都是可测函数。
例如,取2X =R (此时R 是一个σ-代数),f 是定义在X 上的任意一个有限实函数,对任意实数c ,显然(){(),}X c f x c f x x X ≤=≤∈∈R ,故f 是X 上的可测函数。
1.5.2 可测函数的性质定理1.5.2 设(,)X R 是可测空间,f 是定义在E X ⊂上的有限实函数,则(1) 若f 是E 上的可测函数,则E 必是可测集;反之不然(为什么?)。
(2) 若f 是E 上的可测函数,1E E ⊂可测,当f 作为1E 上的函数时,f 是1E 上的可测函数;(3) 设1212,E E E E E =∅= ,若12,E E 是可测集,则f 是E 上的可测函数的充分必要条件是:f 是12,E E 上的可测函数。
(4) 集E 是可测集的充分必要条件是:集E 的特征函数()E x χ是X 上可测函数。
证 (1) 因为1()n E E n f ∞==-≤ ,而根据可测函数的定义,集()E n f -≤是可测集,所以E 是可测集。
反之不然。
因为对E ∀∈L 且()0m E ≠,都存在,F E F ⊂∉L . 若E ∈L ,其任意子集都∈L ,则()0m E =.(2) 对任意实数c ,由于11()()E c f E c f E ≤=≤ ,而()E c f ≤和1E 都是可测集,所以1()E c f ≤是可测集,即f 作为1E 上的函数时,它是1E 上的可测函数。
(3) 设f 是E 上的可测函数,由(2)知:f 是12,E E 上的可测函数。
反之,若f 是12,E E 上的可测函数,对任意实数c ,由于12()()()E c f E c f E c f ≤=≤≤ ,所以()E c f ≤是可测集,即f 作为E 上的可测函数。
(4) 必要性:设集E 是可测集。
因为,1,(()),01,,0,E c X c x E c X c χ⎧⎪⎨⎪⎩∅>≤=<≤≤ 而,,E X ∅都是可测集,所以()E x χ是X 上的可测函数。
充分性:设()E x χ是X 上的可测函数。
由上面的式子知,当01c <≤时,(())E E X c x χ=≤.而()E x χ是X 上的可测函数,故(())E X c x χ≤是可测集,即E 是可测集。
证毕! 注 性质(3)可以推广到有限个或可列个可测集12,,,,n E E E ,并且i j E E ≠∅ 的情况。
定理1.5.3 设(,)X R 是可测空间,f 是定义在E X ⊂上的有限实函数,则下面三个条件中的任何一个都是f 是E 上的可测函数的充分必要条件:(1) 对任意实数c ,()E c f <是可测集; (2) 对任意实数c ,()E f c ≤是可测集; (3) 对任意实数c ,()E f c <是可测集。
定理1.5.4 设(,)X R 是可测空间,E X ⊂,,f g 都是E 上的可测函数,则(1) 对任意实数α,f α是E 上的可测函数; (2) f g +是E 上的可测函数;(3) f g ⋅及f g (对,()0x E g x ∀∈≠)是E 上的可测函数; (4) max(,),min(,)f g f g 都是E 上的可测函数。
推论1 设(,)X R 是可测空间,E X ⊂,12,,,n f f f 都是E 上的可测函数,则对任意实数12,,,n ααα ,1122n n f f f ααα+++ 是E 上的可测函数。
推论2 设(,)X R 是可测空间,E X ⊂,f 是E 上的可测函数,则f 是E 上的可测函数。
In fact 由m ax(,)f f f =-知:f 是E 上的可测函数。
1.5.3 可测函数的极限定理1.5.5 设(,)X R 是可测空间,E X ⊂,若{}n f 是E 上的一列可测函数,则当{}n f 的上确界函数、下确界函数、上限函数、下限函数分别是有限函数时,它们都是E 上的可测函数。
推论 设(,)X R 是可测空间,E X ⊂,若{}n f 是E 上的一列有限的可测函数,若对一切x E ∈,lim n n f →∞存在,而且有有限值,则极限函数lim n n f →∞是E 上的可测函数。
定理1.5.6 设(,)X R 是可测空间,E X ⊂,若f 是E 上的有限可测函数,则必存在一列{}n f ,每个n f 是可测集的特征函数的线性组合,使得{}n f 在E 上处处收敛于f .注 定理1.5.6说明:用可测集的特征函数的线性组合可以逼近可测函数。
※推论 设(,)X R 是可测空间,E X ⊂,若f 是E 上有界的可测函数,则必存在可测集的特征函数的线性组合的函数序列{}n f ,使得{}n f 在E 上一致收敛于f . 注 f 是E 上的有界函数是指:0M ∃>,对x E ∀∈,都有()f x M ≤.f 是E 上的有限函数是指:x E ∀∈,都有()f x <∞. 即:函数值都是有限实数的函数称为有限函数。
显然有界函数是有限函数,反之则不然。
例如:()1f x x =在(0,1)内的任意函数值都是有限的,但它是(0,1)内的无界函数。
1.5.4 Lebsgue 积分及其性质定义 1.5.3 设(,,)X μR 是测度空间,E 是一个可测集,()E μ<∞,f 是定义在E 上的可测函数,设f 是有界的(即:存在实数,c d ,使得()(,)f E c d ⊂),在[,]c d 中任取一分点组011:n n D c l l l l d -=<<<<= .记111()max (),()i i i i i i nD l lE E l f l δ--≤≤=-=≤<,并任取11[,](1,2,,)i i i l l i n ξ--∈= ,作和式1()()ni i i S D E ξμ==⋅∑,称它为f 在分点组D 下的一个“和数”. 若存在数s ,它满足如下条件:对0,0εδ∀>∃>,使得对任意分点组D ,当()D δδ<时,有()S D s ε-< (即:()0lim ()D s S D δ→=),则称f 在E 上关于测度μ是可积(分)的,并称s 是f 在E 上关于测度μ的积分,记作d Es f μ=⎰.特别地,当测度空间(,,)X μR 是Lebsgue 测度空间1(,,)m R L ,f 关于测度m 可积时,称f 是Lebsgue 可积函数;称s 是f 在E 上关于测度m 的Lebsgue 积分,记作()d EL f x ⎰. 通常就简记作d Ef x ⎰.当[,]E a b =时,Lebsgue 积分又记作d ba f x ⎰.定理 1.5.7 设(,,)X μR 是测度空间,E ∈R ,且()E μ<∞,则E 上的一切有界可测函数f (关于测度μ)必是可积的。