第13章-结构的弹塑性分析
动力弹塑性分析步骤
文献一
结构弹塑性动力时程分析是将建筑物作为弹塑性振动系统,直接输入地面地震加速度记录[5],对运动方程直接积分,从而获得计算系统各质点的位移、速度、加速度和结构构件地震剪力的时程变化曲线。
通过计算还可以分析出结构的薄弱层和构件塑性铰位置。
所以这种分析方法能更准确而完整地反映结构在强烈地震作用下的变形特性,是改善结构抗震能力、提高抗震设计水平的一项重要措施。
弹塑性动力分析步骤:
1)建立整体结构模型;
2)定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构动力响应的各参数;
3)施加恒、活荷载等竖向荷载值以及风等横向荷载;
4)输入适合本场地的地震波;
5)定义模型的边界条件;
6)计算,并对结果进行评定。
文献二
弹塑性动力分析的基本方法
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。
结构静力弹塑性分析方法的研究和改进
结构静力弹塑性分析方法的研究和改进一、本文概述随着建筑行业的不断发展,对建筑结构的安全性和稳定性的要求也越来越高。
结构静力弹塑性分析方法作为一种重要的结构分析方法,能够更准确地模拟结构在静力作用下的弹塑性行为,因此在工程实践中得到了广泛应用。
然而,现有的结构静力弹塑性分析方法仍存在一些问题和不足,如计算精度不高、计算效率低等,这些问题限制了其在大型复杂结构分析中的应用。
因此,本文旨在深入研究结构静力弹塑性分析方法,探索其改进策略,以提高计算精度和效率,为工程实践提供更为准确和高效的结构分析方法。
本文首先介绍了结构静力弹塑性分析方法的基本原理和计算流程,分析了现有方法的不足和局限性。
在此基础上,本文提出了一种改进的结构静力弹塑性分析方法,通过引入新的算法和优化计算流程,提高了计算精度和效率。
本文还通过实际工程案例的对比分析,验证了改进方法的可行性和有效性。
本文的研究不仅有助于推动结构静力弹塑性分析方法的发展,提高其在工程实践中的应用水平,同时也为相关领域的研究提供了有益的参考和借鉴。
二、结构静力弹塑性分析方法的理论基础结构静力弹塑性分析方法(Pushover Analysis)是一种在结构工程领域广泛应用的非线性静力分析方法,旨在评估结构在地震等极端荷载作用下的性能。
该方法基于结构在地震作用下的弹塑性反应特点,通过模拟结构的静力加载过程,分析结构的弹塑性变形、内力分布和破坏机制,为结构抗震设计和性能评估提供重要依据。
静力弹塑性分析方法的理论基础主要建立在塑性力学、结构力学和地震工程学等多个学科领域。
其中,塑性力学提供了描述材料在弹塑性阶段的应力-应变关系的本构模型,包括理想弹塑性模型、随动硬化模型等多种模型,这些模型能够反映材料在受力过程中的非线性行为和塑性变形累积。
结构力学则为静力弹塑性分析提供了结构整体和局部的力学分析方法,包括静力平衡方程、变形协调条件等,这些方程和条件构成了静力弹塑性分析的数学模型。
弹塑性变形与极限载荷分析
弹塑性变形与极限载荷分析
14-3 超静定桁架的极限载荷
图示的超静定结构,由刚性梁 BE 与各杆的横截面面积分 A1 A3 A , A2 2 A 。各杆 别为 A1、A2、A3 的杆1、杆2、杆3 组成,且, 的材料相同,其拉、压屈服强度均为 s 。试求该结构的极限载荷。 解:一次超静定结构,有两根 杆屈服才进入塑性极限状态。 故有三种可能的极限状态。 1)设杆1与杆2已屈服,杆 3未屈服。此时,载荷 F 有使 刚性梁绕E点转动的趋势。 ME 0 , MD 0 例
E E ( s ) s
( s ) ( s ) (14 - 5)
E E
弹塑性变形与极限载荷分析
14-2 应力-应变关系曲线的简化 1)理想弹塑性材料
2)理想刚塑性材料 3)线性强化材料 4)幂函数强化材料
s s
弹塑性变形与极限载荷分析
14-1 弹塑性变形与极限载荷法概念 2)极限载荷法 图中所示的一次超静定结构,各杆的横截面相同并均为理想 弹塑性材料,a >b 。设各杆均处于弹形变形状态时,杆1、杆2、 杆 3 的内力分别为 FN 、FN 、FN ,可以分析得到,在外力一定 FN1 FN 2 FN 3 。 时, 当外力增大使杆3屈服时,杆3已失去承载能力。由于杆2和杆1 尚未屈服,它们组成一静定结构,仍可继续承受增加的载荷。
m
(14 - 6)
弹塑性变形与极限载荷分析
14-3 超静定桁架的极限载荷
由对 14-1 节中一次超静定桁架的分析可知,当其中一根杆 (多余约束的杆)屈服时,便变为静定杆件结构。此时增大载荷, 若再有一根杆屈服,结构便处于塑性极限状态。以此类推,对于 n 次超静定桁架,如果有 n+1 根杆屈服,该结构便处于塑性极限 状态。
弹塑性详解
弹塑性的未来发展
智能材料
未来弹塑性材料将与智能传感器和控制系统集成,实现自主监测和自适应调节,提高结构系统的稳定性和可靠性。
高性能应用
在航空航天、汽车制造、能源等领域,弹塑性材料将发挥更大作用,提高关键部件的抗冲击和耐疲劳能力。
仿生设计
从生物体的运动机理中吸取灵感,开发出更高效、协调的弹塑性机构,应用于机器人、生化假肢等领域。
制造工艺控制
弹塑性理论在冲压、挤压、锻造等成形加工中发挥重要作用,可预测工件变形、确定最佳工艺参数,提高产品质量。
生物医学应用
医疗器械和义肢设计需要利用弹塑性分析,确保其能适应人体组织的变形特性,提高舒适度和功能性。
弹塑性的重要性
1
提高结构安全性
弹塑性能够增强材料和结构在外力作用下的变形能力,有效降低意外事故发生的风险,提高结构的安全可靠性。
弹塑性的影响因素
应力-应变关系
材料的弹塑性行为主要取决于其应力-应变曲线的形状,包括弹性模量、屈服强度和最大强度等关键参数。
材料成分与微观结构
材料的化学成分、晶粒大小、相组成等微观结构特征直接影响其宏观力学性能和弹塑性行为。
应力状态与几何形状
零件或结构的受力状态和几何形状会导致局部应力集中,从而影响弹塑性响应和失效模式。
工程应用
20世纪中后期,弹塑性理论和方法广泛应用于工程实践,在航空、汽车、建筑等领域发挥了重要作用。
现代进展
当前,随着计算机技术的发展,弹塑性分析方法不断创新,在复杂结构设计、材料选择和工艺优化中展现强大的潜力。
弹塑性的基本原理
数学描述
弹塑性通过应变-应力关系的数学模型来描述材料在力学作用下的变形行为。这些模型结合了材料的弹性特性和塑性特性。
混凝土结构弹塑性分析
混凝土结构弹塑性分析混凝土结构的弹塑性分析涉及到力学、材料学等多个学科的知识,并需要运用适当的数学方法和计算技术。
其基本原理是将混凝土结构看作是由许多弹性体和塑性体组成的复合结构,通过对每个组成体的力学行为进行分析,再将其综合,以得出整体结构的变形和破坏情况。
混凝土在受力作用下的变形过程可以分为弹性阶段和塑性阶段。
弹性阶段是指在小应力作用下,混凝土结构能够恢复原来形状的能力,而塑性阶段则是指在大应力作用下,混凝土产生不可逆的形变和破坏。
弹塑性分析主要考虑的是混凝土在塑性阶段的行为。
在弹塑性分析中,需要确定混凝土结构的材料力学性质。
混凝土的应力应变关系可以通过试验得到,一般采用的是应力与应变之间的线性关系,即背景下的弹性性质,以及应变达到一定范围后应力与应变之间的非线性关系,即塑性性质。
根据混凝土的本构模型,可以得出混凝土的应力应变关系方程。
在进行弹塑性分析时,需要对荷载进行合理的简化和近似处理,以求解结构的变形和应力分布。
常用的方法包括有限元法、弹塑性有限元法等。
这些方法可以将结构划分为许多小单元,在每个小单元上进行力学分析,最终得到整个结构的变形和应力分布。
弹塑性分析的目标是得出混凝土结构在荷载作用下的变形和破坏情况,以判断其承载能力和安全性。
通过对结构进行弹塑性分析,可以预测结构的变形和破坏形态,找出结构的薄弱部位,并进行相应的设计和改进。
在实际工程中,弹塑性分析在许多领域都得到了广泛的应用。
例如,在桥梁工程中,可以通过弹塑性分析研究桥梁在荷载作用下的变形情况,以确定桥梁的设计参数,保证其安全可靠;在地下结构工程中,可以通过弹塑性分析研究地下室在地震荷载作用下的变形和破坏情况,以制定相应的防震措施。
总之,混凝土结构的弹塑性分析是一项重要的研究内容,可以帮助工程师更准确地评估混凝土结构的承载能力和安全性。
通过合理选择材料力学性质和采用适当的计算方法,可以对结构的变形和破坏进行预测,并进行相应的设计和改进,以确保结构的安全可靠。
弹塑性时程分析
弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。
基本原理多自由度体系在地面运动作用下的振动方程为:式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。
将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。
式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。
动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。
基本步骤弹塑性动力分析包括以下几个步骤:(1) 建立结构的几何模型并划分网格;(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。
计算模型在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。
在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。
以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。
其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。
它的主要优点有:(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。
弹塑性弹塑性分析方法在结构抗震分析中的应用
弹塑性弹塑性分析方法在结构抗震分析中的应用
弹塑性分析方法是基于结构的材料和几何非线性性质进行建模和分析的。
通过将结构划分为弹性区域和塑性区域,可以更好地模拟结构在地震
荷载下的行为。
在分析中,通常假设结构的主要构件为弹性,而柱子、墙
体等容易发生塑性变形的构件为塑性。
通过这种划分,可以更准确地计算
结构的变形、应力和内力。
在进行弹塑性分析时,需要首先确定结构的塑性铰点。
塑性铰点是结
构中容易发生塑性变形的位置,通常位于柱子、墙体等受力较大的构件的
连接处。
通过在这些位置设定塑性铰点,可以更准确地模拟结构的塑性变形。
在分析过程中,需要使用弹塑性弹塑性分析方法,根据地震荷载的特
点进行模拟。
地震荷载是具有瞬时性和可破坏性的荷载,结构的响应通常
呈现出非线性和瞬时峰值现象。
弹塑性分析方法可以更准确地模拟地震荷
载作用下结构的非线性行为,并预测结构的瞬时峰值响应。
在进行弹塑性分析时,还需要考虑结构的能量耗散和恢复能力。
地震
作用下,结构的能量会被耗散,而恢复能力不足的结构容易发生破坏。
弹
塑性分析方法可以通过考虑结构的材料和几何非线性性质,更准确地估计
结构的能量耗散和恢复能力,从而提高结构的抗震能力。
弹塑性分析方法在结构抗震分析中的应用具有重要意义。
它可以更准
确地预测结构的变形、应力和内力,为结构的设计和改进提供准确的依据。
通过弹塑性分析方法,可以更好地评估结构的抗震能力和安全性,为地震
区的建筑物提供更稳固和可靠的保障。
高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究
高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究一、本文概述本文旨在探讨高层建筑结构在地震作用下的弹塑性分析方法及其抗震性能评估。
地震是自然界中常见的灾害性事件,对人类社会和建筑结构产生深远影响。
高层建筑由于其特殊的结构特点和高度,使其在地震中更容易受到破坏。
因此,研究高层建筑结构的抗震性能,特别是在弹塑性阶段的分析和评估,对于提高建筑结构的抗震能力,减少地震灾害损失具有重要意义。
本文将首先介绍高层建筑结构抗震弹塑性分析的基本理论和方法,包括弹塑性力学基础、结构分析模型、地震动输入等。
在此基础上,探讨高层建筑结构在地震作用下的弹塑性响应特点,包括结构变形、内力分布、能量耗散等。
然后,本文将重点介绍高层建筑结构抗震性能评估的方法和技术,包括静力弹塑性分析、动力弹塑性分析、易损性分析等。
这些方法和技术可以用于评估高层建筑结构在地震中的安全性能和抗震能力。
本文还将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的应用进行案例研究。
通过实际工程案例的分析,探讨不同分析方法和技术在实际工程中的应用效果,为高层建筑结构的抗震设计和评估提供参考和借鉴。
本文将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的未来发展趋势进行展望,提出相关的研究建议和展望。
通过本文的研究,可以为高层建筑结构的抗震设计和评估提供更为科学、合理的方法和技术支持,有助于提高高层建筑结构的抗震能力,减少地震灾害损失。
二、高层建筑结构抗震弹塑性分析方法的研究高层建筑结构的抗震弹塑性分析是评估建筑在地震作用下的响应和性能的重要手段。
随着建筑高度的增加,结构的柔性和非线性特性愈发显著,因此,采用弹塑性分析方法可以更准确地模拟结构在地震中的实际行为。
材料本构关系的研究:高层建筑的抗震性能与其组成材料的力学特性密切相关。
研究材料在循环加载下的应力-应变关系、滞回特性以及损伤演化规律,是弹塑性分析的基础。
通过试验和数值模拟,可以建立更精确的材料本构模型,为结构分析提供数据支持。
静力弹塑性分析方法
(1)、计算模型必须包括对结构重量、强度、刚度及稳定性有较大影响的所有结构部件。
(2)对结构进行横向力增量加载之前,必须把所有重力荷载(恒载和参加组合的活荷载)施加在相应位置。
(3)结构的整体非线性及刚度是根据增量静力分析所求得的基底剪力-顶点位移的关系曲线确定的。
静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:
第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;
第二步:计算结构在竖向荷载作用下的内力。
第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。
静力弹塑性分析方法
静力弹塑性分析方法(pushover法)的确切含义及特点
结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。
第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;
不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。
结构设计知识:结构设计中的弹塑性行为分析
结构设计知识:结构设计中的弹塑性行为分析弹塑性行为分析是结构设计中不可或缺的重要部分,也是结构可靠性的保障。
弹塑性行为分析是指在结构发生变形时,既考虑结构的弹性变形,也考虑结构的塑性变形。
本文将从以下几个方面来介绍弹塑性行为分析在结构设计中的应用。
一、弹塑性行为分析的基本原理弹塑性行为分析的基本原理是归纳出材料在负载情况下的弹性行为和塑性行为,这是结构变形时非常重要的基础。
弹性行为是指结构在受力后,会产生弹性变形,当外力作用消失后,结构会恢复原状;而塑性行为是指在结构受力后,结构产生永久性变形,仅通过再次施加反向负载也无法恢复原状。
二、弹塑性行为分析的应用范围弹塑性行为分析在结构设计中的应用范围非常广泛。
它可以应用于单元结构设计,如钢结构、混凝土结构、塑料结构等,也可以应用于整体结构设计,如房屋、桥梁、隧道等。
同时,在土力学中也可以应用弹塑性行为分析。
三、弹塑性行为分析的方法弹塑性行为分析的方法主要有两种,即弹性塑性有限元法和弹塑性单元法。
弹性塑性有限元法指的是将结构分成若干小单元,在每个小单元内进行弹性和塑性分析,再将所有小单元的分析结果汇总得到整个结构的弹塑性行为。
弹塑性单元法是在结构体系中选取一个典型点,对其进行弹塑性分析,通过计算此点的弹塑性行为来得出整个结构的弹塑性行为。
四、弹塑性行为分析的应用弹塑性行为分析在结构设计中的应用主要包括以下几个方面:1、确定结构的变形极限和破坏模式。
在结构发生变形时,可以通过弹塑性行为分析来确定其变形极限和破坏模式,从而预防结构的破坏。
2、预测结构的承载能力。
弹塑性行为分析可以预测结构在受到外界负载时的承载能力,从而为工程设计提供有力的依据。
3、提高结构的可靠性。
通过弹塑性行为分析,可以确定结构的安全系数,并采取相应的安全措施,提高结构的可靠性。
4、提高结构的经济性。
弹塑性行为分析可以为结构设计提供优化方案,从而实现结构的节省材料和降低工程投资的目的。
五、弹塑性行为分析的局限性弹塑性行为分析虽然在结构设计中具有广泛的应用价值,但也存在一定的局限性。
弹性、弹塑性时程分析
PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。
几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。
与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。
但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。
《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。
下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。
1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。
以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。
在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。
图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。
弹塑性分析.
能力谱方法
剪力(Vb) 和顶点位移(UN) 关系曲线-能力曲线
– 建立能力谱曲线:对结构进行Pushover 分析,得到结构的基底
能力谱法
roof
F
Capacity Curve
Capacity Spectrum
Vbase
Pushover Analysis
Sa
transform
Vbase
roof
MDOF System
Sd SDOF System
Pushover方法的基本原理
多自由度的荷载-位移关系转换为使用单自由度体系的加速度-位移方式表现的能力谱 (capacity spectrum),地震作用的响应谱转换为用ADRS(Acceleration-Displacement Response Spectrum)方式表现的需求谱(demand spectrum)。
Pushover方法的实施步骤
目标位移的求解
– 等效单自由度方法(N2方法)。将原结构等效为一弹塑性单自由度体 系,确定等效刚度、屈服荷载、屈服位移和等效自振周期。从已知的弹 性反应谱中按照等效周期可以得到结构的等效弹性位移。通过计算得到 将弹性反应谱转化为弹塑性反应谱的折减系数以及结构的延性系数,利 用等效弹性位移和反应谱折减系数以及结构延性系数就可以计算得出结
*
f y ,eq
Q* y M*
f0,eq Sa (Teq )
Sa (Teq )M *
f y ,eq Q* y 由强度折减系数谱与延性系数之间关系
R
f0,eq
T ( u 1 ) 1 Tc R u
T<Tc T Tc
计算结构的弹塑性位移
能力谱法
混凝土结构的楼板的弹塑性分析
混凝土结构的楼板的弹塑性分析【摘要】随着人均土地的越来越少,各种高层、超高层建筑随处可见,这就为施工过程增加了难度。
建筑物的施工包含了很多具体的工程项目,其中楼板的建设是高层建筑物必不可少的一部分。
本文讨论了混凝土结构的楼板的弹塑性分析。
【关键词】混凝土结构楼板弹塑性分析楼板是建筑物的重要组成部分,可以起到分隔建筑物空间、支撑水平方向承载力、隔音、隔热等作用,因此楼板施工的质量非常重要。
楼层越高,对楼板的质量要求越高。
楼板体系在结构住宅中具有十分重要的地位。
在传统高层建筑地上部分的总重中,各层楼板的自重约占40%左右。
所以,减小楼板自重是减轻房屋总重最有效的办法。
而房屋重量主要由基础传递给地基,基础费用一般能够占到工程直接费的20%以上。
因此,开发质量轻、强度高的楼板结构形式对于降低结构住宅造价具有重要意义。
另外,还可减小结构在地震中的反应,从而提高中高层结构住宅的性价比,真正能够将这种绿色环保型建筑在我国得到推广应用,实现结构住宅的产业化。
一、弹塑性分析方法分类目前我国主要有四本规范涉及到罕遇地震作用下的弹塑性分析,包括《建筑抗震设计规范》( GB50011—2010) 、《高层建筑混凝土结构技术规程》( JGJ3—2010) 、《混凝土结构设计规范》( GB 50010—2010) 、《高层民用建筑钢结构技术规程》( JGJ 99—98) 。
这几本规范中对于弹塑性阶段的设计分析均有或多或少的规定,《建筑抗震设计规范》推荐采用静力弹塑性分析法和动力弹塑性分析法对结构进行非线性分析。
二、静力弹塑性分析法静力弹塑性分析法也被称为Pushover 分析或静力推覆分析,是基于性能评估现有结构的一种方法,其基本原理是通过对结构沿高度施加某种形式的水平荷载或侧向位移,直至控制点达到目标位移或结构倾覆为止,控制点一般选取结构顶层的形心,目标位移为设计地震水平下的最大变形。
该方法基于以下两个基本假设: 1) 假定结构的反应由某一振型起主要控制作用,其它振型的影响可忽略; 2) 在地震作用过程中,不论结构的变形大小,对结构施加的水平荷载或侧向位移的形状向量保持不变。
13建筑结构大震下弹塑性分析
荷载因子
1.3 1.25 1.2 1.15 1.1 1.05
1 0
试验数据 有限元解
1000
2000
3000
结构顶点位移(mm)
罕遇地震下结构性能的评估
• 弹塑性位移角控制 • 结构薄弱部位的判断 • 结构的抗倒塌验算 • 大震下结构抗震性能的整体评估 • 弹塑性分析结果的讨论
➢弹塑性分析目的、意义 ➢弹塑性分析方法 ➢弹塑性分析的具体实现
弹塑性分析目的、意义
➢ 三水准设防中的“大震不倒” ➢ 两阶段设计中的“第二阶段弹塑性变形验算” ➢ 强震下变形验算的基本问题:
计算薄弱层位移反应和变形能力;通过改善结 构均匀性和加强薄弱层使得层间位移角满足限 值要求。
弹塑性分析的规范规定
1。弹塑性层间位移、位移角的控制; 2。结构大震下的薄弱部位的判断; 3。结构抗倒塌验算; 4。结构大震下的整体变形能力,即最大变形; 5。结构大震下变形、反应力的突变分析; 6。局部变形分析; 7。静力推覆的最大承载力分析; 8。时程分析的各时刻结构变形、杆件塑性铰分析; 9。各时刻杆件塑性铰、剪力墙破坏点分布的分析; 10。结构关键部位、削弱部位的弹塑性反应分析。
4。弹塑性整体计算模型(如层模型、平面模型、三维 模型等)、迭代的求解方法,也是影响弹塑分析结果 的因素之一;
5。弹塑性分析参数的合理选择。
6。在弹塑性分析过程中不考虑构件剪切破坏;
7。弹塑性分析,应当考虑构件的塑性发展,即塑性铰 有可能还要延杆件方向延伸;
8。弹塑性动力分析的控制,按设防烈度的大震,取与 规范一致即可;
• 3。周期-最大层间位移曲线——基于等效单质点体系 综合统计出的结构周期顶点位移曲线。随着结构进入 弹塑性状态,结构的自振周期、顶点位移反应也发生 变化,竖向连接需求谱与能力谱曲线的交点,则该点 的层间位移值可以理解为抵抗设计烈度大震时的结构 弹塑性层间位移,也可以把该点的层间位移与规范限 值比较,比规范小则满足设计要求,反之则认为不满 足设计要求。
《弹塑性分析》课件
新材料和新工艺的弹塑性分析
随着新材料和新工艺的出现,对新材料和新工艺的弹塑性分析将成为未来的重要研究方向 ,包括对超弹性、粘弹性、粘塑性等方面的研究。
人工智能在弹塑性分析中的应用
人工智能技术在许多领域都取得了显著的成果,未来可以将人工智能技术应用于弹塑性分 析中,如利用机器学习算法进行模型预测和优化等。
03
建立每个单元的平衡方程,通过求解这些方程得到整个系统的
近似解。
弹塑性分析的有限元模型
材料属性
考虑材料的弹性模量、泊松比、屈服强度等 参数。
初始条件
设定模型在分析开始时的状态,如初始应变 、初始应力等。
边界条件
根据实际情况设定模型的边界条件,如固定 、自由、受压等。
载荷
根据实际情况施加适当的载荷,如集中力、 分布力等。
在建立弹塑性本构模型时,还需要考虑材料的 硬化或软化行为,以及温度、应变速率等对材 料力学行为的影响。
Hale Waihona Puke 03弹塑性分析的有限元方法
有限元方法的基本原理
离散化
01
将连续的物理系统离散成有限个小的单元,每个单元具有特定
的形状和大小。
近似解
02
用数学模型描述每个单元的行为,并使用近似解代替精确解。
平衡方程
弹塑性分析
目 录
• 弹塑性分析概述 • 弹塑性本构模型 • 弹塑性分析的有限元方法 • 弹塑性分析的实例 • 弹塑性分析的展望与挑战
01
弹塑性分析概述
弹塑性材料的定义与特性
弹塑性材料
弹性
塑性
弹塑性材料的特性
钢结构设计中的弹塑性分析与实例研究
钢结构设计中的弹塑性分析与实例研究一、弹塑性分析的概念和意义弹塑性是一种理论分析方法,基于材料的力学性质和物理特性,从宏观角度考虑材料的弹塑性行为,在设计结构时应用的强度设计方法。
弹塑性分析可以用于钢结构设计中,主要应用于研究结构的稳定性和承载能力,以及分析结构在承受荷载时的变形和应力分布情况。
在结构设计中,弹性分析只能适用于弹性阶段,无法考虑到结构在超过弹性阶段时的变形和破坏情况。
因此,在遇到变形较大或荷载较大的结构时,弹性分析方法往往不够准确,需要借助弹塑性分析方法。
弹塑性分析方法也可以用于结构安全评估和重构设计中。
二、钢结构设计中的弹塑性分析方法在进行钢结构设计中的弹塑性分析时,需要先确定结构和荷载的边界条件和约束条件,并制定有效的力学模型。
钢结构的强度破坏比较复杂,因此一般采用能量法来进行分析。
能量方法的主要思想是,在结构的弹性和塑性阶段中,通过实现结构内部能量的平衡来分析结构的承载能力。
在进行弹塑性分析时,需要考虑以下因素:1.材料的力学特性,包括弹性模量、屈服强度、极限强度等。
2.材料的应力-应变曲线,以及材料在超过屈服强度时的应力-应变曲线。
3.结构的截面形状和截面面积。
4.材料破坏之前的变形能力和变形特点。
5.荷载在结构上的分布和作用方式,以及荷载的大小。
在进行弹塑性分析时,可以采用平衡法,即根据平衡条件来建立结构的方程,然后逐步增加荷载,计算结构的应力和应变。
如果结构发生变形或产生裂缝,则需要进一步考虑塑性形变的影响,再进行一次力学计算。
重复以上步骤,直到满足结构的强度和稳定性要求为止。
三、钢结构设计中的弹塑性分析实例对于一座高层钢结构建筑,需要进行弹塑性分析来评估其承载能力和稳定性。
该建筑的主体结构部分采用钢筋混凝土框架结构,顶部采用钢桁架悬挑式结构,所使用的钢材为Q345B,其屈服强度为345MPa,极限强度为470MPa。
首先,对建筑主体结构进行弹性分析,并确定其基本弯曲挠度和初始静力系数。
材料力学第十三章
A 2L
CL
P=4KN
B
y1
L=1m y2
D
8、各构件均为圆截面,直径d=20毫米,材料弹性模
量E=200GPa,L=1米,第一特征柔度λp= 100,第 二特征柔度λs=57,经验公式σcr=304-1.12λ,稳定安 全系数nw=3,许用应力 [σ]=140MPa,求此结构的许 可载荷[P]。
C
P
L
B
A
D
L
L
L EL
9、横梁为刚性杆,1、2杆件的材料相同均为A3钢,比例极 限σP=200MPa,屈服极限为σs=240Mpa,强度极限为σb= 400MPa。 1杆的直径为d1=10毫米,杆长L1=1米。2杆 的直径为d2=20毫米,杆长为L2=1米。1杆与横梁的夹角 为30度,2杆与横梁的夹角为60度。两杆的强度与稳定安全 系数均为2.0。求结构的许可载荷[P]=?
材料和直径均相同问题压杆的临界应力总图弹性失稳弹塑性稳定问题强度失效细长杆细长杆中长杆中长杆粗短粗短杆杆临界应力总图150030sin30cos1计算工作压力mm161081610732crcr26118ab杆满足稳定性要求3选用公式计算临界应力4计算安全系数5结论kn11822两根直径均为两根直径均为dd的压杆杆材料都是材料都是qq235235钢钢但二者长度和约束条件但二者长度和约束条件各不相同各不相同
A
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?
结构弹塑性分析及薄弱层弹塑性变形验算
6 进行动力弹塑性计算时,地面运动加速度时程的选取、预估罕遇地震作用时的峰值加速度取值以及计算结果的选用应符合本规程第4.3.5条的规定;7 应对计算结果的合理性进行分析和判断。
5.5.2 在预估的罕遇地震作用下,高层建筑结构薄弱层(部位)弹塑性变形计算可采用下列方法:1 不超过12层且层侧向刚度无突变的框架结构可采用本规程第5.5.3条规定的简化计算法;2 除第1款以外的建筑结构可采用弹塑性静力或动力分析方法。
5.5.3 结构薄弱层(部位)的弹塑性层间位移的简化计算,宜符合下列规定:1 结构薄弱层(部位)的位置可按下列情况确定:1)楼层屈服强度系数沿高度分布均匀的结构,可取底层;2)楼层屈服强度系数沿高度分布不均匀的结构,可取该系数最小的楼层(部位)和相对较小的楼层,一般不超过2~3处。
2 弹塑性层间位移可按下列公式计算:条文说明5.5 结构弹塑性分析及薄弱层弹塑性变形验算5.5.1 本条为新增条文。
对重要的建筑结构、超高层建筑结构、复杂高层建筑结构进行弹塑性计算分析,可以分析结构的薄弱部位、验证结构的抗震性能,是目前应用越来越多的一种方法。
在进行结构弹塑性计算分析时,应根据工程的重要性、破坏后的危害性及修复的难易程度,设定结构的抗震性能目标,这部分内容可按本规程第3.11节的有关规定执行。
建立结构弹塑性计算模型时,可根据结构构件的性能和分析精度要求,采用恰当的分析模型。
如梁、柱、斜撑可采用一维单元;墙、板可采用二维或三维单元。
结构的几何尺寸、钢筋、型钢、钢构件等应按实际设计情况采用,不应简单采用弹性计算软件的分析结果。
结构材料(钢筋、型钢、混凝土等)的性能指标(如弹性模量、强度取值等)以及本构关系,与预定的结构或结构构件的抗震性能目标有密切关系,应根据实际情况合理选用。
如材料强度可分别取用设计值、标准值、抗拉极限值或实测值、实测平均值等,与结构抗震性能目标有关。
结构材料的本构关系直接影响弹塑性分析结果,选择时应特别注意;钢筋和混凝土的本构关系,在现行国家标准《混凝土结构设计规范》GB 50010的附录中有相应规定,可参考使用。
结构静力弹塑性分析的原理和计算实例
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性动力时程分析。
弹塑性分析的目的和基本方法。
罕遇大震下结构性能的评估
选取地震波实测地震波——特征参数
保留的旧版地震波库人工输入地震波选择
抗倒塌分析图
4.1。
弹塑性分析软件整体功能简介
4.3。
弹塑性静力分析软件PUSH 工程实例——高层混凝土结构
高层钢结构 4.4。
弹塑性静力分析软件PUSH工程实例
单层钢框架模型
9层钢框架模型
弹塑性动力时程分析参数选择
5.2。
弹塑性动力分析软件EPDA工程实例
2008奥运会国家主体育场看台原五棵松体育场(2008奥运会篮球馆)
某高层混凝土结构2008奥运会国家主体育场罩棚(鸟巢)
某大体量超高层混凝土结构某高层加固工程
5.3。
弹塑性动力分析软件EPDA验证
单层钢框架模型
9层钢框架模型。