图形的初步认识培优提高题
部编数学七年级上册第四章几何图形初步单元培优训练(解析版)含答案
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)第四章几何图形初步单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第4章几何图形初步,共23题;考试时间:120分钟;总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·贵州安顺·中考真题)下列几何体中,圆柱体是()A.B.C.D.【答案】C【分析】根据圆柱体的定义,逐一判断选项,即可.【详解】解:A. 是圆锥,不符合题意;B. 是圆台,不符合题意;C. 是圆柱,符合题意;D. 是棱台,不符合题意,故选C.【点睛】本题主要考查几何体的认识,掌握圆锥、圆柱、圆台、棱台的定义,是解题的关键.2.(2022·全国·七年级专题练习)如图,用一个平面去截一个三棱柱,截面的形状不可能是( )A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据三棱柱的截面形状判断即可.【详解】解:用一个平面去截一个三棱柱,截面的形状可能是:三角形,四边形,五边形,不可能是六边形,故选:D.【点睛】本题考查了截一个几何体,熟练掌握三棱柱的截面形状是解题的关键.3.(2022·河北·中考真题)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④【答案】D【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.4.(2022·四川内江·中考真题)如图是正方体的表面展开图,则与“话”字相对的字是( )A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.5.(2021·全国·七年级专题练习)如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D 是AC的中点,M是AB的中点,那么MD=( )cmA.4B.3C.2D.1【答案】C6.(2022·全国·七年级课时练习)如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒【答案】B 【分析】根据OC 平分AOD ∠且15COD ∠=︒可得30AOD ∠=︒,再结合68AOB ∠=︒即可求得答案.【详解】解:∵OC 平分AOD ∠且15COD ∠=︒,∴230AOD COD ∠=∠=︒,又∵68AOB ∠=︒,∴38BOD AOB AOD ∠=∠-∠=︒,故选:B .【点睛】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·全国·七年级课时练习)如图平面图形绕轴旋转一周,得到的立体图形是_______________.【答案】圆锥【分析】根据旋转的性质判定即可.【详解】∵平面图形绕轴旋转一周,得到的立体图形是圆锥,故答案为:圆锥.【点睛】本题考查了直角三角形的旋转,记住常见平面图形旋转的几何体是解题的关键.8.(2022·全国·七年级单元测试)一个几何体由若干个大小相同的小立方块搭成,从左面和上面看到的平面图形如图所示,则搭成这个几何体的小立方块的个数为_____.【答案】4【分析】根据左面看与上面看的图形,得到俯视图解答即可.【详解】解:根据左视图和俯视图,这个几何体的底层有3个小正方体,第二层有1个小正方体,所以有314+=个小正方体,故答案为:4.【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.9.(2019·湖北黄冈·中考真题)如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=o ,则CD 的最大值是_____.【答案】14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A关于CM的对称点'A,点B关于DM的对称点'B.120∠=oCMDQ,\∠+∠=o,60AMC DMB\''60∠+∠=o,CMA DMB\∠=o,''60A MBQ,=''MA MB\D为等边三角形A MB''Q,£++=++=''''14CD CA A B B D CA AM BD\的最大值为14,CD故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题10.(2021·山东·滕州市张汪镇张汪中学七年级阶段练习)有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.【答案】7【分析】从图形进行分析,结合正方体的基本性质,得到对面的数字,即可求得结果.【详解】一个正方体已知1,4,6,第二个正方体已知1,2,3,第三个正方体已知2,5,6,且不同的面上写的数字各不相同,可求得1的对面数字为5,6的对面数字为3,2的对面数字为4∴a+b=7故答案为:7.【点睛】本题考查正方体相对两个面的数字,根据相邻的面确定出对面上的数字是解题的关键.11.(2022·山东烟台·期中)2:35时,钟面上时针与分针所成的角等于________°.12.(2022·全国·七年级专题练习)一个长方体包装盒展开后如图所示(单位:cm),则其容积为_____cm3.【答案】6000【分析】根据题意分别求出长方体的长、宽、高,再根据长方体的体积公式计算即可求解.【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm3),故答案为:6000.【点睛】本题考查了几何体的展开图,解题的关键是得到长方体的长宽高.三、(本大题共5小题,每小题6分,共30分)13.(2022·全国·七年级专题练习)如图是一个长方体纸盒的展开图,如果长方体相对面上的两个数字之和相等,求2x y -的值.【答案】16【分析】分别找到x 与y 相对的数字即可求解.【详解】因为这是长方体纸盒的展开图,所以“4”与“10”相对,“x ”与“2”相对,“6”与“y ”相对,所以26410x y +=+=+,所以12x =,8y =,所以2212816x y -=´-=.【点睛】本题考查了长方体的展开图,正确找出相对面是解题的关键.14.(2021·江西·南昌知行中学七年级阶段练习)已知:如图,AB =18cm ,点M 是线段AB 的中点,点C 把线段MB 分成MC :CB =2:1的两部分,求线段AC 的长.请补充完成下列解答:解:∵M 是线段AB 的中点,AB =18cm ,∴AM =MB = AB = cm .∵MC :CB =2:1,∴MC = MB = cm .∴AC =AM + = + = cm .15.(2021·广西玉林·七年级期末)如图,点C 在线段AB 的延长线上,3AC AB =,D 是AC 的中点,若15AB =,求BD 的长.16.(2022·全国·七年级专题练习)如图,点E 是线段AB 的中点,C 是EB 上一点,AC =12,(1)若EC :CB =1:4,求AB 的长;(2)若F 为CB 的中点,求EF 长,17.(2022·全国·七年级专题练习)已知四点A、B、C、D.根据下列语句,画出图形.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、射线BC,相交于点P.【答案】见详解【分析】根据直线、射线、线段的性质画图即可.【详解】解:如图【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.四、(本大题共3小题,每小题8分,共24分)AD=cm,18.(2022·山东济南·七年级期末)如图,C为线段AD上一点,点B为CD的中点,且9BC=cm.2(1)图中共有______条线段?(2)求AC的长;EA=cm,求BE的长.(3)若点E在直线AD上,且3【答案】(1)6;(2)5cm;(3)4cm或10cm.【分析】(1)固定A为端点,数线段,依次类推,最后求和即可;(2)根据AC=AD-CD=AC-2BC,计算即可;(3)分点E在点A左边和右边两种情形求解.【详解】(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)解:∵B 为CD 中点,2BC =cm∴24CD BC ==cm∵9AD =cm∴945AC AD CD =-=-=cm(3)7AB AC BC =+=cm ,3AE =cm第一种情况:点E 在线段AD 上(点E 在点A 右侧).734BE AB AE =-=-=cm第二种情况:点E 在线段DA 延长线上(点E 在点A 左侧).7310BE AB AE =+=+=cm .【点睛】本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.19.(2022·全国·七年级专题练习)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.【答案】(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.20.(2022·全国·七年级)如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数【答案】(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.五、(本大题共2小题,每小题9分,共18分)21.(2022·全国·七年级单元测试)如图一,已知数轴上,点A 表示的数为6-,点B 表示的数为8,动点P 从A 出发,以3个单位每秒的速度沿射线AB 的方向向右运动,运动时间为t 秒()0t >(1)线段AB=__________.(2)当点P运动到AB的延长线时BP=_________.(用含t的代数式表示)t=秒时,点M是AP的中点,点N是BP的中点,求此时MN的长度.(3)如图二,当3(4)当点P从A出发时,另一个动点Q同时从B点出发,以1个单位每秒的速度沿射线向右运动,①点P表示的数为:_________(用含t的代数式表示),点Q表示的数为:__________(用含t的代数式表示).②存在这样的t值,使B、P、Q三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t 值.______________.22.(2022·全国·七年级课时练习)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).∴∠AOC= m°+ a°,∵OP平分∠AOC,(m°+ a°),∴∠POC=12(n°+ a°),同理可求∠DOQ=12六、(本大题共12分)23.(2022·全国·七年级专题练习)如图,已知直线l 上有两条可以左右移动的线段:AB =m ,CD =n ,且m ,n 满足()2480m n -+-=,点M ,N 分别为AB ,CD 中点.(1)求线段AB ,CD 的长;(2)线段AB 以每秒4个单位长度向右运动,线段CD 以每秒1个单位长度也向右运动.若运动6秒后,MN =4,求此时线段BC 的长;(3)若BC =24,将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在哪一个时间段内.的关键是掌握分类讨论思想.。
新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题
第1章《三角形的初步认识》培优提升卷班级______ 姓名_______一、选择题(每题3分,共30分)1.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个2.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠+∠12 的度数为( )A.120°B. 180°C. 240°D. 300°第2题 第4题 第5题 3.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( )A. 180°B.360°C.540°D.720°2160°5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3) 垂直于同一直线的两条直线互相平行(4) 有两边和其中一边的对角对应相等的两个三角形全等, (5)面积相等的两个三角形全等,是真命题的有()A.1个B.2个C.3个D.4个7.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB. BC=ECC. BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为()A. 80°B. 72°C. 48°D. 36°第7题第8题第10题9.若三角形的周长为18,且三边都是整数,则满足条件的三角形的个数有()A、4个B、5个C、6个D、7个10.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA二、填空题(每题4分,共24分)11.已知三角形的三边长分别是3、x 、9,则化简135-+-x x = 12.如图,长方形ABCD 中(AD>AB),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ANB+∠MNC=___________13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______°BFB第12题 第13题 第16题14.在△ABC 中,AB=8,AC=6,则BC 边上的中线AD 的取值范围是 15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)16.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。
上海交大附中七年级数学上册第四单元《几何图形初步》-解答题专项提高练习(培优提高)
一、解答题1.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11 【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD +∠BOC =360°﹣∠AOB ﹣∠DOC =360°﹣90°﹣90°=180°,所以∠AOD 和∠BOC 互补.(2)因为OE 平分∠AOD ,所以∠AOE =∠DOE ,因为∠COF =180°﹣∠DOC ﹣∠DOE =90°﹣∠DOE ,∠BOF =180°﹣∠AOB ﹣∠AOE =90°﹣∠AOE ,所以∠COF =∠BOF ,即OF 是∠BOC 的平分线.(3)因为OG 将∠COF 分成了4:3的两个部分,所以∠COG :∠GOF =4:3或者∠COG :∠GOF =3:4.①当∠COG :∠GOF =4:3时,设∠COG =4x °,则∠GOF =3x °,由(2)得:∠BOF =∠COF =7x °因为∠AOB +∠BOF +∠FOG =180°,所以90°+7x +3x =180°,解方程得:x =9°,所以∠AOD =180°﹣∠BOC =180°﹣14x =54°.②当∠COG :∠GOF =3:4时,设∠COG =3x °,∠GOF =4x °,同理可列出方程:90°+7x +4x =180°,解得:x = 90()11,所以∠AOD=180°﹣∠BOC=180°﹣14x720 ()11 =.综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.2.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n-条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n-条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法.3.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234+=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.如图,有一只蚂蚁想从A 点沿正方体的表面爬到G 点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论, 作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.6.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.7.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.8.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.9.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.10.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.解析:(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD和CD的长度相等并且都等于AC的一半,DB的长度为CD长度的一半即为AC长度的四分之一.AB的长度等于AD加上DB,从而可求出AB的长度.【详解】(1)AC=AD+DB+BC故答案为:AD,DB,BC;(2)AB=AC﹣BC;故答案为:BC;(3)DB+BC=DC=AC﹣AD故答案为:AC;(4)∵D是AC的中点,AC=8时,AD=DC=4B是DC的中点,∴DB=2∴AB=AD+DB=4+2,=6(cm).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.11.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③延长DC至F(虚线),使CF=BC,连接EF(虚线).(2)图中以E为顶点的角中,小于平角的角共有__________个.解析:(1)见解析;(2)8【分析】(1)根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF为始边的角有4个,以EC为始边的角有1个,以EA为始边的角有1个,以EC的反向延长线为始边的有1个,以EA的反向延长线为始边的有1个,所以以E为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.12.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①PA PBPC+是定值;②PA PBPC-是定值,请作出正确的选择,并求出其定值.解析:(1)MN=9;(2)①PA PBPC+是定值2.【分析】(1)如图,根据“M、N分别为线段AC、BD的中点”,可先计算出CM、BN的长度,然后根据MN=MC+BC+BN利用线段间的和差关系计算即可;(2)根据题意可得:当CD运动到D点与B点重合时,C为线段AB的中点,根据线段中点的定义可得AC=BC,此时①式可变形为()()PC AC PC BCPA PBPC PC++-+=,进而可得结论.【详解】解:(1)如图,∵M、N分别为线段AC、BD的中点,∴CM=12AC=12(AB﹣BC)=12(12﹣4)=4,BN=12BD=12(CD﹣BC)=12(6﹣4)=1,∴MN=MC+BC+BN=4+4+1=9;(2)①正确,且PA PB PC +=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.13.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.14.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段OA′,OB′,OC′,使它们分别与线段a 相等; (2)在射线OD 上作线段OD′,使OD′与线段b 相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm ).从A ,B 两题中任选一题作答.A .该长方体礼品盒的容积为______3cm .B .如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm .解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.16.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.17.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.18.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
中考数学《图形认识初步》同步提分训练含答案解析
2018年中考数学提分训练: 图形认识初步一、选择题1.已知∠α=35°,则∠α的补角的度数是()A. 55°B. 65°C. 145°D. 165°2.如图,是一个几何体的表面展开图,则该几何体是()A. 正方体B. 长方体C. 三棱柱D. 四棱锥3.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A. B. C. D.4.如图,点O在直线AB上,射线OC平分DOB,若么COB=35°,则AOD等于()A.35B.70C.110D.1455.如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A. 320cmB. 395.24cmC. 431.77cmD. 480cm6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80°D.140°7.如图,直线相交于点于点,则的度数是()A. B. C. D.8.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K ﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°9.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 120°C. 90°D. 60°10.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A. B. C. D.11.如图一枚骰子抛掷三次,得三种不同的结果,则写有“?”一面上的点数是()A. 1B. 2C. 3D. 612.如图,AB=AC,AF∥BC,∠FAC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°二、填空题13.若将弯曲的河道改直,可以缩短航程,根据是________.14.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB的度数为________.15.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.17.如图是一个正方体的表面展开图,还原成正方体后,标注了字母A的面是正方体的正面,若正方体的左面与右面所标注代数式的值相等,则x的值是________.18.小红做了一个棱长为5 cm的正方体盒子,小明说:“我做的正方体盒子的体积比你的大218 cm3.”则小明的盒子的棱长为________cm.19.如图,直线AB与CD相交于点O,∠AOE=90°,且∠EOD= ∠COE,∠BOD=________°.20.如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC=________.三、解答题21.如图已知点C为AB上一点,AC=12cm,CB= AC,D、E分别为AC、AB的中点,求DE的长.22.已知:如图,OA⊥OB,∠BOC=50°,且∠AOD:∠COD=4:7.画出∠BOC的角平分线OE,并求出∠DOE的度数.23.如图,∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB度数.24.如图,△ABC的三个顶点的坐标分别为A(0,2),B(4,0),C(6,4),求△ABC的周长与面积.25.如图:OB是∠AOC的平分线,OD是∠COE的平分线.①若∠AOC=50°,求∠BOC;②∠AOC=50°,∠COE=80°,求∠BOD.答案解析一、选择题1.【答案】C【解析】∠α的补角=180°﹣35°=145°.故答案为:C.【分析】如果两个角的和等于180度,那么这两个角叫做互为补角,根据定义,用180°减去这个角即可得出其补角。
图形的初步认识拔高题
图形的初步认识拔高题考点一、正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
典型例题如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A.①②③B.②③④C.①③④ D.①②④1、下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是( )A. 7 B. 8 C. 9 D. 102、一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对两个面所写的两个数之和相等,那么a+b-2c= ()A.40 B.38 C.36 D. 343、将如图所示的正方体沿某些棱展开后,能得到的图形是()★★★★A. B. C. D.考点二、常见立体图形的平面展开图下面是四个立体图形的展开图,则相应的立体图形依次是( )A.正方体、圆柱、三棱柱、圆锥 B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥 D.正方体、圆柱、四棱柱、圆锥如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)若F面在前面,B面在左面,则哪一个面会在上面?(字母朝外)(3)若C面在右面,D面在后面,则哪一个面会在上面?(字母朝外)考点三、立体图形的三视图.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 ( )A.3 B.4C.5 D.6c 84 25ba 1236 4 5俯视图左视图主视图正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 .观察下列由棱长为 1的小正方体摆成的图形,寻找规律,如图⑴所示共有1个小立方体,其中1个看得见,0个看不见;如图⑵所示:共有8个小立方体,其中7个看得见,1个看不见;如图⑶所示:共有27个小立方体,其中19个看得见,8个看不见……(1)写出第⑹个图中看不见的小立方体有个;(2)猜想并写出第(n)个图形中看不见的小立方体的个数为____ ______个.考点四、(一)数线段——数角——数三角形问题1、直线上有n个点,可以得到多少条线段?分析:点线段2 13 3 =1+24 6=1+2+35 10=1+2+3+46 15=1+2+3+4+5……n 1+2+3+ … +(n-1)=()21-nn问题2.如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个(A) 3 (B) 4 (C) 5 (D) 6拓展:1、在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?射线角1 3 =1+22 6=1+2+33 10=1+2+3+4……n 1+2+3+ … +(n+1)=()()221+ +nn类比:从O点引出n条射线图中小于平角的角共有多少个?射线角2 13 3 =1+24 6=1+2+35 10=1+2+3+4……n 1+2+3+ … +(n-1)=()21-nn类比联想:如图,可以得到多少三角形?考点五、线段计算(线段中点应用)1. 利用几何的直观性,寻找所求量与已知量的关系例1. 如图所示,点C 分线段AB 为5:7,点D 分线段AB 为5:11,若CD =10cm ,求AB 。
西宁五中七年级数学上册第四单元《几何图形初步》-解答题专项提高练习(培优专题)
一、解答题1.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.2.如图所示,∠AOB=35°,∠BOC=50°,∠COD=22°,OE平分∠AOD,求∠BOE的度解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.如图,点B 和点C 为线段AD 上两点,点B 、C 将AD 分成2︰3︰4三部分,M 是AD 的中点,若MC =2,求AD 的长.解析:AD=36.【分析】根据点B 、C 将AD 分成2︰3︰4三部分可得出CD 与AD 的关系,根据中点的定义可得MD=12AD ,利用MC=MD-CD 即可求出AD 的长度. 【详解】∵点B 、C 将AD 分成2︰3︰4三部分,∴CD=49AD , ∵M 是AD 的中点, ∴MD=12AD , ∵MC=MD-CD=2,∴12AD-49AD=2, ∴AD=36.【点睛】 本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.6.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数. 解析:(1)50°;(2)150°【分析】 (1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案.【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒.答:这个角的度数为50︒.(2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒.∴ 150αβ∠+∠≡︒.【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.7.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.8.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图:①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线).(2)图中以E 为顶点的角中,小于平角的角共有__________个.解析:(1)见解析;(2)8【分析】(1) 根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF 为始边的角有4个,以EC 为始边的角有1个,以EA 为始边的角有1个,以EC 的反向延长线为始边的有1个,以EA 的反向延长线为始边的有1个,所以以E 为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.9.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.10.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.11.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.解析:(1)3;(2)﹣2【分析】(1)根据点A 、B 表示的数利用两点间的距离公式即可求出AB 的长度;(2)设点C 表示的数为c ,则|c|=3,即c =±3,根据BC ﹣AC =4列方程即可得到结论.【详解】(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a=﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点. 12.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.13.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.14.如图,已知点C是线段AB的中点,点D在线段CB上,且DA=5,DB=3.求CD的长.解析:1【解析】【分析】根据线段的和差,可得AB 的长,根据线段中点的性质,可得AC 的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4. 由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.15.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 16.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知A 、B 、C 、D 四点,根据下列要求画图:(1)画直线AB 、射线AD ;(2)画∠CDB ;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.18.如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.解析:(1)135°;(2)54°【分析】(1)利用OC平分∠AOE,可得∠AOC=12∠AOE=12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】 (1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD 的度数为135°.(2)∵∠BOC=4∠FOB ,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE 平分∠COF∴∠COE=∠EOF=12∠COF=32x° ∵32x+x =90° ∴x=36, ∴∠EOF=32x°=32×36°=54° 即∠EOF 的度数为54°.【点睛】 本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.19.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.20.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.21.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.22.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案;(3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.23.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.解析:(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点,所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 24.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.26.如图,OC 是∠AOB 的平分线,∠AOD 比∠BOD 大30°,则∠COD 的度数为________.解析:15°【分析】设∠BOD=x,分别表示出∠AOD=x+30°,∠AOC= x+15°,即可求出∠COD.【详解】解:设∠BOD=x,则∠AOD=x+30°,所以∠AOB=2x+30°.因为OC是∠AOB的平分线,所以∠AOC=12∠AOB= x+15°,所以∠COD=∠AOD-∠AOC=15°.故答案为:15°【点睛】本题考查了角平分线的定义,角的和差等知识,理解角平分线的定义,并用含x的式子表示是解题关键.27.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.28.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.29.已知:如图,在∠AOB的内部从O点引3条射线OC,OD,OE,图中共有多少个角?若在∠AOB的内部,从O点引出4条,5条,6条,…,n条不同的射线,可以分别得到多少个不同的角?解析:角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB的内部从O点引3条射线共有1452⨯⨯个角; 4、结合作3条射线得到的角的个数,可以推出以O 为顶点共有n 条射线时,得到的角的个数为(1)(2)2n n ++,继而将n=5、6、7代入即可. 【详解】 解:顺时针数,与射线OA 构成的角有4个,与射线OC 构成的角有3个,与射线OD 构成的角有2个,与射线OE 构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n 条射线有角(n +1)+n +(n -1)+…+2+1=(1)(2)2n n ++ (个) . 【点睛】本题中,根据以点O 为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n 条射线这时无法逐一列举,可用规律归纳法.30.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠,所以12NEF AEF ∠=∠,12MEF BEF ∠=∠,所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.。
2020年中考数学一轮复习培优训练:《图形认识初步》
2020年中考数学一轮复习培优训练:《图形认识初步》1.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.∠AOC=38°时,求∠BOE和∠COF的度数,∠BOE和∠COF有什么数量关系?(2)当点C与点E,F在直线AB的两旁(如图2所示)时,∠AOC=38°,(1)中∠BOE 和∠COF的数量关系的结论是否成立?请给出你的结论并说明理由;2.如图,O是直线AB上的一点,∠AOC=45°,OE是∠BOC内部的一条射线,且OF平分∠AOE.(1)如图1,若∠COF=35°,求∠EOB的度数;(2)如图2,若∠EOB=40°,求∠COF的度数;(3)如图3,∠COF与∠EOB有怎样的数量关系?请说明理由.3.如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.②三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?4.点O是直线AB上的一点,∠COD=90°,射线OE平分∠BOC.(1)如图1,如果∠AOC=50°,依题意补全图形,写出求∠DO E度数的思路(不需要写出完整的推理过程);(2)将OD绕点O顺时针旋转一定的角度得到图2,使得OC在直线AB的上方,若∠AOC =α,其他条件不变,依题意补全图形,并求∠DOE的度数(用含α的代数式表示);(3)将OD绕点O继续顺时针旋转一周,回到图1的位置.在旋转过程中,你发现∠AOC 与∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.5.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是(度).(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数.6.已知∠AOB=100°,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=60°时,则∠DOE=度;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,则∠DOE=;(3)若∠AOB=m,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.(用含m的代数式表示)7.已知:∠AOB=140°,OC, OM,ON是∠AOB内的射线.(1)如图1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度数:(2)如图2所示,OD也是∠AOB内的射线,∠COD=15°,ON平分∠AOD,OM平分∠BOC.当∠COD绕点O在∠AOB内旋转时,∠MON的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC=20°为起始位置(如图3),当∠COD在∠AOB内绕点O以每秒3°的速度逆时针旋转t秒,若∠AON:∠BOM=19:12,求t的值.8.已知O是直线AB上的一点,∠COD=90°,OE平分∠BOC.(1)如图①,若∠AOC=36°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由.9.已知∠AOB=160°,∠COE=80°,OF平分∠AOE.(1)如图1,若∠COF=14°,求∠BOE的度数.(2)当射线OE绕点O逆时针旋转到如图2的位置时,探究∠BOE与∠COF的数量关系,并说明理由.(3)在(2)的条件下,如图3,在∠BOE的内部是否存在一条射线OD,使得∠BOD=90°,且∠DOF=3∠DOE?若存在,请求出∠COF的度数;若不存在,请说明理由.10.如图1,点O为直线AB上一点,过点O作射线OC,将一直角的直角顶点放在点O处,即∠MON,反向延长射线ON,得到射线OD.(1)当∠MON的位置如图(1)所示时,使∠NOB=20°,若∠BOC=120°,求∠COD的度数.(2)当∠MON的位置如图(2)所示时,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:射线ON的反向延长线OD是否平分∠AOC?请说明理由;注意:不能用问题(1)中的条件(3)当∠MON的位置如图(3)所示时,射线ON在∠AOC的内部,若∠BOC=120°.试探究∠AOM与∠NOC之间的数量关系,不需要证明,直接写出结论.11.如图①,已知∠AOB=80°,OC是∠AOB内的一条射线,OD,OE分别平分∠BOC和∠COA.(1)求∠DOE的度数;(2)当射线OC绕点O旋转到OB的左侧时如图②(或旋转到OA的右侧时如图③),OD,OE仍是∠BOC和∠COA的平分线,此时∠DOE的大小是否和(1)中的答案相同?若相同,请选取一种情况写出你的求解过程;若不相同,请说明理由.12.已知A,O, B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠AOC=90°,如图1,则∠DOE=°;(2)若∠AOC=50°,如图2,求∠DOE的度数;(3)由上面的计算,你认为∠DOE=°;(4)若∠AOC=α,(0°<α<180°)如图3,求∠DOE的度数.13.根据阅读材料,回答问题.材料:如图所示,有公共端点(O)的两条射线组成的图形叫做角(∠AOB).如果一条射线(OC)把一个角(∠AOB)分成两个相等的角(∠AOC和∠B OC),这条射线(OC)叫做这个角的平分线.这时,∠AOC=∠BOC=∠AOB(或2∠AOC=2∠BOC=∠AOB).问题:平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA,OP,OA′.当点O在直线MN上运动时,始终保持∠MOP=90°,∠AOP=∠A′OP,将射线OA绕点O 顺时针旋转60°得到射线OB.(1)如图1,当点O运动到使点A在射线OP的左侧时,若OB平分∠A′OP,求∠AOP 的度数;(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求∠AOP的值;(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出此时∠BOP的度数.14.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.15.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD 内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.参考答案1.(1)解:∵∠COE=90°,∠AOC=38°,∴∠BOE=180°﹣90°﹣38°=52°,∠AOE=90°+38°=128°,…(2分)∵OF平分∠AOE,∴∠AOF=64°,…(4分)∴∠COF=64°﹣38°=26°;…(6分)∴∠BOE=2∠COF…(7分)(2)成立;∠BOE=2∠COF,理由如下:∵∠COE=90°,∠AOC=38°,∴∠AOE=90°﹣38°=52°,…(8分)∴∠BOE=180°﹣52°=128°,…(10分)∵OF平分∠AOE,∴∠AOF=∠AOE=26°,…(12分).∴∠COF=38°+26°=64°;∴∠BOE=2∠COF…(13分)2.(1)∵∠AOC=45°,∠COF=35°∴∠AOF=∠AOC+∠COF=80°∵OF平分∠AOE,∴∠AOE=2∠AOF=160°∵∠AOB是平角∴∠AOB=180°∴∠BOE=∠AOB﹣∠AOE=20°答:∠EOB的度数是20°.( 2)∠AOE=180°﹣40°=140°∵OF平分∠AOE,∴∠AOF=∠AOE=70°∴∠COF=∠AOF﹣∠AOC=70°﹣45°=25°答:∠COF的度数是25°.( 3)∠EOB+2∠COF=90°,理由如下:设∠COF=α,∠BOE=β∵∠AOB是平角,∴∠AOE=180°﹣β∵OF平分∠AOE,∴2∠AOF=∠AOE=180°﹣β∴2α=2∠COF=2(∠AOF﹣∠AOC)=2∠AOF﹣2∠AOC=180°﹣β﹣2×45°=90°﹣β∴2α+β=90°即∠EOB+2∠COF=90°3.解:(1)∵∠ACD=∠ECB=90°,∠DCE=35°,∴∠ACB=180°﹣35°=145°.∵∠ACD=∠ECB=90°,∠ACB=140°,∴∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)①当∠ACB是∠DCE的4倍,∴设∠ACB=4x,∠DCE=x,∵∠ACB+∠DCE=180°,∴4x+x=180°解得:x=36°,∴α=90°﹣36°=54°;②设当∠DCE=21°时,转动了t秒,∵∠BCD+∠DCE=90°,∴3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.4.解:(1)补全图形如图1所示;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=50°,得∠BOC=130°;②由OE平分∠BOC,得∠COE=65°;③由OD⊥OC,得∠COD=90°;④由∠COD=90°,∠COE=65°,得∠DOE=25°;(2)补全图形如图2所示;∵∠AOC=α,∴∠BOC=180°﹣α,∵射线OE平分∠BOC,∴∠COE=BOC=90°﹣,∵∠COD=90°,∴∠DOE=90°﹣∠COE=;(3)如图1,∠DOE=∠AOC,如图2∠DOE=180°∠AOC,故∠AOC与∠DOE之间的数量关系为∠DOE=∠AOC或∠DOE=180°∠AOC.5.解:(1)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE为∠AOC的角平分线,OF平分∠BOD,∴∠EOC=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COD+∠EOC+∠DOF=90°+(∠AOC+∠BOD)=90°+×90°=135°,故答案为:135;(2)∵∠COD=90°,∴∠COE+∠EOD=90°,∴∠EOD=90°﹣∠COE,∵OE为∠AOD的角平分线,∴∠AOD=2∠EOD=2(90°﹣∠COE)=180°﹣2∠COE,∵∠BOD+∠AOD=180°,∴∠BOD=180°﹣∠AOD=180°﹣180°+2∠COE=2∠COE;(3)①如图3所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=∠EOC+∠EOF=45°,∵∠EOC=3∠EOF,∴4∠EOF=45°,∴∠EOF=11.25°,∴∠EOC=33.75°,∵OC为∠AOE的角平分线,∴∠AOE=2∠EOC=67.5°;②如图4所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=45°,∵∠EOC=3∠EOF,∴∠COF=2∠EOF=45°,∴∠EOF=22.5°,∴∠COE=45°+22.5°=67.5°,∵OC为∠AOE的角平分线,∴∠AOE=2∠COE=135°;综上所述,∠AOE的度数为67.5°或135°.6.解:(1)∵∠AOB=100°,∠BOC=60°,∴∠AOC=40°∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠COB=30°,∠COD=∠AOC=20°,∴∠DOE=50°;故答案是:50;(2)∵当∠BOC=α时,理由:∠DOE=∠DOC+∠COE=∠COB+∠AOC=(∠COB+∠AOC)=∠AOB=50°;故答案是:50°;(3)∠DOE的大小发生变化,∠DOE=m或180°﹣m.如图①,∠DOE=m;理由:∠DOE=∠DOC﹣∠COE=∠AOC﹣∠COB=(∠AOC﹣∠COB)=∠AOB=m;如图②,∠DOE=180°﹣m.理由:∠DOE=∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=(360°﹣∠AOB)=180°﹣m.7.解:(1)∵ON平分∠AOC,OM平分∠BOC,∴∠CON=∠AOC,∠COM=∠BOC∠MON=∠CON+∠COM=(∠AOC+∠BOC)=∠AOB又∠AOB=140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=∠BOC,∠DON=∠AOD即∠MON=∠COM+∠DON﹣∠COD=∠BOC+∠AOD﹣∠COD=(∠BOC+∠AOD)﹣∠COD.=(∠BOC+∠AOC+∠COD)﹣∠COD=(∠AOB+∠COD)﹣∠COD=(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=(20°+3t+15°),∠BOM=(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.8.解:(1)由题意得:∠BOC=180°﹣∠AOC=180°﹣36°=144°,∵OE平分∠BOC,∴∠COE=∠BOC=×144°=72°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣72°=18°;(2)由题意得:∠BOC=180°﹣∠AOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=×(180°﹣α)=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠AOC=2∠DOE,理由如下:∵∠COD=90°,∴∠COE=90°﹣∠DOE,∵OE平分∠BOC,∴∠BOC=2∠COE=2(90°﹣∠DOE),∴∠AOC=180°﹣∠BOC=180°﹣2(90°﹣∠DOE)=2∠DOE.9.解:(1)∵OF平分∠AOE,∴∠AOE=2∠EOF,∵∠AOE=∠AOB﹣∠BOE,∴2∠EOF=∠AOB﹣∠BOE,∴2(∠COE﹣∠COF)=∠AOB﹣∠BOE,∵∠AOB=160°,∠COE=80°,∴160°﹣2∠COF=160°﹣∠BOE,∴∠BOE=2∠COF,若∠COF=14°时,∠BOE=28°;(2)∠BOE=2∠COF,理由如下:∵OF平分∠AOE,∴∠AOE=2∠EOF,∵∠AOE=∠AOB﹣∠BOE,∴2∠EOF=∠AOB﹣∠BOE,∴2(∠COE﹣∠COF)=∠AOB﹣∠BOE,∵∠AOB=160°,∠COE=80°,∴160°﹣2∠COF=160°﹣∠BOE,∴∠BOE=2∠COF,(3)存在,理由如下:设∠AOF=∠EOF=2x,∵∠DOF=3∠DOE,∴∠DOE=x,∵∠BOD=90°,∴2x+2x+x+90°=160°,解得:x=14°,∴∠BOE=90°+x=104°,∴∠COF=×104°=52°,∴在∠BOE的内部存在一条射线OD,使得∠BOD=90°,且∠DOF=3∠DOE.10.解:(1)∵∠AOB=180°,∠NOB=20°,∠BOC=120°,∴∠COD=∠AOB﹣∠NOB﹣∠BOC=180°﹣20°﹣120°=40°,∴∠COD为40°;(2)OD平分∠AOC,理由如下:∵∠MON=90°,∴∠DOM=180°﹣∠MON=180°﹣90°=90°,∴∠DOC+∠MOC=∠MOB+∠BON=90°,∵OM平分∠BOC,∴∠MOC=∠MOB,∴∠DOC=∠BON,∵∠BON+∠AON=∠AON+∠AOD=180°∴∠BON=∠AOD,又∵∠BON=∠COD,∴∠COD=∠AOD,∴OD平分∠AOC;(3)∵∠BOC=120°,∴∠AOC=180°﹣∠BOC=60°,∵∠MON=90°,∴∠MON﹣∠AOC=30°,∴(∠MON﹣∠AON)﹣(∠AOC﹣∠AON)=30°,即∠AOM﹣∠NOC=30°.11.解:(1)∵OD,OE分别是∠BOC和∠COA的平分线,∴∠COD=∠BOC,∠COE=∠COA,∴∠DOE=∠COD+∠COE=∠BOC+∠AOC=∠AOB=40°;(2)∠DOE的大小与(1)中答案相同,仍为40°,选图②说明,理由如下:∠DOE=∠COE﹣∠COD=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB=40°.12.解:(1)∵A,O,B三点在同一条直线上,∴∠AOB=180°,∵∠AOC=90°,∴∠BOC=90°,∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC=45°,∠COE=∠BOC=45°,∴∠DOE=∠DOC+∠COE=45°+45°=90°,故答案为:90;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,同(1)得:∠DOC=∠AOC=25°,∠COE=∠BOC=65°,∴∠DOE=∠DOC+∠COE=25°+65°=90°;(3)由上面的计算,∠DOE=90°,故答案为:90;(4)∵∠AOB=180,∴∠BOC=180°﹣α,同(1)得:∠DOC=∠AOC=α,∠COE=∠BOC=(180°﹣α)=90°﹣α,∴∠DOE=∠DOC+∠COE=α+90°﹣α=90°.13.解:(1)设∠AOP的度数为x,由题意可知:∠A′OP=x,∠POB=60°﹣x因为OB平分∠A′OP,所以2∠POB=∠A′OP,所以2(60°﹣x)=x解得,x=40.答:∠AOP的度数为40°.(2)①如图2,当射线OB在∠A′OP内部时,设∠AOP的度数为y,由题意可知:∠A′OP=y,∠POB=60°﹣y,∵∠MOP=90°,∴∠AOM=90°﹣y,∵∠AOM=3∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠POB=∠A′OP,∴(90°﹣y)+(60°﹣y)=y,解得,y=;②如图3,当射线OB在∠A′OP外部时,设∠AOP的度数为y,由题意可知:∠A′OP=y,∠POB=60°﹣y,∵∠MOP=90°,∴∠AOM=90°﹣y,∵∠AOM=3∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOP+∠A′OP+∠A′OB=60°,∴y+y+(90°﹣y)=60°,解得,y=18°.答;∠AOP的值为或18°.(3)如图4,当∠A′OB=150°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=150°﹣60°=90°,又∵∠AOP=∠A′OP,∴∠AOP=45°,∴∠BOP=60°+45°=105°;如图5,当∠A′OB=150°时,由图可得:∠A′OA=360°﹣150°﹣60°=150°,又∵∠AOP=∠A′OP,∴∠AOP=75°,∴∠BOP=60°+75°=135°;当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.14.解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD=150°;(2)∵∠AOD=150°,∠BOC=∠AOD,∴∠BOC=90°,①若线段OB、OC重合前相差20°,则有:20t+15t+20=90,解得:t=2,②若线段OB、OC重合后相差20°,则有:20t+15t﹣90=20解得:,又∵0<t<6,∴t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°∵OM、ON分别平分∠AOC、∠BOD∴∠AOM=∠AOC=,∠DON==∴∠MON=∠AOD﹣∠AOM﹣∠DON=150°﹣5t°﹣﹣=30°.15.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=∠AOC∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二种情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21秒.。
图形的初步认识练习题
图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。
7. 一个圆的周长公式是________。
8. 直角三角形的两个锐角之和等于________。
9. 一个平行四边形的对边是________。
10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。
三、判断题11. 所有的正方形都是矩形。
()12. 两条平行线永远不会相交。
()13. 一个圆的直径是半径的两倍。
()14. 一个三角形的内角和总是180°。
()15. 一个多边形的外角和总是360°。
()四、简答题16. 描述什么是平面图形,并给出两个例子。
17. 解释什么是对称图形,并给出一个例子。
18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。
20. 什么是图形的相似比?请给出计算相似比的公式。
五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。
22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。
23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。
第4章《图形的初步认识》培优习题2:点和线问题
ABCDABCD(4)(3)(2)(1)第4章《图形的初步认识》培优习题2:点和线问题考点1:线段与射线、直线的延伸例1、直线AB ,线段CD ,射线EF 的位置如图所示,下图中不可能相交的是( )【同步练习】1、下列图形中的线段和射线,能够相交的是( )2、如图,已知四点A 、B 、C 、D ,请用尺规作图完成、(保留画图痕迹) (1)画直线AB ; (2)画射线AC ;(3)连接BC 并延长BC 到E ,使得BC AB CE +=; (4)在线段BD 上取点P ,使PC PA +的值最小。
考点2:涉及线的规律探究问题例2、直线a 上有5个不同的点A 、B 、C 、D 、E ,则该直线上共有( )条线段。
A 、8B 、9C 、12D 、10【同步练习】1、由郑州到北京的某一班次列车,运行途中停靠的车站依次是:新乡﹣鹤壁﹣安阳﹣邯郸﹣邢台﹣石家庄﹣保定﹣北京,那么要为这次列车制作的火车票( )A 、9种B 、18种C 、36种D 、72种 2、往返于A ,B 两地的火车,中途经过三个站点。
问:(1)有多少种不同的票价?(2)有多少种不同的车票?(要求自己画线段图分析)例3、下列图形中,第(1)个图形由4条线段组成,第(2)个图形由10条线段组成,第(3)个图形由18条线段组成,…,第(6)个图形由( )条线段组成。
A 、24B 、34C 、44D 、54B【同步练习】1、如图,2条直线相交只有一个交点,3条直线两两相交最多能有3个交点,4条直线两两相交最多能有6个交点,5条直线两两相交最多能有10个交点,…,n (2≥n )条直线两两相交,最多能有交点( )A 、(32-n )个B 、(63-n )C 、(104-n )个D 、()121-n n 个 2、如上图,2条直线相交有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点…按这样的规律若n 条直线相交交点最多有28个,则此时n 的值为( )A 、18B 、10C 、8D 、7例4、阅读理解:我们知道:一条线段有两个端点,线段AB 和线段BA 表示同一条线段、若在直线l 上取了三个不同的点,则以它们为端点的线段共有 条,若取了四个不同的点,则共有线段 条,…,依此类推,取了n 个不同的点,共有线段 条(用含n 的代数式表示)。
中考数学图形认识初步综合能力提升练习(含解析)
图形认识初步综合能力提升练习一、单选题1.如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A. 65°B. 75°C. 85°D. 105°2.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.3.下列说法中,正确的是()A. 直线AB与直线BA是同一条直线B. 射线OA与射线AO是同一条射线C. 延长线段AB到点C,使AC=BCD. 画直线AB=5cm4.如图,是一个正方体的平面展开图,且相对两个面表示的整式的和都相等,如果,则E所代表的整式是()A. B.C. D.5.如图,D,E,F分别是等边△ABC的边AB,BC,CA的中点,现沿着虚线折起,使A,B,C三点重合,折起后得到的空间图形是()A. 棱锥 B.圆锥 C.棱柱 D.正方体6.一副直角三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.7.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 188.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A. 1个B. 2个C. 3个D. 4个9.已知平面内有A,B,C,D四点,过其中的两点画一条直线,一共可以画()直线.A. 1条 B. 4条 C. 6条 D. 1条、4条或6条10.下列说法正确的有()个①连接两点的线段的长叫两点之间的距离;②直线比线段长;③若AM=BM,则M为AB的中点;④由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形.A. 0B. 1C. 2D. 311.用平面去截下列几何体,截面的形状不可能是圆的几何体是()A. 球B. 正方体C . 圆锥D . 圆柱12.用一副三角尺,你能画出下面那个度数的角()A. 65度 B. 1 05度 C. 8 5度 D. 9 5度二、填空题13.如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.14.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=________ .15.如图,在平行四边形ABCD中,BE平分∠ABC交边AD于E.已知AB=8,BC=10,则DE= ________ .16.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=________.17.角度换算:26°48′=________°.18.两根细木条,一根长80厘米,另一根长130厘米,将它们其中的一端重合,放在同一条直线上,此时两根细木条的中点间的距离是________.19.21°17′×5=________.三、解答题20.如图是一个正方体纸盒的展开图,如果这个正方体纸盒相对两个面上的代数式相等,求x,y,z的值.21.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B 两村的距离和最小,试在L上标注出点P的位置,并说明理由.四、综合题22.如图,一副三角板的两个直角顶点重合在一起.(1)若∠EON=140°,求∠MOF的度数;(2)比较∠EOM与∠FON的大小,并写出理由;(3)求∠EON+∠MOF的度数.23.计算:(1)3 +|2 ﹣3|(2)34°25′20″×3+35°42′.24.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由。
《几何图形初步》提高复习题
《几何图形初步》提高复习题《几何图形初步》提高复习题基础强化训练1.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70°B .90°C .105°D .120°2.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船 B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°3.一个角的余角比这个角的21少30°,请你计算出这个角的大小.4. 如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.ABC第1题图北 OAB第2题图O ACB E D5.如图,已知线段AB和CD的公共部分BD=13AB =14CD,线段AB 、CD的中点E、F之间距离是10cm,求AB、CD的长6.若一个角的余角比这个角大31°20′,则这个角大小为__________,其补角大小_______。
7. 一副三角板如图摆放,若∠AGB=90°,则∠AFE=__________度。
8. 在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm。
如果点D是线段AC的中点,那么线段DB的长度是__________cm。
9.如图,点A,O,E在同一条直线上,∠AOB=40°,∠COD=28°,OD平分∠COE。
求∠DOB的度数。
A E DB F C10.一个角的补角与20°角的和的一半等于这个角的余角的3倍,求这个角.1.一个角的余角是它的补角的52,这个角的补角是 ( ) A.30° B.60° C.120° D.150°2.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为 ( )道A.16B.17C.18D.19 3.∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3=________.4.已知轮船在逆水中前进的速度为m 千米/时,水流的速度为2千米/时,则这轮船在顺水中航行的速度是 千米/时5.金佰客超市举办迎新春送大礼的促销活动,全场商品一律打8折,宋老师花了992元买了热水器,那么该商品的原售价为_ ___元.6.假设有足够多的黑白围棋子,按照一定的规律排列成一行请问第2007个棋子是黑的还是白的?答:_ ___.7.若∠AOB=∠COD=61∠AOD,已知∠COB=80°,求∠AOB、∠AOD 的度数.3.已知关于x 的方程(m+3)x |m|-2+6m=0…①与nx -5=x(3-n) …②的解相同,其中方程①是一元一次方程,求代数式(m+x )2000·(-m 2n +xn 2)+1的值.4.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套?原计划多少天完成?线段与角习题精选……1、如图,,,点B 、O 、D 在同一直线上,则的度数为( ) (A ) (B ) (C )(D )2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ;(2) 是∠AOC 的余角; (3)∠DOC的余角是 ;(4)∠COF 的补角是 .3、如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数(7分)4、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.EDCB AO5、如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°, 求∠DOE 、∠BOE 的度数.6、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .9、如图14,将一副三角尺的直角顶点重合在一起.图A CBEFB '第15(1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?10、如图,点C 在线段AB 上,AC = 8厘米,CB= 6厘米,点M 、N 分别是AC 、BC 的中点。
第四章图形的初步认识提高题(培优)华师
第四章图形的初步认识1. 由若干个小立方块所搭成的物体的主视图、左视图如图所示,它的俯视图不可能的是()2如图一些大小相同的小正方体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是().(第3题)3、下列图形中,是多边形的是()A 6个B 4个C 3个D 2个4. 如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()5. 图(1)(2)(3)(4)是多面体的展开图,你能说出这些多面体的名称吗?6. 如图所示是一个多面体的平面展开图,每个面内都标注了字母,请根据要求回答问题.(1)这个几何体是什么体?(2)若面A在几何体的底部,则哪个面会在上面?(3)若面F在前面,从左面看是B,则哪一个面会在上面?(4)若从右面看到的是面C,面D在后面,则哪一个面会在上面?7、 (2011•呼和浩特)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D8、. 如图,AD =12DB ,E 是BC 的中点,BE =15AC =2cm ,求线段DE 的长.(第13题)9、. 如图,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是线段AD 的中点,CD =16cm.求:(1)MC 的长;(2)AB ∶BM 的值.(第14题)10 (2011湖南娄底)如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( )A 、bB 、cC 、dD 、e11. (2012•湖州)下列四个水平放置的几何体中,三视图如图所示的是( )12、如图,点C是线段AB上的点,点E是线段CB的中点,点D是线段AC的中点.(第8题)(1)若AC=2cm,BC=3cm,则DE=________cm;(2)若AB=5cm,AD=1cm,则EB=________cm.13. 如图,AB=8cm,AC=13cm,设点E、F分别是线段AB、AC的中点,求EF的长度.(第10题)14. 平面上有三点A,B,C,如果AB=8,AC=5,BC=3,下列说法正确的是()A、点C在线段AB上B、点C在线段AB的延长线上C、点C在直线AB外D、点C可能在直线AB上,也可能在直线AB外15、(2012•江西)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°16、画出南偏西60°的角17、18. 如图所示.(第16题)(1)写出图中能用一个字母表示的角; (2)写出以B 为顶点的角;(3)图中共有几个角?分别把它们表示出来.19、 如图,已知∠AOC=90°,∠COB=α,OD 平分∠AOB ,则∠COD 等于( ) A 、α21 B 、45°-α21C 、45°-αD 、90°-α20、. 两个角度数之比为7∶2,它们的差是50°,则这两个角的度数分别是________.21 如图,OC 为∠AOD 的平分线,OE 为∠BOD 的平分线.(1)如果∠AOB =110°,那么∠COE 是多少度? (2)在(1)中,如果∠COD =20°,那么∠BOE 为多少度?22 点M ,O ,N 顺次在同一直线上,射线OC ,OD 在直线MN 同侧,且∠MOC=64°,∠DON=46°,则∠MOC 的平分线与∠DON 的平分线夹角的度数是( )A、85°B、105°C、125°D、145°23、如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线.如果∠BOD=60°,那么∠AOD=________.24、. 如图,∠AOC=30°,∠BOC=50°,OD是∠AOB的平分线,求∠AOB,∠COD的度数.25、(1)如图,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)你从(1),(2)的结果中能发现什么规律?(第18题)26.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于.27、下列说法正确的是()A、一个锐角的余角比这个角大B、一个锐角的补角比这个角的余角大C、如果∠1+∠2+∠3=180°,那么∠1、∠2、∠3互为补角D、如果∠β是∠α的补角,那么∠β一定是钝角28、一副三角板按如图方式摆放,且∠1比∠2大40°,则∠2的度数是()A.20°B.25°C.40°D.50°29、若互余的两个角有一条公共边,则这两个角的角平分线所组成的角()A、等于45°B、小于45°C、小于或等于45°D、大于或等于45°9. 互为补角的两个角的比是3:2,则这两个角是().A. 108°,72°B. 95°,85°C. 100°,80°D. 120°,60°30. 已知∠α=80°,∠β的两边与∠α的两边分别垂直,则∠β等于()A、80°B、10°C、100°D、80°或100°31、若一个角的余角比这个角的补角的一半还少8°,那么这个角的余角是多少?32、直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD 与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A.∠BOD B.∠AOC C.∠COM D.没有33、如果∠1和∠2互为补角,且∠1>∠2,那么∠2的余角是().A. 12(∠1+∠2) B.12∠1C. 12(∠1—∠2) D.12∠234、如图所示,点O在直线L上,∠1与∠2互余,∠α=116°,则∠β的度数是()A.144°B.164°C.154°D.150°35、如图,已知∠DOC=2∠BOC,∠BOC=2∠AOB,且∠AOB和∠DOC互为余角,求∠BOD的度数.(第19题)。
图形初步认识练习题
图形初步认识练习题在学习图形的初步认识中,我们需要通过实际操作和练习题来加深对各种图形的理解。
下面是一些图形初步认识的练习题,通过解答这些题目,你能更好地掌握图形相关知识。
题目一:根据图形特征,判断下列图形的名称。
1. 该图形是由四条相等长度的线段构成,且相邻的两条线段之间夹角为90度。
图形名称:正方形。
2. 该图形是由三条线段以其中两条线段为基边,通过连接这两条线段的中点而形成的一个三角形。
图形名称:等腰三角形。
3. 该图形是由四条不相交的线段构成,其中两条相对的线段长度相等,且两两夹角均为90度。
图形名称:长方形。
题目二:判断下列说法的正确性。
正确的写“√”,错误的写“×”。
1. 正方形的特点是四个角都是直角。
√2. 所有的长方形都是正方形。
×3. 任意两条线段长度相等的四边形一定是正方形。
×4. 等边三角形的三个内角都是直角。
×5. 长方形和正方形的特点是两对对边相等。
√题目三:判断下列图形是否是多边形。
是的写“是”,不是的写“不是”。
1. 圆形不是2. 五角星是3. 梯形是4. 椭圆不是5. 正多边形是题目四:判断下列图形是否为全等图形。
是的写“是”,不是的写“不是”。
1. 正方形和长方形是2. 三角形和四边形不是3. 等腰三角形和等边三角形是4. 长方形和平行四边形不是5. 圆和椭圆不是题目五:根据图形特征,填写下列空格中的数字。
1. 正方形的内角和是____。
答案:360度。
2. 正三角形的内角和是____。
答案:180度。
3. 长方形的内角和是____。
答案:360度。
4. 五边形的内角和是____。
答案:540度。
5. 六边形的内角和是____。
答案:720度。
通过以上练习题的解答,相信你对图形的初步认识会更加深入。
继续进行类似的练习,并多进行实际操作,操练各种图形的绘画和测量,可以更好地巩固所学内容。
希望你能在图形认识的学习中取得更好的成绩!。
(完整版)几何图形初步培优专题
几何图形初步培优专题1.已知线段AB的长度为a ,点C是线段AB上的任意一点,M为AC中点,N为BC的中点,求MN的长。
2 .已知,线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长。
A ■---------- BM C N3•点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是线段AC、BC的中点.(1)求MN的长;⑵若点C为线段AB上任意一点,AC CB k,其他条I亠T _ _件不变,则MN的长度为多少?’M C4. 已知B、C是线段AD上任意两点,M是AB中点,N是CD中点,若MN a, BC b.求AD.A * -------- • -------- • -------- « ---- « ---- «M B C N I)15. 如图,已知线段AB和CD的公共部分BD -AB3求AB,CD的长。
〔CD,线段AB,CD的中点E、F的距离是12cm,46. 在数轴上有两个点A和B,A在原点左侧到原点的距离为6,B在原点右侧到原点的距离为4,M,N分别是线段AO和BO的中点,写出A和B表示的数;求线段MN的长度。
7. (1)如图,点C在线段AB上,AC = 8 cm , CB = 6 cm,点M N分别是AC BC的中点,求线段MN的长;(2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由。
(3)若C在线段AB的延长线上,且满足AC BC = b cm,M N分别为AC BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由。
A M C N B8. 已知线段AB=acm,点A平分ABA平分AAA平分AA2,……,A n平分AA, 1,贝V AA, = ________________ cm.2 13 29. 过两点最多可画1条直线(1= ------------ );过三点最多可画3条直线(3 = ----------- );过同一平面内四点最多可2 2画_______________ 条直线;过同一平面内n点最多可画__________________ 条直线;10. 在一条直线上取两上点A、B,共得几条线段?在一条直线上取三个点A、B、C,共得几条线段?在一条直线上取A、B、C D四个点时,共得多少条线段?在一条直线上取n个点时,共可得多少条线段?--- ■ ----- * ---A B—* -- »---- •—ABC―• 4 -- « --- *—ABC D11. 如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2 cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)1 )若C、D运动到任一时刻时,总有PD= 2AC,请说明P点在线段AB上的位置:A C ? D BPQ(2)在(1)的条件下,Q是直线AB上一点,且AQ- BQ=PQ求一兰的值。
图形认识初步复习与提高(含答案)
第四章积累与提高【要点归纳】1.几何图形的有关概念棱柱的特点有:(1)_上下底面相同___;(2)侧面都是长方形___.从不同方向观察物体时,要学会用语言合理清晰地表达出__物体形状__,体会到从不同方向观察物体可能看到__不一样的结果.2.直线、射线、线段的关系射线是直线上一点和它一旁的部分,线段是直线上两点之间的部分,直线、射线不能度量,线段有长度,能计算和度量. 线段的中点把线段分成两条相等的线段3.角的有关概念角是由两条有公共端点的射线组成的图形:角分为锐角、钝角、直角、平角、周角.1°=60′,1′=60″4.角平分线是一条射线,它把已知角分成两个相等的角.4.余角、补角的定义.两角之和为90°的角是互为余角,两角之和为180°的角是互为补角.5.几个重要性质(1)两点确定一条直线.(2)两点之间线段最短.(3)同角(或等角)的余角相等;同角(或等角)的补角相等.本章需要注意的几个问题:1.关于点和线的理解,要明确线段、射线、直线的区别与联系,以及它们的表示方法,掌握线段、直线的性质,能够正确进行线段、线段的中点的相关计算.2.对于角的计算问题,要明确角的有关概念及分类,会进行角的和、差、倍、分的计算,了解角平分线和互余、互补两角的定义及性质.3.对于解答、推理或计算问题要明确用到的定义及性质,找到它们之间的联系,才能得出正确的结果或结论.本章主要的数学思想与方法:转化思想、数形结合思想、分类讨论思想、方程思想.【题型归类】类型一、几何体和它的平面展开图例1.如图2是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是(A)A. 文B.明C.奥D.运「分析」解决此题的关键在于,要准确把握住正方体的展开图的每行或每列中若出现相连的3个面,不相邻的两个面就是相对面.因此与“迎” 相对面上的汉字应该是“文”.类型二、线段的有关计算例2.如图4-2-32,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,求AD的长.「分析」本题首先将线段AD转化成五条线段的和,然后通过线段中点的等量关系进行合并,再将未知线段转化为已知线段,此过程中巧妙转化是解题的关键.解:AD = AM+MB+BC+CN+ND= 2(BM+CN)+BC= 2(MN-BC)+BC= 2(a b-)+b= 2a b-.类型三、角的有关计算例3.如图4-3-14,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC,(1)求∠MON 的度数;(2)如果(1)中∠AOB=α,其它条件不变,求∠MON 的度数;(3)如果(1)中∠AOC=β(β为锐角),其它条件不变,求∠MON 的度数; (4)从(1)、(2)、(3)的结果中,你能看出什么规律?「分析」线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法。
华师大版七年级上册数学第4章 图形的初步认识含答案培优
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、下列图形中,哪一个是正方体的展开图()A. B. C. D.2、如图中主三视图对应的三棱柱是()A. B. C. D.3、如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是()A. B. C. D.4、已知OA⊥OC,且∠AOB∶∠AOC=2∶3,则∠BOC的度数是( )A.30 °B.150°C.30°或150°D.不能确定5、如图,已知点O在直线AB上,,则的余角是( )A. B. C. D.6、如图,,点在上,,若,则()A.70°B.145°C.110°D.140°7、某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是()A.舍B.我C.其D.谁8、下列说法中,是真命题的有( )A.射线和射线是同一条射线B.两直线平行,同旁内角相等 C.一个角的补角一定大于这个角 D.两点确定一条直线9、如图,已知直线AB,CD相交于点O,OE⊥AB,∠EOC=30°,则∠BOD的度数为()A.60°B.30°C.120°D.150°10、将两个长方体如图放置,则所构成的几何体的左视图可能是( )A. B. C. D.11、在底面为正三角形,且底面周长为的直棱柱上,截去一个底面为正三角形,且底面周长为的直棱柱后(如图所示),所得几何体的俯视图的周长为()A. B. C. D.12、如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2B.3C.4D.513、如图,从点到点有3条路,其中走最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短14、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B.. C.. D..15、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度二、填空题(共10题,共计30分)16、已知线段AB=7cm,在线段AB上画线段BC=3cm,则线段AC=________.17、如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是________ .18、下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是________(填写序号)①三棱锥;②圆柱;③球.19、一个几何体的三视图如图所示,则该几何体的表面积为________.(π取3)20、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.21、A、B、C三点在同一条直线上,M、N分别为AB、BC的中点,且AB=60,BC=40,则MN的长为________22、一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为________.23、已知一个几何体的三视图如图所示,这个几何体是________.24、如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于________.25、如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC =________.三、解答题(共5题,共计25分)26、一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.27、如图,直线AB和EF相交于O,OC平分∠AOB,∠1=65°,试求∠3的度数.28、如图5,在中,,平分,,.求的度数;29、画出下面这个几何体(前后只有两排)的三种视图.30、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、A6、A7、D8、D9、C10、C11、D12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题。
1.如果△+△=* ,○=□+□,△=○+○+○+○,则*÷□= ( ) A. 2 B. 4 C. 8 D. 16
2.若a>0>b>c,a+b+c=1,M=a c b +,N=b c a +,P=c b
a +,则M 、N 、P 之间的大小关系是( )
A 、M>N>P
B 、N>P>M
C 、P>M>N
D 、M>P>N
3.若ab ≠0,则
b
a a b
+的取值不可能是 ( ) A 0 B 1 C 2 D -2 4.503、404、305的大小关系为( )
A.503<404<305
B.305<503<404;
C.305<404<503
D.404<305<503; 二、希望你能填得又快又准
5.用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如1☆4=42+1=17,那么1☆3= ;当m 为任意有理数时,m ☆(m ☆2)= .
6.正整数按下图的规律排列.请写出第20行,第21列的数字 .
7.一组有理数依次排列为:-2,-5,-9,-14,A ,-27,…,依此规律排列,则A = 。
8.如果n 是正整数,那么(-1)4n-1+(-1)4n+1=______.
9.一列数:-3,9,-27,81,……
①则第5个数是 ,②第n 个数(n 为正整数)为 。
10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .
11.已知a=25,b= -3,则a 99+b 100的末位数字是 。
第一行
第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列
1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13
20 … 25 24 23 22 21 … ……
12.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数将四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。
例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。
运算式如下:(1) , (2) ,
(3) 。
另有四个有理数3,-5,7,-13,可通过运算式 (4) 使其结果等于24。
三、解答题
13.阅读下面文字:
对于( -565) + ( -932) + 1743 + ( -32
1
)
可以如下计算: 原式=[( -5) + ( - 6
5
)] + [
( -9) + ( -
3
2)] + (17 +
4
3) + [
( -3) +
( - 2
1)]
=
[
(一5) + ( -9) + 17 + (一3)
] + [( -6
5) + ( -32) +
43 + ( - 2
1) ] = 0 + ( -1
41 ) = -14
1
上面这种方法叫折项法,你看懂了吗? 仿照上面的方法,请你计算:( -200065) + ( -199932) + 400043 + ( -12
1
) 20.观察下列等式
111122=-⨯,1112323=-⨯,111
3434
=-⨯, 将以上三个等式两边分别相加得:
1111111113
111223342233444
++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:
1
(1)
n n =+ . (2分)
(2)直接写出下列各式的计算结果:(4分) ①
1111
122334
20062007
++++
=⨯⨯⨯⨯ ;
②1111
122334
(1)
n n ++++
=⨯⨯⨯+ .
(3)探究并计算:(6分)
1111
244668
20082010
++++
⨯⨯⨯⨯.
21.求2-x +7-x 的最小值
22.如果规定符号“*”的意义是a b
a b a b
∙*=+,求2(3)4*-*的值
23.已知14x +=,2(2)4y +=,求x y +的值.
24.若3,2a b ==且
a a
b b
=,求32a b -的值。
对于任意非零有理数a 、b ,定义运算如下:(2)(2)a b a b a b *=-÷-
求(3)5-*的值。
25.议一议,观察下面一列数,探求其规律:
-1,
21,-31,41,-51,6
1
…… 1) 填出第7,8,9三个数; , , . 2) 第2008个数是什么?如果这一列数无限排列下去,与哪个数越来越接
近?
26.如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求
1111
(1)(1)(2)(2)
(2007)(2007)
ab a b a b a b ++++
++++++的值。
14.阅读材料,大数学家高斯在上学读书时
曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12
1
+=n n n ,其中n是正整数。
现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =?
观察下面三个特殊的等式
()21032131
21⨯⨯-⨯⨯=
⨯ ()32143231
32⨯⨯-⨯⨯=⨯
()4325433
1
43⨯⨯-⨯⨯=⨯
将这三个等式的两边相加,可以得到1×2+2×3+3×4=205433
1=⨯⨯⨯ 读完这段材料,请你思考后回答:
⑴=⨯++⨯+⨯1011003221 ;
⑵1×2+2×3+3×4+…+n ×(n+1)= ; ⑶()()=++++⨯⨯+⨯⨯21432321n n n 。
(只需写出结果,不必写中间的过程)
15.若m 、n 互为相反数,p 、q 互为倒数,且a =3,
求 的值。
16.已知在纸面上有一数轴(如图),折叠纸面.
(1)若1表示的点与-1表示的点重合,则-2表示的点与数 表示的点重合;(1分)
(2)若-1表示的点与3表示的点重合,回答以下问题:
① 5表示的点与数 表示的点重合;(1分) ② 若数轴上A 、B 两点之间的距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?(3分)
17.观察下列各式:
… …
依照以上各式成立的规律,在括号里填入适当的数,使得下面的等式成立:
18.若5=a ,3=b ,求2
)(b a ⋅的值.
a q p n m ⨯+⨯⨯++3
1
20102009()()20 2.2044+
=--262,2464532,5434712,7414102
2,10424
+=--+=--+=---+=---
19.已知有理数a 、b 、c 在数轴上的位置如图所示,且a b =
①求55a b +的值
②化简2a a b c a c b ac b -+--+-+--。