2019-2020学年河南省洛阳市九年级下学期数学竞赛试卷及答案解析

合集下载

河南省洛阳市2019-2020学年中考数学第三次调研试卷含解析

河南省洛阳市2019-2020学年中考数学第三次调研试卷含解析

河南省洛阳市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩2.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=43.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣164.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-25.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位6.若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,37.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1 B.2 C.3 D.48.下列命题中假命题是()A.正六边形的外角和等于B.位似图形必定相似C.样本方差越大,数据波动越小D.方程无实数根9.对于函数y=21x ,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点C .它的图象不经过第三象限D .y 随x 的增大而减小 10.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是( )A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)11.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为A .1801801(150%)x x -=+B .1801801(150%)x x-=+ C .1801801(150%)x x -=- D .1801801(150%)x x-=- 12.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知直线y=kx (k≠0)经过点(12,﹣5),将直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为_____.14.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.15.|-3|=_________;16.已知点A(4,y1),B (,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.18.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF (点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.20.(6分)解方程:2(x-3)=3x(x-3).21.(6分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(8分)(1)计算:﹣14+12sin61°+(12)﹣2﹣(π51.(2)解不等式组3(1)72513x xxx--≤⎧⎪⎨--⎪⎩p①②,并把它的解集在数轴上表示出来.23.(8分)如图,Rt V ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=3,求图中阴影部分的面积.24.(10分)关于x 的一元二次方程x 2﹣x ﹣(m+2)=0有两个不相等的实数根.求m 的取值范围;若m 为符合条件的最小整数,求此方程的根.25.(10分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标. 26.(12分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.(12分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP = 时,四边形AOCP 是菱形;②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.2.D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.3.B【解析】【分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4.B【解析】【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.5.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.6.C【解析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.7.A【解析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如22-+,0是有理数,故本小题错误;2)×2=﹣2,﹣2是有理数,故本小题错误.故选A.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.8.C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C 、样本方差越大,数据波动越小,是假命题;D 、方程x 2+x+1=0无实数根,是真命题;故选:C .考点:命题与定理.9.C【解析】【分析】直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确;第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大,故选C .【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.10.A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,作BF ⊥AE 于F ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3),同理:△AOE ≌△BAF ,得出AE=BF=1,OE ﹣BF=3﹣1=2,得出B (﹣2,4)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,作BF ⊥AE 于F ,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC 是正方形,∴OA=CO=BA ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD .在△AOE 和△OCD 中,∵AEO ODC OAE CODOA CO ∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD .∵点A 的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3).同理:△AOE ≌△BAF ,∴AE=BF=1,OE ﹣BF=3﹣1=2,∴B (﹣2,4).故选A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.11.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.12.A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0<m<13 2【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣5 12;由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣512x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125m,∴A(125m,0),B(0,m),即OA=125m,OB=m,在Rt△OAB中,AB=2222121355OA OB m m m⎛⎫+=+=⎪⎝⎭,过点O作OD⊥AB于D,∵S△ABO=12OD•AB=12OA•OB,∴12OD•135m=12×125m×m,∵m>0,解得OD=1213m,由直线与圆的位置关系可知1213m <6,解得m<132,故答案为0<m<13 2.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了. 14.1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.15.1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.16.y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.17.【解析】∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,∴其概率是=.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.10π【解析】【分析】【详解】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=12•1π•4•5=10π(cm1).故答案为:10π【点睛】本题考查圆锥的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB 边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=2AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II )若CF :CE=3:4,如答图3所示.∵△CEF ∽△CAB ,∴∠CEF=∠B .由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD ,∴AD=CD .同理可得:∠B=∠FCD ,CD=BD .∴AD=BD .∴此时AD=AB=12×1=52. 综上所述,当AC=3,BC=4时,AD 的长为95或52. (2)当点D 是AB 的中点时,△CEF 与△CBA 相似.理由如下:如图所示,连接CD ,与EF 交于点Q .∵CD 是Rt △ABC 的中线∴CD=DB=12AB , ∴∠DCB=∠B .由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A ,又∵∠ACB=∠ACB ,∴△CEF ∽△CBA .20.1223,3x x ==. 【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】 ()()2333x x x -=-,移项得:()()23330x x x ---=,整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =. 【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.21.(1)MN不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.试题解析:(1)如图,过C作CH⊥AB于H,设CH=x,由已知有∠EAC=45°, ∠FBC=60°则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=CH HB∴HB=tan30CHo=3=3x,∵AH+HB=AB∴x+3x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:15y-=(1+25%)×1y,解得:y=25知:y=25的根.答:原计划完成这项工程需要25天.22.(1)5;(2)﹣2≤x<﹣12.【解析】【分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式31341,=-+-1341,=-++-=5;(2)解不等式①得,x≥﹣2,解不等式②得,12x<-,所以不等式组的解集是122x-≤<-.用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.23.(1)见解析;(2)316π-【解析】【分析】(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=3AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF 为⊙O 的切线,∴FD=FC ,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A ,∴FD=FA ,∴FC=FA ,∴点F 是AC 中点;(2)解:在Rt △ACB 中,而∠A=30°,∴∠CBA=60°,BC=3AC=2, ∵OB=OD ,∴△OBD 为等边三角形,∴∠BOD=60°,∵EF 为切线,∴OD ⊥EF ,在Rt △ODE 中,∴S 阴影部分=S △ODE ﹣S 扇形BOD =12×2601360π⋅⋅16π. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.24.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0 ∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.25.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2-或3(1,)2-. 【解析】 分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或317⎛+- ⎝⎭或317⎛-- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.26.77B ∠=︒,38.5C ∠=︒.【解析】【分析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C.【详解】在ABC ∆中,AB AD DC ==,∵AB AD =,在三角形ABD 中,()118026772B ADB ∠=∠=︒-︒⨯=︒,又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.27. (1)见解析;(2)①120°;②45°【解析】【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可; ②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM .∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中,PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM ≌△AOM (AAS ),∴PC =OA .∵AB 是半圆O 的直径,∴OA =OB ,∴PC =OB .又PC ∥AB ,∴四边形OBCP 是平行四边形.(2)①∵四边形AOCP 是菱形,∴OA =PA ,∵OA =OP ,∴OA =OP =PA ,∴△AOP 是等边三角形,∴∠A =∠AOP =60°,∴∠BOP =120°;故答案为120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.。

2019-2020学年河南省洛阳实验中学九年级(下)第一次月考数学试卷(最全解析)

2019-2020学年河南省洛阳实验中学九年级(下)第一次月考数学试卷(最全解析)

2019-2020学年河南省洛阳实验中学九年级(下)第一次月考数学试卷一、选择题(共14小题,每小题0分,满分0分) 1.下列计算中正确的个数有( ) ①325a b ab +=; ②33345m n mn m n -=-; ③3253(2)6x x x -=-; ④324(2)2a b a b a ÷-=-; ⑤325()a a =; ⑥32()()a a a -÷-=- A .1个B .2个C .3个D .4个2.欧阳老师骑车上班,最初以某一速度匀速行进,中途由于车有故障,停下修车误了几分钟,为按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,自行车行进的路程()S km 与行驶时间()t h 的图象如下,你认为正确的是( )A .B .C .D .3.已知两条直线365y x =-+和2y x =-,则它们与y 轴所围成的三角形的面积是( )A .18B .14C .20D .244.如图,已知在直角梯形AOBC 中,//AC OB ,CB OB ⊥,18OB =,12BC =,9AC =,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是()A.点G B.点E C.点D D.点F5.如图,在直角坐标系中,已知点(3,0)A-、(0,4)B,对OAB∆连续作旋转变换,依次得到△1、△2、△3、△4、⋯,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.1(675,9)5D.1(795,9)56.如果2(33)3(a a+=+、b为实数),则a b+等于() A.9B.18C.12D.6 7.24410y y x y++++,则(xy=)A.6-B.2-C.2D.6 8.下列说法正确的有个数()(1)若216x=,那么4x=(2)11xx+-的倒数是11xx-+.(3)两个有理数相乘,同号得正,异号得负(4)单项式23ab-的系数是23-,次数是2.A.1个B.2个C.3个D.4个9.已知||abc abc=-,则||||||(a b ca b c++=)A.1或3-B.1-或3-C.512D.无法判断10.下列结论:①某商品进价为40元,按标价的八折销售,可盈利20%,则标价为60元. ②近似数65.01410⨯有3个有效数字,精确到千分位.③某地区上网费用方式有两种,A :无月租,上网通讯费3.8元/时;B :月租52元,上网通讯费1.2元/时,当上网时间在20小时以上时选择B 种方式比较合算. ④若23a a =则3a = 其中命题正确的是( ) A .①②B .①③C .②③D .③④11.若多项式||3(2)1m x m x +-+是关于x 的二次三项式,则m 的值( ) A .2或2-B .2C .2-D .4-12.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形的小圆个数是( )(用含有n 的代数式表示)A .4(1)n n ++B .24n n +C .4(1)n n ++D .24(1)n ++13.给出下列等式:①32a a a ÷=,2551116913=;22222-=-;18852=;⑤111116442++;⑥232(2)(1)ax ax a a x x -+=--;⑦2233()()x y x xy y x y +-+=-.其中,错误的有( ) A .2个B .3个C .4个D .5个14.一次函数y kx b =+的图象与反比例函数(0)my x x=>的图象交于(2,1)A ,1(2B ,)n 两点,则n k -的值为( ) A .2B .2-C .6D .6-二、填空题(共6小题,每小题0分,满分0分)15.一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为 .16.已知方程260x x k ++=有两个相等的实数根,则k = . 17.分式方程213024xx x -=+-的解为x = .18.已知变量x 与y 的四种关系:①||y x =;②||y x =;③220x y -=;④21x y +=,其中y 是x 的函数的式子有 个.19.已知关于x ,y 的二元一次方程组221x y kx y +=⎧⎨+=-⎩的解互为相反数,则k 的值是 .20.如果在解关于x 的分式方程211x kx x+=--时出现了增根1x =,那么常数k 的值为 . 三、填空题(共3小题,每小题0分,满分0分)22.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是 天.23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘 个.24.输入x ,按如图所示程序进行运算:规定:程序运行到“判断大于313”计为一次运算.若输入的x 为8,则程序运算 次停止.五、选择题(共6小题,每小题0分,满分0分) 25.函数322x y x +=-( ) A .22x - B .2x -且1x ≠ C .2x - D .22x -且1x ≠26.如图,在直角梯形ABCD 中,//DC AB ,90A ∠=︒,28AB cm =,24DC cm =,4AD cm =,点M 从点D 出发,以1/cm s 的速度向点C 运动,点N 从点B 同时出发,以2/cm s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积2()y cm 与两动点运动的时间()t s 的函数图象大致是( )A .B .C .D .27.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:支撑物高()h cm 10 20 30 40 50 ⋯ 下滑时间()t s3.253.012.812.662.56⋯以下结论错误的是( ) A .当40h =时,t 约2.66秒 B .随高度增加,下滑时间越来越短 C .估计当80h cm =时,t 一定小于2.56秒 D .高度每增加了10cm ,时间就会减少0.24秒28.()f x 表示关于x 的函数,若1x ,2x 在x 的取值范围内,且12x x ,均有对应的函数值12()()f x f x ,则称函数()f x 在x 取值范围内是非减函数.已知函数()f x 当01x 时为非减函数,且满足以下三个条件:①(0)0f =,②1()()32x f f x =,③(1)1()f x f x -=-;则11()()38f f +的值为( )A .12B .23C .34D .129.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A ,B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =+和y x =的图象于点C ,D .若OB CD =,则a = .30.若使函数2212y x bx c=-+的自变量x 的取值范围是一切实数,则下面的关系中一定满足要求的是( ) A .0b c >> B .0b c >> C .0c b >> D .0c b >>21.将函数21y x =-的图象位于x 轴下方的部分沿x 轴翻折至其上方,所得的折线是函数|21|y x =-的图象,与直线y x b =+的图象交点的横坐标x 均满足12x -<<,则b 的取值范围为( ) A .1b <B .112b -< C .14b << D .01b <2019-2020学年河南省洛阳实验中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共14小题,每小题0分,满分0分) 1.下列计算中正确的个数有( ) ①325a b ab +=; ②33345m n mn m n -=-; ③3253(2)6x x x -=-; ④324(2)2a b a b a ÷-=-; ⑤325()a a =; ⑥32()()a a a -÷-=- A .1个B .2个C .3个D .4个【分析】根据各个小题中的式子,可以计算出正确的结果,从而可以解答本题. 【解答】解:32a b +不能合并,故①错误, 3345m n mn -不能合并,故②错误,3253(2)6x x x -=-,故③正确, 324(2)2a b a b a ÷-=-,故④正确, 326()a a =,故⑤错误, 32()()a a a -÷-=,故⑥错误, 故选:B .【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法. 2.欧阳老师骑车上班,最初以某一速度匀速行进,中途由于车有故障,停下修车误了几分钟,为按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,自行车行进的路程()S km 与行驶时间()t h 的图象如下,你认为正确的是( )A .B .C .D .【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:随着时间的增多,行进的路程也将增多,排除B ,由于停下修车误了几分钟,此时时间在增多,而路程没有变化,排除A .后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡. 故选:C .【点评】首先看清横轴和纵轴表示的量,然后根据实际情况:时间t 和运动的路程s 之间的关系采用排除法求解即可.3.已知两条直线365y x =-+和2y x =-,则它们与y 轴所围成的三角形的面积是( )A .18B .14C .20D .24【分析】首先求得两直线的交点坐标,然后求得两函数图象与y 轴的交点坐标,然后求得与y 轴围成的三角形的面积即可.【解答】解:联立3652y x y x ⎧=-+⎪⎨⎪=-⎩, 解得53x y =⎧⎨=⎩,所以,两直线的交点坐标为(5,3), 令0x =,则6y =,2y =-,所以,两直线与y 轴的交点坐标分别为(0,6),(0,2)-,∴它们与y轴所围成的三角形的面积1(62)5202=⨯+⨯=.故选:C.【点评】本题考查了两直线相交的问题,三角形的面积,联立两直线解析式求交点坐标是常用的方法,需熟练掌握并灵活运用.4.如图,已知在直角梯形AOBC中,//AC OB,CB OB⊥,18OB=,12BC=,9AC=,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是()A.点G B.点E C.点D D.点F【分析】反比例函数上的点的横纵坐标的乘积相等.根据题意和图形可初步判断为点G,利用直角梯形的性质求得点A和点G的坐标即可判断.【解答】解:在直角梯形AOBC中,//AC OB,CB OB⊥,18OB=,12BC=,9AC=,∴点A的坐标为(9,12),点G是BC的中点,∴点G的坐标是(18,6),912186108⨯=⨯=,∴点G与点A在同一反比例函数图象上,//AC OB,ADC BDO∴∆∆∽,∴91182 DC ACOD OB===,∴23ODOC=,得(12,8)D,又E是DC的中点,由D、C的坐标易得(15,10)E,F是DB的中点,由D、B的坐标易得(15,4)F.故选:A.【点评】此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用,灵活利用直角梯形的性质求得相关点的坐标,再利用反比例函数上的点的横纵坐标的乘积相等来判断.5.如图,在直角坐标系中,已知点(3,0)A -、(0,4)B ,对OAB ∆连续作旋转变换,依次得到△1、△2、△3、△4、⋯,△16的直角顶点的坐标为( )A .(60,0)B .(72,0)C .1(675,9)5D .1(795,9)5【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题. 【解答】解:由题意可得,OAB ∆旋转三次和原来的相对位置一样,点(3,0)A -、(0,4)B ,3OA ∴=,4OB =,90BOA ∠=︒,22345AB ∴=+∴旋转到第三次时的直角顶点的坐标为:(12,0),16351÷=⋯∴旋转第15次的直角顶点的坐标为:(60,0),又旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A .【点评】本题考查规律性:点的坐标,解题的关键是可以发现其中的规律,利用发现的规律找出所求问题需要的条件.6.如果2(33)3(a a +=+、b 为实数),则a b +等于( ) A .9B .18C .12D .6【分析】根据2(33)3(a a =+、b 为实数),可以求得a 、b 的值,从而可以求得a b +的值.【解答】解:2(33)a +=+12a ∴++12a ∴=,6b =,12618a b ∴+=+=,故选:B . 【点评】本题考查二次根式的化简求值,解题的关键是明确二次根式化简求值的方法.7.2440y y ++,则(xy = )A .6-B .2-C .2D .6【分析】首先把原式化为2(2)0y +=,根据非负数的性质得2(2)0y +=,0=,由此即可求出x 、y ,再可以求xy 的值.【解答】解:原式可化为2(2)0y ++,2(2)0y ∴+=,0=,解2(2)0y +=得2y =-0=得到1x =,1(2)2xy ∴=⨯-=-.故选:B .【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0,根据这个结论可以求解这类题目.8.下列说法正确的有个数( )(1)若216x =,那么4x =(2)11x x +-的倒数是11x x -+. (3)两个有理数相乘,同号得正,异号得负 (4)单项式23ab -的系数是23-,次数是2.A.1个B.2个C.3个D.4个【分析】(1)利用平方根定义判断即可;(2)根据倒数的定义判断即可;(3)利用有理数的乘法法则判断即可;(4)找出单项式的系数及次数即可.【解答】解:(1)若216x=,那么4x=或4-,错误;(2)11xx+-的倒数是11xx-+,不一定,当1x=-时,没有倒数,错误;(3)两个有理数(除0外)相乘,同号得正,异号得负,错误;(4)单项式23ab-的系数是23-,次数是2,正确.故选:A.【点评】此题考查了有理数的乘方,倒数,有理数的乘法,以及单项式,熟练掌握运算法则是解本题的关键.9.已知||abc abc=-,则||||||(a b ca b c++=)A.1或3-B.1-或3-C.512D.无法判断【分析】先由||abc abc=-,0abc≠,得出0abc<,再根据有理数的乘法法则得到a、b、c中负数有1个或3个,然后分情况讨论即可.【解答】解:||abc abc=-,0abc≠,abc∴<,a∴、b、c中负数有1个或3个.如果a、b、c中负数有1个时,||||||1111a b ca b c++=-++=;如果a、b、c中负数有3个时,||||||1113a b ca b c++=---=-.故选:A.【点评】本题考查了绝对值的定义,有理数的乘法法则,判断出a、b、c中负数有1个或3个是解题的关键.10.下列结论:①某商品进价为40元,按标价的八折销售,可盈利20%,则标价为60元.②近似数65.01410⨯有3个有效数字,精确到千分位.③某地区上网费用方式有两种,A:无月租,上网通讯费3.8元/时;B:月租52元,上网通讯费1.2元/时,当上网时间在20小时以上时选择B 种方式比较合算.④若23a a =则3a =其中命题正确的是( )A .①②B .①③C .②③D .③④【分析】根据有理数的乘法运算,科学记数法表示较大的数,以及代数式求值,一元二次方程的解法对各小题计算求解,然后进行选择即可.【解答】解:①设标价为x 元,则0.8404020%x -=⨯,解得60x =,故本小题正确;②65.01410⨯有3个有效数字,精确到千位,故本小题错误;③设上网x 小时两种方式费用相同,则3.852 1.2x x =+,解得20x =,∴上网时间在20小时以上时选择B 种方式比较合算,上网时间在20小时以下时选择A 种方式比较合算,故本小题正确;④23a a =,则(3)0a a -=,解得10a =,23a =,故本小题错误.综上所述,正确的命题有①③.故选:B .【点评】本题综合考查了有理数的乘法,科学记数法表示较大的数,方案选择问题,以及一元二次方程的求解,综合题但难度不大,只要仔细分析求解便不难解决.11.若多项式||3(2)1m x m x +-+是关于x 的二次三项式,则m 的值( )A .2或2-B .2C .2-D .4-【分析】根据多项式的定义即可求解.【解答】解:因为多项式||3(2)1m x m x +-+是关于x 的二次三项式,所以||2m =,且20m -≠,解得2m =±,且2m ≠,则m 的值为2-.故选:C .【点评】本题考查了多项式,解决本题的关键是掌握二次三项式的定义.12.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形的小圆个数是( )(用含有n 的代数式表示)A .4(1)n n ++B .24n n +C .4(1)n n ++D .24(1)n ++【分析】由题意可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n 个图形中小圆的个数为(1)4n n ++.由此得出答案即可.【解答】解:第1个图形有4126+⨯=个小圆,第2个图形有42310+⨯个小圆,第3个图形有43416+⨯=个小圆,第4个图形有44524+⨯=个小圆,⋯∴第n 个图形有:4(1)n n ++.故选:C .【点评】此题主要考查了图形的规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.13.给出下列等式:①32a a a ÷=,2551116913=;22222-=-;18852=;⑤111116442++;⑥232(2)(1)ax ax a a x x -+=--;⑦2233()()x y x xy y x y +-+=-.其中,错误的有( )A .2个B .3个C .4个D .5个【分析】分别根据同底数幂的除法法则,算术平方根的定义,二次根式的性质,十字相乘法分解因式,多项式乘法法则逐一判断即可.【解答】解:①32a a a ÷=,故①结论正确; 251941941169169==,故②结论错误; 22-③结论错误;+=③结论正确;==,故④结论错误; ⑥232(2)(1)ax ax a a x x -+=--,故⑥结论正确;⑦2233()()x y x xy y x y -++=-.故⑦结论错误.所以错误的有②③④⑦共4个.故选:C .【点评】本题主要考查了同底数幂的除法,因式分解法以及二次根式的性质,熟记相关定义与性质的解答本题的关键.14.一次函数y kx b =+的图象与反比例函数(0)m y x x=>的图象交于(2,1)A ,1(2B ,)n 两点,则n k -的值为( )A .2B .2-C .6D .6- 【分析】把A 的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B 的坐标代入求出n 的值,把A 、B 的坐标代入一次函数y kx b =+即可求出k 的值.【解答】解:把(2,1)A 代入m y x =得:2m =, ∴反比例函数的解析式是2y x=, 1(2B ,)n 代入反比例函数2y x =得:4n =, B ∴的坐标是1(2,4), 把A 、B 的坐标代入一次函数1y kx b =+得:21142k b k b +=⎧⎪⎨+=⎪⎩, 解得:2k =-,426n k ∴-=+=,故选:C .【点评】本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求函数的解析式,熟练掌握待定系数法是解题的关键.二、填空题(共6小题,每小题0分,满分0分)15.一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为 45 .【分析】设十位数字为x ,个位数字为y ,根据“个位数字与十位数字的和是9、新两位数-原两位数9=”列方程组求解可得.【解答】解:设十位数字为x ,个位数字为y ,根据题意,得:910(10)9x y y x x y +=⎧⎨+-+=⎩, 解得:45x y =⎧⎨=⎩, ∴原来的两位数为45,故答案为:45.【点评】本题主要考查二元一次方程组的应用,理解题意抓住相等关系列出方程是解题的关键.16.已知方程260x x k ++=有两个相等的实数根,则k = 9 .【分析】由方程有两个相等的实数根,得到根的判别式等于0,列出关于k 的方程,求出方程的解即可得到k 的值.【解答】解:方程260x x k ++=有两个相等的实数根,∴△243640b ac k =-=-=,解得:9k =.故答案为:9.【点评】此题考查了一元二次方程根的判别式,当根的判别式的值大于0,一元二次方程有两个不相等的实数根;当根的判别式等于0,一元二次方程有两个相等的实数根;当根的判别式小于0,一元二次方程没有实数根.17.分式方程213024x x x -=+-的解为x = 1- . 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:230x x --=,解得:1x =-,经检验1x =-是分式方程的解.故答案为:1-【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.已知变量x 与y 的四种关系:①||y x =;②||y x =;③220x y -=;④21x y +=,其中y 是x 的函数的式子有 2 个.【分析】利用函数定义可得答案.【解答】y 是x 的函数的式子有:①||y x =;③220x y -=,共2个,故答案为:2.【点评】此题主要考查了函数定义,对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.19.已知关于x ,y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是 1 . 【分析】方程组两方程相加表示出x y +,根据0x y +=求出k 的值即可.【解答】解:221x y k x y +=⎧⎨+=-⎩①②, ①+②得:3()1x y k +=-, 解得:13k x y -+=, 由题意得:0x y +=, 可得103k -=, 解得:1k =,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.20.如果在解关于x 的分式方程211x k x x+=--时出现了增根1x =,那么常数k 的值为 1 .【分析】分式方程去分母转化为整式方程,把1x =代入整式方程计算即可求出k 的值.【解答】解:分式方程去分母得:22x k x -=-,解得:2x k =-,由分式方程的增根为1x =,得到21k -=,解得:1k =,故答案为:1【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、填空题(共3小题,每小题0分,满分0分)22.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是 28 天.【分析】设规定的时间是x 天,则甲队单独完成需要(32)x +天,乙队单独完成需要(12x +天),根据甲乙合作完成的工作量+乙独做完成的工作量=工作总量建立方程求出其解就可以了.【解答】解:设规定的时间是x 天,则甲队单独完成需要(32)x +天,乙队单独完成需要(12x +天),由题意,得122013232x x x +⨯+=++, 解得:28x =.经检验,28x =是元方程的解.答:规定的时间是28天.故答案是:28.【点评】本题时一道工程问题的运用题,考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据甲乙合作完成的工作量+乙独做完成的工作量=工作总量建立方程是解答本题的关键.23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘 20 个.【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案.【解答】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩, 则设购买键盘a 个,则鼠标(50)a -个,根据题意可得:500.8400.85(50)1820a a ⨯+⨯-,解得:20a ,故最多可购买键盘20个.故答案为:20.【点评】此题主要考查了二元一次方程组以及一元一次不等式的应用,正确求出鼠标与键盘的单价是解题关键.24.输入x ,按如图所示程序进行运算:规定:程序运行到“判断大于313”计为一次运算.若输入的x 为8,则程序运算 3 次停止.【分析】根据图表可得运算规律为52x -是否大于313,将8x =代入计算第一次、第二次、第三次的值即可得出答案.【解答】解:第一次运算8x =,5258238313x -=⨯-=<;第二次运算38x =,525382188313x -=⨯-=<;第三次运算188x =,5251882938313x -=⨯-=>,∴程序运算3次后停止,故答案为:3.【点评】本题考查了有理数的运算,理解图表所表示的运算法则是解答本题的关键,另外要正确表示出每次的输出数据.五、选择题(共6小题,每小题0分,满分0分) 25.函数322x y x +=-( ) A .22x - B .2x -且1x ≠ C .2x - D .22x -且1x ≠【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式10x -≠;根据二次根式的性质,被开方数大于或等于0,可知:20x +,据此解得x 的范围.【解答】解:要使函数322x y x +=--有意义, 则2010x x +⎧⎨-≠⎩, 解得2x -且1x ≠.故选:B .【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.26.如图,在直角梯形ABCD 中,//DC AB ,90A ∠=︒,28AB cm =,24DC cm =,4AD cm =,点M 从点D 出发,以1/cm s 的速度向点C 运动,点N 从点B 同时出发,以2/cm s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积2()y cm 与两动点运动的时间()t s 的函数图象大致是( )A .B .C .D .【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:因为在直角梯形ABCD 中,//DC AB ,90A ∠=︒,所以四边形ANMD 也是直角梯形,因此它的面积为1()2DM AN AD +⨯,因为DM t =,282AN t =-,4AD =;所以四边形AMND 的面积1(282)42562y t t t =+-⨯=-+. 因为当其中一个动点到达端点停止运动时,另一个动点也随之停止运动;所以当N 点到达A 点时,228t =,14t =;所以自变量t 的取值范围是014t <<.故选:D .【点评】考查根据几何图形的性质确定函数的图象和函数图象的读图能力.27.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:以下结论错误的是( )A .当40h =时,t 约2.66秒B .随高度增加,下滑时间越来越短C .估计当80h cm =时,t 一定小于2.56秒D .高度每增加了10cm ,时间就会减少0.24秒【分析】根据表格中数量的变化情况,分别进行判断即可.【解答】解:当支撑物高度从10cm 升高到20cm ,下滑时间的减少0.24s ,从20cm 升高到30cm 时,下滑时间就减少0.2s ,从30cm 升高到40cm 时,下滑时间就减少0.15s ,从40cm 升高到50cm 时,下滑时间就减少0.1s ,因此,“高度每增加了10cm ,时间就会减少0.24秒”是错误的,故选:D .【点评】本题考查变量之间的关系,理解表格中两个变量之间的变化关系是正确判断的前提. 28.()f x 表示关于x 的函数,若1x ,2x 在x 的取值范围内,且12x x ,均有对应的函数值12()()f x f x ,则称函数()f x 在x 取值范围内是非减函数.已知函数()f x 当01x 时为非减函数,且满足以下三个条件:①(0)0f =,②1()()32x f f x =,③(1)1()f x f x -=-;则11()()38f f +的值为( ) A .12 B .23 C .34 D .1【分析】令1x =求出1()3f 的值,再令38x =分别代入②③求出1()8f 、3()8f 的值,从而得解. 【解答】解:令1x =,则11()32f f =(1), (10)1(0)1f f -=-=, 所以,111()1322f =⨯=, 当13x =时,11(1)1()33f f -=-, 所以,当2111()1()13322f f =-=-=, 所以,21()()33f f =, 即函数关于1(2,1)2对称, 令38x =,则11313()()()83828f f f =⨯=, 当38x =时,33(1)1()88f f -=-, 即53()1()88f f =-, 31()82f ∴=, 1111()8224f ∴=⨯=, 11113()()38244f f ∴+=+=. 故选:C .【点评】本题考查了函数值求解,难度较大,关键在于求出关于12x =对称. 29.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A ,B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =+和y x =的图象于点C ,D .若OB CD =,则a = 4 .【分析】先利用直线y x =上的点的坐标特征得到点M 的坐标为(2,2),利用待定系数法可求一次函数的解析式为132y x =-+,可求点B 坐标,可得3CD OB ==,可得1(3)32a a --+=,可求解. 【解答】解:点M 在直线y x =的图象上,且点M 的横坐标为2,∴点M 的坐标为(2,2),把(2,2)M 代入12y x b =-+得12b -+=,解得3b =, ∴一次函数的解析式为132y x =-+, 132y x =-+的图象与y 轴交于点B , B ∴点坐标为(0,3),3OB ∴=,CD OB =,3CD ∴=,PC x ⊥轴,C ∴点坐标为1(,3)2a a -+,D 点坐标为(,)a a 1(3)32a a ∴--+=, 4a ∴=,故答案为:4.【点评】本题考查了一次函数图象上的坐标特征,掌握图象上的点满足图象的解析式是本题的关键.30.若使函数2212y x bx c=-+的自变量x 的取值范围是一切实数,则下面的关系中一定满足要求的是( )A .0b c >>B .0b c >>C .0c b >>D .0c b >>【分析】函数2212y x bx c=-+的自变量x 取值范围是一切实数,即分母一定不等于0,即方程2220x bx c -+=无解.即△22440b c =-<,即可解得b 、c 的关系.【解答】解:函数2212y x bx c =-+的自变量x 取值范围是一切实数, ∴分母一定不等于0, 2220x bx c ∴-+=无解,即△22444()()0b c b c b c =-=+-<,解得:c b c <<-或c b c -<<.当0c b >>时,一定满足要求上面要求.故选:D .【点评】本题是函数有意义的条件与一元二次方程的解相结合的问题.函数表达式是分式时,考虑分式的分母不能为0.21.将函数21y x =-的图象位于x 轴下方的部分沿x 轴翻折至其上方,所得的折线是函数|21|y x =-的图象,与直线y x b =+的图象交点的横坐标x 均满足12x -<<,则b 的取值范围为( )A .1b <B .112b -<C .14b <<D .01b <【分析】依据翻折可得折线的函数解析式为121()2121()2x x y x x ⎧-+<⎪⎪=⎨⎪->⎪⎩,根据自变量与函数值得对应关系,可得交点坐标,根据函数|21|y x =-的图象与直线y x b =+的图象交点的横坐标x 均满足12x -<<,即可得到112b -<. 【解答】解:如图,所得的折线的函数解析式为121()2121()2x x y x x ⎧-+<⎪⎪=⎨⎪->⎪⎩, 当1x =-时,213y =+=,即(1,3)A -;当2x =时,413y =-=,即(2,3)B ;当0y =时,12x =,即1(2C ,0); 把(1,3)A -代入y x b =+中,可得4b =,把(2,3)B代入y x b=+中,可得1b=,把1 ( 2C,0)代入y x b=+中,可得12b=-,函数|21|y x=-的图象与直线y x b=+的图象交点的横坐标x均满足12x-<<,∴4112bbb⎧⎪<⎪<⎨⎪⎪-⎩,即112b-<,故选:B.【点评】本题考查了一次函数图象与几何变换,利用翻折得出分段函数是解题关键,解题时需要利用自变量与函数值的对应关系.。

河南省洛阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省洛阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省洛阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A .B .C .D .2.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A .平均数是3B .中位数是3C .众数是3D .方差是2.53.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A .50°B .40°C .30°D .25°4.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .7185.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .46.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o7.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .198.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 79.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A ,B 在围成的正方体中的距离是( )A .0B .1C .2D .310.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数6y x=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B'DE 处,点B'恰好落在正比例函数y=kx 图象上,则k 的值是( )A .25-B .121-C .15- D .124- 11.tan30°的值为( )A.B.C.D.12.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C 顺时针旋转60°,则点P随之运动的路径长是_________14.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.15.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)18.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.20.(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.21.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)(1)计算:(12-)﹣112﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223x xxx≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来.24.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.25.(10分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).26.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.27.(12分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.2.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.A【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.4.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个; ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个, 概率为451=902. 故选A .点睛:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 5.B【解析】【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6.B【解析】【分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,BOC 2A 80∠∠==o ,OB OC =Q ,BCO CBO 50∠∠∴==o ,故选:B .【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.7.D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.8.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。

河南省洛阳市2019-2020学年中考数学二模试卷含解析

河南省洛阳市2019-2020学年中考数学二模试卷含解析

河南省洛阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16002.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.如果关于x的方程x2﹣k x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥44.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°6.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.当a>0 时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.(a2)3=a5A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a9.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .210.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( )A .12B .2C .255D .13411.在同一直角坐标系中,二次函数y=x 2与反比例函数y=(x >0)的图象如图所示,若两个函数图象上有三个不同的点A (x 1,m ),B (x 2,m ),C (x 3,m ),其中m 为常数,令ω=x 1+x 2+x 3,则ω的值为( )A .1B .mC .m 2D .12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .14.因式分解:323x y x -=_______________.15.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.16.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.17.观察下列等式:111第2个等式:a 2=1111()35235=⨯-⨯; 第3个等式:a 3=1111()57257=⨯-⨯; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____;(2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为_____. 18.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.20.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)21.(6分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当1y>2y>0时,x的取值范围.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2:1,点C2的坐标是.23.(8分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.24.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?25.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.26.(12分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a--+)+2421aa+-,其中a=﹣2+2.27.(12分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,考点:一元二次方程的应用.2.B【解析】【分析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.3.D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D .【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x >3−1, 合并同类项得:−12x >2, 系数化为1得:x <-4.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法. 5.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.D【解析】【分析】根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0, 0<a2<a,所以,a<a2<﹣a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置. 7.A直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A 选项:a 0=1,正确;B 选项:a ﹣1= 1a,故此选项错误; C 选项:(﹣a )2=a 2,故此选项错误;D 选项:(a 2)3=a 6,故此选项错误;故选A .【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键. 8.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A .x 4•x 4=x 4+4=x 8≠x 16,故该选项错误;B .(a 3)2=a 3×2=a 6≠a 5,故该选项错误;C .(ab 2)3=a 3b 6≠ab 6,故该选项错误;D .a+2a=(1+2)a=3a ,故该选项正确;故选D .考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.9.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式2m x -≤﹣1的解集为x≥4,∴12m+3=4,解得m=1.故选D.考点:不等式的解集10.C【解析】【分析】如图,由图可知BD=2、CD=1、BC=5,根据sin∠BCA=BDBC可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC=22BD CD+=2221+=5,则sin∠BCA=BDBC=5=25,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.11.D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.12.C∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.14.x 3(y+1)(y-1)【解析】【分析】先提取公因式x 3,再利用平方差公式分解可得.【详解】解:原式=x 3(y 2-1)=x 3(y+1)(y-1),故答案为x 3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.15.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b ,可得:2=-1+b ,解得:b=3,故答案为316.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC ==,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.17.1111()9112911=⨯-⨯ 49 【解析】【分析】(1)观察等式可得()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭ 然后根据此规律就可解决问题; (2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)12311111111111(1)()()2323525722121n a a a a n n ⎛⎫+++⋯+=⨯-+⨯-+⨯-+⋯+- ⎪-+⎝⎭ 1149(1)22199n =-=+, 解得:n=49. 故答案为:11119112911⎛⎫=⨯- ⎪⨯⎝⎭49. 【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.18.50(1﹣x )2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m <2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m 2-3)=-8m+2>3,然后解不等式即可; (2)先利用m 的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m 的值.【详解】(1)△=[2(m ﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得 m <2;(2)∵m <2,且 m 为非负整数,∴m=3 或 m=1,当 m=3 时,原方程为 x 2-2x-3=3,解得 x 1=3,x 2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x 2﹣2=3,解得 x 1x 2= ,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=3(a≠3)的根与△=b 2-4ac 有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.20.(122+2ab 4a b ;(2)+475. 【解析】【分析】(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD•CD 的最大值,从而可求得四边形ABCD 面积的最大值;(2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D',交AC 于F ,FD'即为所求最大值,再求得 △ACD′的面积即可.【详解】(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b , ②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab 4a b +; (2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC =19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.21.(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1. 【解析】【分析】(1)根据△AOB 的面积可求AB ,得A 点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.22.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.23.见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.24.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解25.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE ≌△FCE ,∴AE=EF ,在Rt △ADE 中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC ,∠AED=∠CEH ,∴△ADE ∽△CHE ,∴ = , ∴ = , ∴EH= ,∴△ACF 中边AF 的中垂距为26.(1)-1;(2)26182+【解析】【分析】 (1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +- 当a=﹣2时,原式222542+-=26182+ 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.27.(1)127;(2)45(9﹣t );(3)①S =﹣23t 2+163t ﹣327;②S=﹣27t 2+1.③S=24175(9﹣t )2;(3)3或215或4或173. 【解析】【分析】(1)根据题意点R 与点B 重合时t+43t=3,即可求出t 的值; (2)根据题意运用t 表示出PQ 即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB .S=S △PQR ﹣S △KBR =12×3×3﹣12×t×47t=﹣27t 2+1. ③如图3中,当3<t <9时,重叠部分是△PQK .S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53,∴t=9﹣103=173.综上所述,满足条件的t的值为3或215或4或173.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2019-2020学年河南省洛阳市中考数学模拟试卷(有标准答案)

2019-2020学年河南省洛阳市中考数学模拟试卷(有标准答案)

河南省洛阳市中考数学模拟试卷一、选择题1.在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1064.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b26.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率7.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP 和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题9.计算:|﹣2|= .10.已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d= .11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.14.圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=°.15.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F 的长为.三、解答题(本题共8小题,共75分)16.先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.17.如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥B D,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.18.为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是人,女生收看“上合会议”新闻次数的中位数是次,平均数是次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是.19.已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.20.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.21.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50 60 70 80 …销售量y(千克)…100 90 80 70 …(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.23.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q 同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.河南省洛阳市中考数学模拟试卷参考答案与试题解析一、选择题1.在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,∴在:﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【考点】平行线的判定.【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.5.下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的除法底数不变指数相减,积的乘方等于乘方的积,合并同类项系数相加字母及指数不变,差的平方等于平方和减积的二倍,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国中学生的视力情况,人数众多,适合抽样调查,故此选项错误;B、了解九(1)班学生鞋子的尺码情况,人数不多,适于全面调查,故此选项正确;C、监测一批电灯泡的使用寿命,利用普查具有破坏性,适合抽样调查,故此选项错误;D、了解郑州电视台《郑州大民生》栏目的收视率,人数众多,意义不大,适合抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【专题】压轴题.【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.【点评】主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.8.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP 和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】全等三角形的判定.【专题】动点型.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点评】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.二、填空题9.计算:|﹣2|= 2 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d= 4cm .【考点】比例线段.【分析】由=,其中a=3cm,b=2cm,c=6cm,可得=,继而可求得答案.【解答】解:∵ =,其中a=3cm,b=2cm,c=6cm,∴=,解得:d=4cm.故答案为:4cm.【点评】此题考查了比例线段以及比例的性质.注意根据题意构造方程是解题的关键.11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出这两个球上的数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中这两个球上的数字之和为偶数的结果数为2,所以这两个球上的数字之和为偶数的概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= ﹣4 .【考点】反比例函数系数k的几何意义.【分析】由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=4,则k的值即可求出.【解答】解:由题意得:S=|k|=4,又双曲线位于第二、四象限,则k=﹣4,矩形ABOC故答案为:﹣4.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4 .【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.14.圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=40 °.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质得到∠BCD=180°﹣∠A,根据三角形的外角的性质计算即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A,∵∠CBF=∠A+∠E,∠DCB=∠CBF+∠F,∴180°﹣∠A=∠A+∠E+∠F,即180°﹣∠A=∠A+40°+60°,解得∠A=40°.故答案为:40.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补、圆内接四边形的任意一个外角等于它的内对角是解题的关键.15.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F 的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF 中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•C E,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.三、解答题(本题共8小题,共75分)16.先化简,再求值:(x ﹣1﹣)÷,其中x 是方程x 2+2x=0的解.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先算括号内的减法,再把除法转化为乘法来做,通过分解因式,约分化为最简,最后把解方程求得的x 的值代入计算即可.【解答】解:原式=•=•=,解方程x 2+2x=0得:x 1=﹣2,x 2=0,由题意得:x≠﹣2,所以x=0.把x=0代入=,原式==﹣1.【点评】此题考查的是分式的除法和减法的混合运算以及因式分解法解一元二次方程,熟练掌握运算法则是解题的关键.17.如图,在⊙O 中,AC 与BD 是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E 、F(1)四边形ABCD 是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF .【考点】圆周角定理;全等三角形的判定与性质;矩形的判定.【分析】(1)由圆周角定理得出∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,即可得出四边形ABCD 是矩形;(2)由AAS 证明△BOE≌△COF,得出对应边相等即可.【解答】(1)解:四边形ABCD 是矩形.理由如下:∵AC 与BD 是圆的直径,∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,∴四边形ABCD是矩形;(2)证明:∵BO=CO,又∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.在△BOE和△COF中,,∴△BOE≌△COF(AAS).∴BE=CF.【点评】本题考查了圆周角定理、矩形的判定、全等三角形的判定与性质;熟练掌握圆周角定理,证明三角形全等是解决问题(2)的关键.18.为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是20 人,女生收看“上合会议”新闻次数的中位数是 3 次,平均数是 3 次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.【考点】方差;条形统计图;加权平均数;极差;标准差.【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的离散程度,小明需要关注方差.【解答】解:(1)20,3,3;(2)由题意知:该班女生对新闻的“关注指数”为65%,所以,男生对新闻的“关注指数”为60%.设该班的男生有x人.则=60%,解得:x=25. 经检验x=25是原方程的解.答:该班级男生有25人;(3)小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差. 故答案为20,3,3;方差.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.19.已知关于x 的方程x 2﹣2(m+1)x+m 2=0(1)当m 取什么值时,原方程没有实数根;(2)对m 选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.【考点】根的判别式.【分析】(1)要使原方程没有实数根,只需△<0即可,然后可以得到关于m 的不等式,由此即可求出m 的取值范围;(2)根据(1)中求得的范围,在范围之外确定一个m 的值,再利用公式法求解即可.【解答】解:(1)∵方程没有实数根,∴b 2﹣4ac=[﹣2(m+1)]2﹣4m 2=8m+4<0,∴m<﹣,∴当m <﹣时,原方程没有实数根;(2)由(1)可知,当m≥﹣时,方程有实数根,当m=1时,原方程变为x 2﹣4x+1=0,设此时方程的两根分别为x 1,x 2,解得x 1=2+,x 2=2﹣.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解法.20.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.【考点】解直角三角形的应用;作图—应用与设计作图.【分析】(1)运用尺规作图即可得出结果;(2)作CD⊥MN于点D.由三角函数得出MD=CD,DN==CD,由已知条件得出CD+CD=2(+1),解得CD=2km即可.【解答】解:(1)答图如图1所示:点C即为所求;(2)作CD⊥MN于点D.如图2所示:∵在Rt△CMD中,∠CMN=30°,∴=tan∠CMN,∴MD===CD,∵在Rt△CND中,∠CNM=45°,=tan∠CNM,∴DN==CD,∵MN=2(+1)km,∴MN=MD+DN=CD+CD=2(+1)km.解得:CD=2km.答:点C到公路ME的距离为2km.【点评】本题考查了解直角三角形的应用、作图﹣设计;熟练掌握基本作图和解直角三角形是解决问题的关键.21.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:售价x (元/千克) …50 60 70 80 … 销售量y (千克) … 100 90 80 70 …(1)求y 与x 的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?【考点】二次函数的应用.【分析】(1)根据图表中的各数可得出y 与x 成一次函数关系,从而结合图表的数可得出y 与x 的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w (元)=售量×每件利润可表示出w 与x 之间的函数表达式,再利用二次函数的最值可得出利润最大值.【解答】解:(1)设y 与x 的函数关系式为y=kx+b (k≠0),根据题意得,解得.故y 与x 的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x ﹣20)=4000,解得x 1=70,x 2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w 与x 的函数关系式为:w=(﹣x+150)(x ﹣20)=﹣x 2+170x ﹣3000=﹣(x ﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.【点评】本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.22.(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:AD=DE ;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;(2)由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;(3)由BC=CD,得到AC=CD,得到CE垂直平分AD,证出△ADE是等边三角形,得到△ABC∽△ADE,即可得到结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,∴DF=BD,∠BFD=60°,∵BD=CD,∴DF=CD∴∠AFD=120°.... ∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADB=∠ADC=90°,∴∠ADF=∠ECD=30°,在△AFD与△EDC中,,∴△AFD≌△DCE(ASA),∴AD=DE;(2)AD=DE;证明:如图2,过点D作DF∥AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°,又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°,∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD,∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠ADF=∠EDC,在△AFD≌△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:∵BC=CD,∴AC=CD,∵CE平分∠ACD,∴CE垂直平分AD,∴AE=DE,∵∠ADE=60°,...∴△ADE是等边三角形,∴△ABC∽△ADE,△CDO中,,在Rt∴,∴,∴==.【点评】本题主要考查了全等三角形的性质与判定,等边三角形的性质,相似三角形的判定和性质,正确的作出图形是解题的关键.23.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q 同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)首先根据待定系数法,求出BC所在的直线的解析式,再分别求出点P、点Q的坐标各是多少;然后分两种情况:①当∠QPB=90°时;②当∠PQB=90°时;根据等腰直角三角形的性质,求出t的值各是多少即可.(3)首先延长MQ交抛物线于点N,H是PQ的中点,再用待定系数法,求出PQ所在的直线的解析式,然后根据PQ的中点恰为MN的中点,判断出是否存在满足题意的点N即可.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴解得,∴二次函数的表达式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),①如图1:,当∠QPB=90°时,∵经过t秒,AP=t,BQ=t,BP=3﹣(t﹣1)=4﹣t.∵OB=OC=3,∴∠OBC=∠OCB=45°.∴BQ=BP∴t=×(4﹣t)解得t=2.即当t=2时,△BPQ为直角三角形.②如图2:,当∠PQB=90°时,∵∠PBQ=45°,∴BP=BQ.∵BP═4﹣t,BQ=t,∴4﹣t=×t解得t=即当t=时,△BPQ为直角三角形.综上,当△BPQ为直角三角形,t=2或.(3)N点的坐标是(2,﹣3)(3)如图3:,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=px+q,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),解得.∴PQ所在的直线的解析式是y=x+,。

河南省洛阳市赵村镇一中2019-2020学年下期阶段性学业检测题(九年级数学试题)参考答案

河南省洛阳市赵村镇一中2019-2020学年下期阶段性学业检测题(九年级数学试题)参考答案
整理得 x2+(m﹣4)x+3=0,…………………..6 分 b2 4ac (m﹣4)2﹣4×1×3=0,解得 m= 4 2 3 或 m= 4 - 2 3 ,
直线 AB 向下平移了 4 2 3 或 4 - 2 3 个单位长度.…………………..9 分
21.(10 分)解:(1)y 甲=2x+1000,y 乙=3x;…………………..2 分 (2)图象如图所示…………………..4 分
∵反比例函数 y (k>0)的图象经过 B 点, ∴k=3×1=3,
∴反比例函数的解析式为 y ;…………………..4 分
(2)将直线 AB 向下平移 m(m>0)个单位长度得直线解析式为 y=﹣x+4﹣m, ∵直线 AB 向下平移 m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,
∴ 돸x+4﹣m,
∴直线 PQ 为⊙O 切线;…………………..5 分 (2)①2;② 2 3. …………………..9 分
19.(9 分)解:设大楼与塔之间的距离 AC 为 x m.
BC
在 Rt△ABC 中,tan∠BAC= ,
AC
∴BC= AC tan BAC x tan 53° x 4 4 x ,…………………..2 分 33
2019-2020 学年下期阶段性学业检测题
九年级 数学
参考答案
一、选择题(每小题 3 分,共 30 分)
1.A 2.B 3.C 4. D 5. C 6. A 7.B 8.C 9.D 10. D
二、填空题(每小题 3 分,共 15 分)
11. 1 12. 1 x 3 2
ቤተ መጻሕፍቲ ባይዱ
13. 40 14. 2 2 3 15. 4 2 2 或 3 2

河南省洛阳市2019-2020学年中考数学第二次调研试卷含解析

河南省洛阳市2019-2020学年中考数学第二次调研试卷含解析

河南省洛阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.2C.2D.312.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm3.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m4.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a35.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A .235B .5C .6D .2546.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm7.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的8.下列运算结果正确的是( ) A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a9.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元10.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF11.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°12.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.14.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=kx的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.15.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.16.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.17.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)18.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y (台)与售价x (元/台)之间的函数关系式及售价x 的取值范围; 售价(元/台) 月销售量(台) 400 200 250 x(2)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?20.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)21.(6分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.22.(8分)在平面直角坐标系xOy 中,二次函数y =ax 2+bx+c (a≠0)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.23.(8分)如图,在等腰△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥BC 交AB 延长线于点E ,垂足为点F .(1)证明:DE 是⊙O 的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE 和线段DE 所围成图形(阴影部分)的面积, (3)若⊙O 的半径r=5,5,求线段EF 的长.24.(10分)解不等式组:3(2)421152xx x x ≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.25.(10分)如图,反比例y=4x的图象与一次函数y=kx ﹣3的图象在第一象限内交于A (4,a ). (1)求一次函数的解析式;(2)若直线x=n (0<n <4)与反比例函数和一次函数的图象分别交于点B ,C ,连接AB ,若△ABC 是等腰直角三角形,求n 的值.26.(12分)计算:01113(π3)3tan30()2----+-o.27.(12分)已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题:(1)请用t 分别表示A 、B 的路程s A 、s B ; (2)在A 出发后几小时,两人相距15km ?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】作点A 关于MN 的对称点A′,连接A′B ,交MN 于点P ,则PA+PB 最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴2∴2故选:C.2.A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.3.A【解析】【分析】先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 4.C 【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则. 详解:A 、(b 2)3=b 6,故此选项错误; B 、x 3÷x 3=1,故此选项错误; C 、5y 3•3y 2=15y 5,正确;D 、a+a 2,无法计算,故此选项错误. 故选C .点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键. 5.B 【解析】 【分析】易证△CFE ∽△BEA ,可得CF CEBE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题. 【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB , ∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CEBE AB =,BE =CE =x ﹣52,即525522x y x -=-,∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72,∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键. 6.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 7.C【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 8.C 【解析】选项A , 3a 2-a 2 = 2 a 2;选项B , a 2·a 3= a 5;选项C , (-a 2)3 = -a 6;选项D ,a 2÷a 2 = 1.正确的只有选项C ,故选C. 9.A 【解析】 【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可. 【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元. 故选A . 【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组. 10.B 【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得. 【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.11.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.231.【解析】【分析】据题意求得A0A1=4,A0A1=23A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=23,A0A3=1,A 0A4=23,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为23,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.14.﹣1【解析】【详解】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭VV,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.15.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴AB=()()2234x x +=5x ,∵AB=20m ,∴5x=20,解得:x=4, 故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 16.6【解析】设这个扇形的半径为r ,根据题意可得: 2606360r ππ=,解得:6r =. 故答案为6.17.100(3【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt △ACD 中利用正切定义可计算出AD=100,在Rt △BCD 中利用等腰直角三角形的性质得3,然后计算AD+BD 即可.详解:如图,∵无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt △ACD 中,∵tanA=CD AD, ∴=100, 在Rt △BCD 中,,∴(.答:A 、B 两点间的距离为100(故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形. 18.1.【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】 解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】【分析】(1)根据题中条件可得390,1-5x ,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w. 【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.20.1.4米.【解析】【分析】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【详解】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM ,∴四边形BEMC 为平行四边形,∴BC=EM ,CM=BE .在Rt △MEF 中,EF=AD ﹣AE ﹣DF=0.5,FM=CF+CM=1.3,∴EM=22EF FM +≈1.4,∴B 与C 之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC 的长度是解题的关键.21. (1)证明见解析;(2)2m =或4m =.【解析】【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯-V 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.22.(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G (7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.23.(1)见解析(2)833π(3)83【解析】分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=12ODOE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.(3)先证Rt△DFB∽Rt△DCB得BF BDBD BC=,据此求得BF的长,再证△EFB∽△EDO得EB BFEO OD=,据此求得EB的长,继而由勾股定理可得答案.详解:(1)如图,连接BD、OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴142xx=+,解得:x=4,∴3S△ODE=12×4×33S扇形ODB=2 60?·48 3603ππ=,则S阴影=S△ODE-S扇形ODB3-83π;(3)在Rt△ABD中,BD=ABsinA=10×55∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴BF BDBD BC=2525=∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴EB BFEO OD=,即255EBEB=+,∴EB=103,∴EF=228 = 3EB BF-.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.24.不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【解析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.试题解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.(1)y=x﹣3(2)1【解析】【分析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,4n),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程4n-1=1-(n-3),解方程即可.【详解】解:(1)∵反比例y=4x的图象过点A(4,a),∴a=44=1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,4n),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴4n﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.26.234.【解析】【分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式1132-+-=4 .故答案为4 .【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.27.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.。

2019年洛阳市九年级数学下期末试卷(带答案)

2019年洛阳市九年级数学下期末试卷(带答案)

15.如图,⊙O 的半径为 6cm,直线 AB 是⊙O 的切线,切点为点 B,弦 BC∥AO,若∠
A=30°,则劣弧 BC 的长为 cm.
16.如图,一张三角形纸片 ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点 A 与
点 B 重合,那么折痕长等于 cm.
17.甲、乙两人在 1200 米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别 以不同的速度匀速前进,已知,甲出发 30 秒后,乙出发,乙到终点后立即返回,并以原来 的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离, x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中 y 与 x 函数关系,那么, 乙到达终点后_____秒与甲相遇.
22.先化简,再求值:(2- 3x 3) x2 2x 1 ,其中x 3
x2
x 2
23.已知:如图,在 ABC 中, AB AC , AD BC , AN 为 ABC 外角 CAM 的
平分线, CE AN .
(1)求证:四边形 ADCE 为矩形;
(2)当 AD 与 BC 满足什么数量关系时,四边形 ADCE 是正方形?并给予证明
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图 1 中,∠α 的度数是______,并把图 2 条形统计图补充完整. (3)某县建档立卡贫困户有 10000 户,如果全部参加这次满意度调查,请估计非常满意的 人数约为多少户?
(4)调查人员想从 5 户建档立卡贫困户(分别记为 a,b, c, d, e )中随机选取两户,调查他
D. m 3 且 m 2
7.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,

2019-2020学年第二学期九年级数学期末考试试卷及答案

2019-2020学年第二学期九年级数学期末考试试卷及答案

第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。

河南省洛阳市2019-2020学年中考五诊数学试题含解析

河南省洛阳市2019-2020学年中考五诊数学试题含解析

河南省洛阳市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.(a2)3=a5B.(a-b)2=a2-b2C.355=3 D.3-27=-32.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π4.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°5.下列图形中,周长不是32 m的图形是( )A.B.C.D.6.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分7.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°9.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+510.估计19﹣1的值为()A.1和2之间B.2和3之间C.3和4之间D.4和5之间11.tan30°的值为()A.B.C.D.12.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.14.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.15.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.16.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD 的相似比为_____.17.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME 的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=▲ .18.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到△A1B1O,则翻滚2017次后AB中点M经过的路径长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.20.(6分)先化简,再求值:2569122x xx x-+⎛⎫-÷⎪++⎝⎭,其中x=-521.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.22.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,3E,F同时从B 点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x 的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.23.(8分)解分式方程:- =24.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD (A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数kyx=(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)25.(10分)若关于x的方程311x ax x--=-无解,求a的值.26.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.27.(12分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.2.C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>b2a-时,y随着x的增大而增大,故⑤错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.3.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.4.C【解析】【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.5.B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.6.D【解析】【分析】【详解】解:总人数为6÷10%=60(人),则91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故选D.【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.7.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.8.C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.9.A【解析】【分析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 10.C【解析】分析:根据被开方数越大算术平方根越大,可得答案.161925,∴119<5,∴319﹣1<1.故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<19<5是解题的关键,又利用了不等式的性质.11.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.C【解析】【分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.cm【解析】试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=cm.考点:圆锥侧面展开扇形与底面圆之间的关系14.1【解析】【分析】把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【详解】∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.15.44°【解析】【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【点睛】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.16.3:1.【解析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34). 17.2n 12- 【解析】连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM .∴△AME 与△AMB 同底等高.∴△AME 的面积=△AMB 的面积.∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=n -1时,△AME 的面积为()2n 1S n 12=-. ∴当n≥2时,()()()22n n 11112n 1S S n n 1=n+n 1n n+1=2222---=---- 18.(13463+896)π. 【解析】【分析】由圆弧的弧长公式及正△ABO 翻滚的周期性可得出答案.【详解】解:如图作3B E ⊥x 轴于E, 易知OE=5, 33B E =,33)B =,观察图象可知3三次一个循环,一个循环点M 的运动路径为¼¼¼MNNH HM ++'=120?·3120?·1120?·1180180180πππ++=234()3π+, 201736721÷=⋅⋅⋅Q∴翻滚2017次后AB 中点M 经过的路径长为2342313463672?()(896)πππ++=+, 故答案:13463(896)π+ 【点睛】本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)这个游戏不公平,理由见解析. 【解析】【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中, 故从袋中随机摸出一球,标号是1的概率为:13; (2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P (甲胜)=59,P (乙胜)=49. ∴P (甲胜)≠P (乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.13x -,-18 【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算. 详解:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭ ()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点. 21.(1)41(2)15%(3)16【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)=212=16. 22. (1) 30;2;(2)x=1;(3)当x=187时,y 最大93; 【解析】【分析】(1)如图1中,作DH ⊥BC 于H ,则四边形ABHD 是矩形.AD=BH=3,BC=6,CH=BC ﹣BH=3,当等边三角形△EGF 的高=3, 时,点G 在AD 上,此时x=2;(2)根据勾股定理求出BD 的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出11233,22BG BD ==⨯=根据等边三角形的性质得到BF ,即可求出x 的值; (3)图2,图3三种情形解决问题.①当2<x<3时,如图2中,点E 、F 在线段BC 上,△EFG 与四边形ABCD 重叠部分为四边形EFNM ;②当3≤x<6时,如图3中,点E 在线段BC 上,点F 在射线BC 上,重叠部分是△ECP ;【详解】(1)作DH ⊥BC 于H ,则四边形ABHD 是矩形.∵AD=BH=3,BC=6,∴CH=BC ﹣BH=3,在Rt △DHC 中,CH=3,3,DH AB == ∴3tan 3DH DCB CH ∠== 当等边三角形△EGF 3G 在AD 上,此时x=2,∠DCB=30°,故答案为30,2,(2)如图∵AD ∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90° 在Rt △ABD 中,()22223323,BD AB BD =+=+=31sin ,223AB ADB BD ∠===Q ∴∠ADB=30° ∵G 是BD 的中点∴11233,22BG BD ==⨯=∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等边三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,32, cosBGBFGBF===∠∴2x=2即x=1;(3)分两种情况:当2<x<3,如图2点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM ∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,133333tan603333, 2222MG GN x NM MG x x⎛⎫==-=⋅=-=-⎪⎝⎭o∴131333333,222EFG GMNxy S S x x x⎛⎫=-=---⎪⎝⎭⎝V V22739393731893822877x x x⎫=-+-=--+⎪⎝⎭∴当187x=时,y最大93=当3≤x<6时,如图3,点E 在线段BC 上,点F 在线段BC 的延长线上,△GEF 与四边形ABCD 重叠部分为△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt △EPC 中EC=6﹣x , 113,22EP EC x ==- 13tan 3tan 6033,22PC EP PEC x x ⎛⎫=⋅∠=-⋅= ⎪⎝⎭o 21133339333322y x x x x ⎛⎫⎛⎫∴=⨯-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ 对称轴为3336,32x ==⨯ 当x <6时,y 随x 的增大而减小∴当x=3时,y 最大93= 综上所述:当187x =时,y 最大93= 【点睛】 属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.23.方程无解【解析】【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x 的值,再代入最简公分母进行检验即可.【详解】解:方程的两边同乘(x +1)(x−1),得:,,∴此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.24.(1)2?2?或;(2)2y x =;(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+,偶数. 【解析】【分析】(1)设正方形ABCD 的边长为a ,当点A 在x 轴负半轴、点B 在y 轴正半轴上时,可知3a=2,求出a ,(2)作DE 、CF 分别垂直于x 、y 轴,可知ADE ≌△BAO ≌△CBF ,列出m 的等式解出m , (3)本问的抛物线解析式不止一个,求出其中一个.【详解】解:(1)∵正方形ABCD 是一次函数y=x+1图象的其中一个伴侣正方形.当点A 在x 轴正半轴、点B 在y 轴负半轴上时,∴AO=1,BO=1,∴正方形ABCD 的边长为2 ,当点A 在x 轴负半轴、点B 在y 轴正半轴上时,设正方形的边长为a ,得3a=2,∴1a 23= , 所以伴侣正方形的边长为2或123; (2)作DE 、CF 分别垂直于x 、y 轴,知△ADE ≌△BAO ≌△CBF ,此时,m <2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C 点坐标为(2﹣m ,2),∴2m=2(2﹣m )解得m=1,反比例函数的解析式为y=2x, (3)根据题意画出图形,如图所示:过C 作CF ⊥x 轴,垂足为F ,过D 作DE ⊥CF ,垂足为E ,∴△CED ≌△DGB ≌△AOB ≌△AFC ,∵C (3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE ﹣GE=DE ﹣OF=4﹣3=1,则D 坐标为(﹣1,3);设过D 与C 的抛物线的解析式为:y=ax 2+b ,把D 和C 的坐标代入得:394a b a b +=⎧⎨+=⎩, 解得18238a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴满足题意的抛物线的解析式为y=18x 2+238; 同理可得D 的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+, 所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.25.1-2a =或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.26.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率=212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B 的结果数目m ,求出概率.27.证明见解析.【解析】【分析】想证明BC=EF ,可利用AAS 证明△ABC ≌△DEF 即可.【详解】解:∵AF =DC ,∴AF+FC =FC+CD ,∴AC =FD ,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

河南省洛阳市2019-2020学年中考数学三模考试卷含解析

河南省洛阳市2019-2020学年中考数学三模考试卷含解析

河南省洛阳市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .2.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°3.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( ) A .20%B .11%C .10%D .9.5%4.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( ) A .k >12B .k≥12C .k >12且k≠1 D .k≥12且k≠1 5.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2B .201622C .20152(2D .20161()26.对于反比例函数2y x,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限7.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.728.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.9.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折10.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.7411.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分12.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).可得S 矩形NFGD =S 矩形EBMF . 14.函数中,自变量x 的取值范围是_____.15.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.16.若式子23x +有意义,则x 的取值范围是______.17.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.18.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限,若点A 的坐标为(1,0),则点E 的坐标是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去. (1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.20.(6分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.D 两个灾区安置点.从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值; C D 总计/t A 200 B x 300 总计/t240260500(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调动方案.22.(8分)计算:2344(1)11x x x x x ++-+÷++. 23.(8分)如图,为了测量建筑物AB 的高度,在D 处树立标杆CD ,标杆的高是2m ,在DB 上选取观测点E 、F ,从E 测得标杆和建筑物的顶部C 、A 的仰角分别为58°、45°.从F 测得C 、A 的仰角分别为22°、70°.求建筑物AB 的高度(精确到0.1m ).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)24.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.25.(10分)如图,在▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:△ADE ≌△CBF ;求证:四边形BFDE 为矩形.26.(12分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”27.(12分)如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由;②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.参考答案1.D 【解析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是. 故选D . 2.C 【解析】 【分析】根据旋转的性质和三角形内角和解答即可. 【详解】∵将△ABC 绕点C 顺时针旋转90°得到△EDC . ∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE , ∴∠ACD=90°-20°=70°, ∵点A ,D ,E 在同一条直线上, ∴∠ADC+∠EDC=180°, ∵∠EDC+∠E+∠DCE=180°, ∴∠ADC=∠E+20°, ∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45° 在△ADC 中,∠ADC+∠DAC+∠DCA=180°, 即45°+70°+∠ADC=180°, 解得:∠ADC=65°, 故选C . 【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答. 3.C 【解析】 【分析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可. 【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x=,21.9x=-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.4.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.A【解析】【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=(12)n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,∴S n=(12)n﹣2.当n=2018时,S2018=(12)2018﹣2=(12)3.【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=(12)n﹣2”.6.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化7.D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.9.B【解析】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 10.D 【解析】 【分析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解.【详解】 解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 11.D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 详解:将数据重新排列为17、18、18、20、20、20、23, 所以这组数据的众数为20分、中位数为20分, 故选:D .如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【详解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.14.x>1【解析】试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足考点:二次根式、分式有意义的条件点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.15.22432 55和【解析】【分析】(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==Q , 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB.∵,4OD AB OD AD BD ⊥===,∴△AOB 为等腰直角三角形,∴OA t === ;(2)∵BC=AC ,CD 为AB 边的高,∴∠ADC=90°,BD=DA=12AB=4,∴,当AC ∥y 轴时,∠ABO=∠CAB ,∴Rt △ABO ∽Rt △CAD , ∴AO AB CD AC =,即835t =, 解得,t=245, 当BC ∥x 轴时,∠BAO=∠CBD ,∴Rt △ABO ∽Rt △BCD , ∴AO AB BD BC =,即845t =, 解得,t=325, 则当t=245或325时,△ABC 的边与坐标轴平行. 故答案为t=245或325. 【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.16.x >32-. 【解析】解:依题意得:2x+3>1.解得x >32-.故答案为x >32-. 17.88【解析】试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可: ∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分).18.(32,32)【解析】【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.见解析【解析】试题分析:证明△ABE≌△ACD 即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD ,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.21.(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】【分析】(1)根据题意可得解.(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩…………∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w 与x 之间的函数关系式,并注意分类讨论思想的应用.22.22x x -+ 【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭ =()()()2x 22112x x x x +-+⨯++ =22x x -+. 【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.23.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o o CD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o, 同理:EF=BE ﹣BF=tan 4570o oAB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE 与AB 垂直,BF 与CD 垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC ,对角相等,利用AAS 即可的值;(2)由平行四边形的对边平行得到DC 与AB 平行,得到∠CDE 为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE ⊥AB ,BF ⊥CD ,∴∠AED=∠CFB=90°,∵四边形ABCD 为平行四边形,∴AD=BC ,∠A=∠C ,在△ADE 和△CBF 中,{AED CFBA CAD BC ∠=∠∠=∠=,∴△ADE ≌△CBF (AAS );(2)∵四边形ABCD 为平行四边形,∴CD ∥AB ,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE 为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.26.x=60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 27.(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得 366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32,∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB , ∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC ,∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.。

洛阳市2019-2020学年中考数学监测试题

洛阳市2019-2020学年中考数学监测试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.不等式5+2x <1的解集在数轴上表示正确的是( ).A .B .C .D .2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .65.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE6.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .107.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°8.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:910.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A.B.C.D.二、填空题(本题包括8个小题)11.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.12.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN 是等腰三角形,则∠B的度数为___________.13.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.15.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.16.分解因式:2-+=_______288a a17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.三、解答题(本题包括8个小题)19.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.20.(6分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.21.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.23.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.25.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE =CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.2.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.3.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.4.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.5.A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.7.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8.D【解析】【分析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC ,∴∠C=∠DBC ,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC ,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D .【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.9.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.10.A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:. 故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.二、填空题(本题包括8个小题)11.5750【解析】【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元,∴72-b b=20%, ∴b =60, ∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格12.或.【解析】【详解】MN 是AB 的中垂线,则△ABN 是等腰三角形,且NA=NB ,即可得到∠B=∠BAN=∠C .然后对△ANC 中的边进行讨论,然后在△ABC 中,利用三角形内角和定理即可求得∠B 的度数.解:∵把△ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,∴MN是AB的中垂线.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=180x2-.在△ABC中,根据三角形内角和定理得到:x+x+x+180x2-=180,解得:x=36°.故∠B的度数为45°或36°.13.10【解析】【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴2268+=10,故PB+PE的最小值是10.故答案为10.14.7【解析】根据多边形内角和公式得:(n-2)180⨯︒ .得:(3603180)18027︒⨯-︒÷︒+=15.a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b)1,所以a 1+1ab +b 1=(a +b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系. 16.22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 17.12【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.18.20310 (140)3cmπ-+【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧23O O,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,∴此时⊙O1与AB和BC都相切.则∠O1BE=∠O1BF=60度.此时Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=1033cm.∴OO1=AB-BE=(103)cm.∵103cm,∴O1O2=BC-BF=(103)cm.∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧23O O.∴23O O 的长=60360×2π×10=103πcm . ∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:()+()+103π+40=(+103π)cm . 三、解答题(本题包括8个小题)19.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.20.(1)10;(2)0.9;(3)44%【解析】【分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%, ∴星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%; 故答案为44%.考点:折线统计图;条形统计图21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x (k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD 解析式为:y=200x(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.甲有钱752,乙有钱25. 【解析】【分析】设甲有钱x ,乙有钱y ,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x ,乙有钱y . 由题意得:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 解方程组得:75225x y ⎧⎪⎪=⎨⎪⎪=⎩, 答:甲有钱752,乙有钱25. 【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键. 23.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x=-+25(50)12500x=--+∴当50x=时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w与x的函数关系是解题关键.24.(1)证明见解析(2-1【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.25.(1)35元/盒;(2)20%.【解析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.26.(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.562.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+3B.23C.3+3D.334.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )A.3﹣6或1+6B.3﹣6或3+6C.3+6或1﹣6D.1﹣6或1+65.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.6.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-17.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.328.如图钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.33m C.23m D.4m9.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+610.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③二、填空题(本题包括8个小题)11.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x =图象上的概率为__. 12.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.13.分解因式:4ax 2-ay 2=________________.14.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____. 15.因式分解:4x 2y ﹣9y 3=_____. 16.因式分解:a 3﹣2a 2b+ab 2=_____. 17.因式分解:x 2y-4y 3=________.18.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B=34°,则∠C 的大小为________度.三、解答题(本题包括8个小题)19.(6分)如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.20.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?21.(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.22.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.23.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.24.(10分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.25.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少? 26.(12分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.B 【解析】 【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】∵这组数中无理数有π,2共2个, ∴卡片上的数为无理数的概率是21=63.故选B. 【点睛】本题考查了无理数的定义及概率的计算. 2.D 【解析】 【详解】解:∵35AOC ∠=,。

河南省洛阳市2019-2020学年中考数学教学质量调研试卷含解析

河南省洛阳市2019-2020学年中考数学教学质量调研试卷含解析

河南省洛阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数是不等式组32123x x +⎧⎨--⎩f p 的解是( ) A .0 B .1- C .2 D .32.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A .68°B .20°C .28°D .22°3.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2 B .π C .2π D .3π4.下列计算正确的是()A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x5.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A .1000(1+x)2=1000+500B .1000(1+x)2=500C .500(1+x)2=1000D .1000(1+2x)=1000+5006.如图,已知O e 的周长等于6cm π ,则它的内接正六边形ABCDEF 的面积是( )A.934B.2734C.2732D.2737.函数22ayx--=(a为常数)的图像上有三点17()2y-,,21()2y-,,33()2y,,则函数值123,,y y y的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y18.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣189.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A.810 年B.1620 年C.3240 年D.4860 年10.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.11.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++12.如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的不等式kx+b >2x的解集为A .x >1B .﹣2<x <1C .﹣2<x <0或x >1D .x <﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是14.如图,在边长为6的菱形ABCD 中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___.(结果保留π)15.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是_____m (结果保留根号)16.如果反比例函数k y x=的图象经过点A (2,y 1)与B (3,y 2),那么12y y 的值等于_____________. 17.分解因式:2242a a ++=__________________.18.已知α是锐角1sin 2α=,那么cos α=_________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC=.20.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.21.(6分)如图,已知正比例函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=kx(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.22.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图. 该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?23.(8分)如图1,B (2m ,0),C (3m ,0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD ,使AB=2BC ,画射线OA ,把△ADC 绕点C 逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c =++(0a ≠)过E ,A′两点.(1)填空:∠AOB= °,用m 表示点A′的坐标:A′( , );(2)当抛物线的顶点为A′,抛物线与线段AB 交于点P ,且13BP AP =时,△D′OE 与△ABC 是否相似?说明理由;(3)若E 与原点O 重合,抛物线与射线OA 的另一个交点为点M ,过M 作MN ⊥y 轴,垂足为N : ①求a ,b ,m 满足的关系式;②当m 为定值,抛物线与四边形ABCD 有公共点,线段MN 的最大值为10,请你探究a 的取值范围. 24.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B 类的人数有 人;(2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A ,B ,C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.25.(10分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线1y x 32=-+交AB ,BC 分别于点M ,N ,反比例函数k y x=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.26.(12分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.27.(12分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)在图1中画出△AOB 关于x 轴对称的△A 1OB 1,并写出点A 1,B 1的坐标;(2)在图2中画出将△AOB 绕点O 顺时针旋转90°的△A 2OB 2,并求出线段OB 扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】求出不等式组的解集,判断即可.【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1,由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解,故选D .【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.2.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.3.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=903180π⨯=3π2,故选:A.【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.4.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.5.A【解析】【分析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.C【解析】【分析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH-=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7.A【解析】试题解析:∵函数y=2-2ax-(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵32>0,∴y3<0;∵-72<-12,∴0<y1<y1,∴y3<y1<y1.故选A.8.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18,故选C.9.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.10.C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.11.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1qq +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 12.C 【解析】 【分析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答. 【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b >2x的解就是一次函数y=kx+b 图象在反比例函数y=2x的图象的上方的时候x 的取值范围, 由图象可得:-2<x <0或x >1, 故选C . 【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.13. 【解析】 【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可. 【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比. 14.6π 【解析】 【分析】直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案. 【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:3603180π⨯=6π.故答案为6π. 【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.15.【解析】 【分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案. 【详解】解:由题意可得:∠BDA=45°, 则AB=AD=120m , 又∵∠CAD=30°, ∴在Rt △ADC 中,tan ∠CDA=tan30°=CD AD =解得:m ),故答案为 【点睛】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CDAD是解题关键. 16.32【解析】 分析:由已知条件易得2y 1=k ,3y 2=k ,由此可得2y 1=3y 2,变形即可求得12y y 的值.详解:∵反比例函数ky x=的图象经过点A (2,y 1)与B (3,y 2), ∴2y 1=k ,3y 2=k , ∴2y 1=3y 2, ∴1232y y =. 故答案为:32. 点睛:明白:若点A ()a b ,和点B ()m n ,在同一个反比例函数ky x=的图象上,则ab mn =是解决本题的关键. 17.22(1)a + 【解析】 【分析】原式提取2,再利用完全平方公式分解即可. 【详解】原式()()22=221=21a a a +++【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法. 18.2【解析】 【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可. 【详解】 由sinα=a c =12知,如果设a=x ,则c=2x ,结合a 2+b 2=c 2得∴cos α=b c故答案为2. 【点睛】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=o 可得四边形CEGF 是矩形,再由ECG 45∠=o 即可得证;②由正方形性质知CEG B 90∠∠==o 、ECG 45∠=o ,据此可得CGCE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG V ∽△BCE 即可得;(3)证AHG V ∽CHA V 得AG GH AHAC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=,GE ∥AB ,∴AG CGBE CE==; (2)连接CG ,由旋转性质知∠BCE=∠ACG=α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB = ∴△ACG ∽△BCE , ∴2AG CABE CB== ∴线段AG 与BE 之间的数量关系为2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则2a , 则由AG GH AC AH =222AH a =, ∴AH=23a , 则DH=AD ﹣AH=13a ,22CD DH +=103a , ∴由AG AH AC CH=23210aa a =, 解得:55故答案为35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.20.(1)见解析(2)10 10【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.21.(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣6565;或P(65﹣65.【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.详解:(1)∵点A在正比例函数y=2x上,∴把x=4代入正比例函数y=2x,解得y=8,∴点A(4,8),把点A(4,8)代入反比例函数y=kx,得k=32,(2)∵点A与B关于原点对称,∴B点坐标为(﹣4,﹣8),由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;(3)∵反比例函数图象是关于原点O的中心对称图形,∴OP=OQ,OA=OB,∴四边形APBQ是平行四边形,∴S△POA=S平行四边形APBQ×=14×224=1,设点P的横坐标为m(m>0且m≠4),得P(m,32m),过点P、A分别做x轴的垂线,垂足为E、F,∵点P、A在双曲线上,∴S△POE=S△AOF=16,若0<m<4,如图,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴12(8+32m)•(4﹣m)=1.∴m1=﹣,m2=﹣7﹣(舍去),∴P(﹣,;若m>4,如图,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴12×(8+32m)•(m﹣4)=1,解得m1,m2=7﹣(舍去),∴P(.∴点P的坐标是P(﹣,;或P(,﹣.点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.22.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 23.(1)45;(m ,﹣m );(2)相似;(3)①1b am =--;②114a ≤≤. 【解析】试题分析:(1)由B 与C 的坐标求出OB 与OC 的长,进一步表示出BC 的长,再证三角形AOB 为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标; (2)△D′OE ∽△ABC .表示出A 与B 的坐标,由13BP AP =,表示出P 坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E 坐标代入即可得到m 与n 的关系式,利用三角形相似即可得证;(3)①当E 与原点重合时,把A 与E 坐标代入2y ax bx c =++,整理即可得到a ,b ,m 的关系式; ②抛物线与四边形ABCD 有公共点,可得出抛物线过点C 时的开口最大,过点A 时的开口最小,分两种情况考虑:若抛物线过点C (3m ,0),此时MN 的最大值为10,求出此时a 的值;若抛物线过点A (2m ,2m ),求出此时a 的值,即可确定出抛物线与四边形ABCD 有公共点时a 的范围.试题解析:(1)∵B (2m ,0),C (3m ,0),∴OB=2m ,OC=3m ,即BC=m ,∵AB=2BC ,∴AB=2m=0B ,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m ,即A′(m ,﹣m );故答案为45;m ,﹣m ;(2)△D′OE ∽△ABC ,理由如下:由已知得:A (2m ,2m ),B (2m ,0),∵13BP AP =,∴P (2m ,12m ),∵A′为抛物线的顶点,∴设抛物线解析式为2()y a x m m =--,∵抛物线过点E (0,n ),∴2(0)n a m m =--,即m=2n ,∴OE :OD′=BC :AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE ∽△ABC ; (3)①当点E 与点O 重合时,E (0,0),∵抛物线2y ax bx c =++过点E ,A ,∴20{n am bm n m=++=-,整理得:1am b +=-,即1b am =--;②∵抛物线与四边形ABCD 有公共点,∴抛物线过点C 时的开口最大,过点A 时的开口最小,若抛物线过点C (3m ,0),此时MN 的最大值为10,∴a (3m )2﹣(1+am )•3m=0,整理得:am=12,即抛物线解析式为21322y x x m =-,由A (2m ,2m ),可得直线OA 解析式为y=x ,联立抛物线与直线OA 解析式得:2{1322y xy x x m ==-,解得:x=5m ,y=5m ,即M (5m ,5m ),令5m=10,即m=2,当m=2时,a=14; 若抛物线过点A (2m ,2m ),则2(2)(1)22a m am m m --⋅=,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD 有公共点时a 的范围为114a ≤≤. 考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题. 24.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C 类别人数及其百分比可得总人数,总人数乘以B 类别百分比即可得;(2)根据百分比之和为1求得A 类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A 、B 、C 三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B 类别的人数为800×30%=240(人),故答案为800,240;(2)∵A 类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A 类对应扇形圆心角α的度数为360°×25%=90°,A 类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图25.(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】【分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形.∵△OPM 的面积与四边形BMON 的面积相等, ∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).26.(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.27.(1)A 1(﹣1,﹣2),B 1(2,﹣1);(2)54π. 【解析】【分析】(1)根据轴对称性质解答点关于x 轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算.【详解】(1)如图所示:A1(﹣1,﹣2),B1(2,﹣1);(2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:22125OB+=,线段OB扫过的面积为:290π55π.3604⨯=【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.。

河南省洛阳市2019-2020学年中考数学四模试卷含解析

河南省洛阳市2019-2020学年中考数学四模试卷含解析

河南省洛阳市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。

A.70°B.65°C.50°D.25°2.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方-+=的两实数根是程2x3x m0A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=33.下列说法中,正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径4.下列图形中,是轴对称图形的是()A.B.C.D.5.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<06.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.7.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6C.5≤a<6 D.5≤a≤68.下列计算正确的是( ) A .(﹣8)﹣8=0B .3+=3C .(﹣3b )2=9b 2D .a 6÷a 2=a 39.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( ) A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=9010.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( ) A .6B .2C .-2D .-611.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是( )A .120240420x x -=+ B .240120420x x -=+ C .120240420x x -=- D .240120420x x-=- 12.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .5D .25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,且tan ∠ADE =43,AC =5,则AB 的长____.14.分解因式:x 2–4x+4=__________.15.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣1.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.17.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.18.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读材料,解答下列问题:神奇的等式当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:(13)2+23=13+22()3,(14)2+34=14+23()4,(15)2+45=15+(45)2,…(1100)2+99100=1100+(99100)2,…(1)特例验证:请再写出一个具有上述特征的等式:;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为:;(3)证明推广:①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;②等式(mn)2+n mn-=mn+(n mn-)2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.20.(6分)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12-x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.21.(6分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BECE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.22.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.23.(8分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22 ,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:()()d M N=--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2).,1212336①若点A(-2,-1),则d(P,A)= ;②若点B(b,2),且d(P,B)=5,则b= ;=-上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆③已知点C(m,n)是直线y x心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.24.(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x ﹣1 0 1ax2 (1)ax2+bx+c 7 2 …(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.25.(10分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.26.(12分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.27.(12分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE 是边CD的中线,且∠AOB+∠COD=180°(1)如图2,当△ABO是等边三角形时,求证:OE=12 AB;(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=12 AB;(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,①试探究α、β之间存在的数量关系?②结论“OE=12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°, ∴∠AED′=180°-2∠FED=50°, 故选:C . 【点睛】此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用. 2.B 【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B .3.D 【解析】 【分析】根据切线的判定,圆的知识,可得答案. 【详解】解:A 、在等圆或同圆中,长度相等的弧是等弧,故A 错误;B 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B 错误;C 、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C 错误;D 、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D 正确; 故选:D . 【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键. 4.B 【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项符合题意; C 、不是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项不合题意; 故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形. 5.B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象6.D【解析】【分析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.7.C【解析】【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C.【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.9.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.10.A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.11.A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:1202404 x x20-=+.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.12.A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.详解:连接AC,由网格特点和勾股定理可知,AB BC== AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴tan∠ABC=12 ACAB==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3.【解析】【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE=43=ADCD,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.14.(x–1)1【解析】试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考点:分解因式.15.14.【解析】【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【详解】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值41 164 ==,∴它停在黑色区域的概率是14;故答案为14.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.17.1【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案为1.考点:一次函数图象与几何变换-18.235【解析】【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,2223OM OE-=在Rt△ONE中,225-ON OE∴35故答案为35【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(16)1+56=16+(56)1;;(1)(1n )1+1n n -=1n +(1n n-)1;;(3)①成立,理由见解析;②成立,理由见解析.【解析】【分析】(1)根据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n 表达即可;(3)①先后证明左右两边的等式的结果,如果结果相同则成立;②先证明等式是否成立,如果成立再根据等式的特征写出m,n 至少有一个为无理数的等式.【详解】解:(1)具有上述特征的等式可以是(16)1+56=16+(56)1, 故答案为(16)1+56=16+(56)1; (1)上述等式可表示为(1n )1+1n n -=1n +(1n n-)1, 故答案为(1n )1+1n n -=1n +(1n n-)1; (3)①等式成立,证明:∵左边=(1n )1+1n n -=21n +2(1)n n n -=221n n n-+, 右边=1n +(1n n -)1=22221n n n n n -++=221n n n-+, ∴左边=右边,∴等式成立;②此等式也成立,例如:(2)1+22-=2+(22-)1. 【点睛】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征. 20.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,2). 【解析】【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD +PE =3PE ,然后配方即可得到结论. (3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论.【详解】解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点, ∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==, ∴二次函数的关系式为y =215222x x -+-. 令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0). (2)∵PD ∥x 轴,PE ∥y 轴,∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-), 则E (m ,122m -). ∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+. ∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2, ∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=,解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1, ∴DM =225()12-=212,∴点M 的坐标为(52,21-). 综上所述:点M 的坐标为(52,12)或(52,21-).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC 外接圆的圆心坐标.21.(1)证明见解析(2)222- (32 【解析】【分析】(1)根据题中“完美矩形”的定义设出AD 与AB ,根据AP=AD ,利用勾股定理表示出PD ,即可得证; (2)如图,作点P 关于BC 的对称点P′,连接DP′交BC 于点E ,此时△PDE 的周长最小,设AD=PA=BC=a ,表示出AB 与CD ,由AB-AP 表示出BP ,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)22)可知BF=BP=AB-AP ,由等式的性质得到MF=DN ,利用AAS 得到△MFH ≌△NDH ,利用全等三角形对应边相等得到FH=DH ,再由G 为CF 中点,得到HG 为中位线,利用中位线性质求出GH 的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2a,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴2222BE BP a aCE CD a--===;(3)2由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.22.(1)购买A 种花木40棵,B 种花木60棵;(2)当购买A 种花木50棵、B 种花木50棵时,所需总费用最低,最低费用为7500元.【解析】【分析】(1)设购买A 种花木x 棵,B 种花木y 棵,根据“A ,B 两种花木共100棵、购进A ,B 两种花木刚好用去8000元”列方程组求解可得;(2)设购买A 种花木a 棵,则购买B 种花木(100﹣a )棵,根据“B 花木的数量不少于A 花木的数量”求得a 的范围,再设购买总费用为W ,列出W 关于a 的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A 种花木x 棵,B 种花木y 棵,根据题意,得:100501008000x y x y +=⎧⎨+=⎩,解得:4060x y =⎧⎨=⎩, 答:购买A 种花木40棵,B 种花木60棵;(2)设购买A 种花木a 棵,则购买B 种花木(100﹣a )棵,根据题意,得:100﹣a≥a ,解得:a≤50,设购买总费用为W ,则W=50a+100(100﹣a )=﹣50a+10000,∵W 随a 的增大而减小,∴当a=50时,W 取得最小值,最小值为7500元,答:当购买A 种花木50棵、B 种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.23.(1)① 6,② 2或4,③ 1<m <4;(2)223t -≤≤或322t -≤≤-. 【解析】 【分析】 (1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可; ③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知2x y +=,根据图像易得t 的取值范围.【详解】解:(1) ①d(P, A)=|3-(-2)|+|(-2)-(-1)|=6② (,)3(2)2345d P B b b =-+--=-+=∴ 31b -=∴ b=2或4③ (,)3(2)32323d P C m n m m m m =-+--=-+-+=-+-<,即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4 (2)设E (x,y ),则2x y +=,如图,若点E 在⊙F 上,则223322t t -≤≤-≤≤-或.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键. 24. (1) y=x 2﹣4x+2;(2) 点B 的坐标为(5,7);(1)∠BAD 和∠DCO 互补,理由详见解析.【解析】【分析】(1)由(1,1)在抛物线y=ax 2上可求出a 值,再由(﹣1,7)、(0,2)在抛物线y=x 2+bx+c 上可求出b 、c 的值,此题得解;(2)由△ADM 和△BDM 同底可得出两三角形的面积比等于高的比,结合点A 的坐标即可求出点B 的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴抛物线的表达式为y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,∴点A到抛物线的距离与点B到抛物线的距离比为2:1.∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,∴点B到抛物线的距离为1,∴点B的横坐标为1+2=5,∴点B的坐标为(5,7).(1)∠BAD和∠DCO互补,理由如下:当x=0时,y=x2﹣4x+2=2,∴点A的坐标为(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点D的坐标为(2,﹣2).过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.设直线BD的表达式为y=mx+n(m≠0),将B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直线BD的表达式为y=1x﹣2.当y=2时,有1x﹣2=2,解得:x=,∴点N的坐标为(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA , ∴△ABD ∽△NBA , ∴∠ANB=∠DAB . ∵∠ANB+∠AND=120°, ∴∠DAB+∠DCO=120°, ∴∠BAD 和∠DCO 互补.【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD ∽△NBA 是解(1)的关键.25.(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为16. 【解析】【分析】(1)用A 的人数以及所占的百分比就可以求出调查的总人数,用C 的人数除以调查的总人数后再乘以360度即可得;(2)根据D 的百分比求出D 的人数,继而求出B 的人数,即可补全条形统计图; (3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人, 扇形统计图中C 所对应扇形的圆心角度数是360°×1560=90°, 故答案为60、90°;(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为21 126.【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.26.(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.27.(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析. 【解析】 【分析】(1)作OH ⊥AB 于H ,根据线段垂直平分线的性质得到OD=OA ,OB=OC ,证明△OCE ≌△OBH ,根据全等三角形的性质证明;(2)证明△OCD ≌△OBA ,得到AB=CD ,根据直角三角形的性质得到OE=12CD ,证明即可; (3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE 至F ,是EF=OE ,连接FD 、FC ,根据平行四边形的判定和性质、全等三角形的判定和性质证明. 【详解】(1)作OH ⊥AB 于H ,∵AD 、BC 的垂直平分线相交于点O , ∴OD=OA ,OB=OC , ∵△ABO 是等边三角形, ∴OD=OC ,∠AOB=60°, ∵∠AOB+∠COD =180°∴∠COD=120°, ∵OE 是边CD 的中线, ∴OE ⊥CD , ∴∠OCE=30°, ∵OA=OB ,OH ⊥AB , ∴∠BOH=30°,BH=12AB , 在△OCE 和△BOH 中,OCE BOH OEC BHO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△OBH , ∴OE=BH , ∴OE=12AB ; (2)∵∠AOB=90°,∠AOB+∠COD=180°, ∴∠COD=90°, 在△OCD 和△OBA 中,OD OA COD BOA OC OB =⎧⎪∠=∠⎨⎪=⎩, ∴△OCD ≌△OBA , ∴AB=CD ,∵∠COD=90°,OE 是边CD 的中线,∴OE=12CD , ∴OE=12AB ;(3)①∵∠OAD=α,OA=OD , ∴∠AOD=180°﹣2α, 同理,∠BOC=180°﹣2β, ∵∠AOB+∠COD=180°, ∴∠AOD+∠COB=180°, ∴180°﹣2α+180°﹣2β=180°, 整理得,α+β=90°;②延长OE 至F ,使EF=OE ,连接FD 、FC ,则四边形FDOC 是平行四边形, ∴∠OCF+∠COD=180°,FC OA =, ∴∠AOB=∠FCO , 在△FCO 和△AOB 中,FC OA FCO AOB OC OB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCO ≌△AOB , ∴FO=AB , ∴OE=12FO=12AB . 【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.。

2019-2020学年河南省洛阳市某校初三(下)3月月考数学试卷

2019-2020学年河南省洛阳市某校初三(下)3月月考数学试卷

2019-2020学年河南省洛阳市某校初三(下)3月月考数学试卷一、选择题1. 下列各数中,比−2小的数是()D.−1A.0B.−3C.−232. 2019新型冠状病毒(COVID−19),因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名.经研究发现其直径不到0.000 000 1米,病毒直径0.000 000 1米用科学记数法表示成()A.1×10−10B.1×10−9C.1×10−8D.1×10−73. 如图是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是()A.主视图不变B.左视图不变C.俯视图不变D.三视图都不变4. 下列计算结果为a6的是()A.a2⋅a3B.a12÷a2C.(a2)3D.(−a2)35. 如图,a//b,A,B为直线a,b上的两点,且AB⊥BC,∠BAC=30∘,则∠1与∠2的度数之和为( )A.60∘B.90∘C.30∘D.120∘6. 在平面直角坐标系中,点A′(2, −3)可以由点A(−2, 3)通过两次平移得到,正确的是( )A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度7. 关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1B.k<1C.k>1且k≠0D.k<1且k≠08. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.1 6B.516C.13D.129. 如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD;②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE;③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEOB.CM=MDC.∠OCD=∠ECDD.S四边形OCED =12CD⋅OE10. 如图,正方形ABCD的边长为4,点P,Q分别是CD,AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E,F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C.D.二、填空题在矩形ABCD 中,AB =6,AD =3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E,A ′,C 三点在一条直线上时,DF 的长度为__________.三、解答题先化简,再求值(1+1x−1)÷x 2−1x 2−2x+1,其中x 是满足 −1<x <2 的整数.某城市的城市区2020年2月10日0−24时新增新冠肺炎确诊病例统计图表如下:请根据以上信息,解答下列问题:(1)当日该市共计新增新冠肺炎确诊病例共________人;(2)频数分布表中,m+n=________.扇形统计图中,洛北区所对应的圆心角的度数为________;(3)根据你对“新型冠状病毒肺炎”的认知,写出两条开学后对同学们的建议.如图,AB是⊙O的直径,且AB=4,点M为⊙O外一点,且MA,MC分别切⊙O于点A,C.点D是直线BC与AM延长线的交点.(1)求证:DM=AM.(2)填空:①当CM=________时,四边形AOCM是正方形;②当CM=__________时,△CDM为等边三角形.为集中收治“新冠肺炎”患者,武汉火神山医院不到10天时间拔地而起,让世界见识了中国速度.在火神山医院的建设工地上树立的塔吊如图所示,在塔吊配重D处测得塔吊顶端A的仰角为37∘,在塔吊配重D的正下方地面处测得A的仰角为60∘.已知塔吊驾驶室E点距离地面的高度BE为25米,请你计算塔吊的高度AB.(结果精确到0.1米.参考数据:√3≈1.732,sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划》(2018−2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2020年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元.这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2020年该加工厂至少需投资兴建多少条全自动生产线?如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=−8的图象有x一个交点A(−2, b).(1)求一次函数的解析式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2√2的正方形AEFG按图①位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图③,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值.x2+bx+c的图象与x轴交于B(−2, 0),C两点,与y轴交如图,已知二次函数y1=12于点A(0, −6),直线AC的函数解析式为y2=mx+n.(1)求二次函数的解析式;(2)过线段OC上任意一点(不含端点)作y轴的平行线,交AC于点E,与二次函数图象交于点F,求线段EF的最大值;(3)在抛物线上是否存在一点P,使得△ACP是以AC为底边的等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析2019-2020学年河南省洛阳市某校初三(下)3月月考数学试卷一、选择题1.【答案】B【考点】有理数大小比较【解析】根据负数的绝对值越大负数反而小,可得答案.【解答】|<|−1|<|−2|<|−3|,解:∵|−23∴−3<−2<−1<−2<0.3故选B.2.【答案】D【考点】科学记数法--表示较小的数【解析】本题考查了科学计数法表示较小的数,熟练掌握科学计数法表示较小的数方法是解题关键,根据科学计数法表示较小的数方法,可得0.0000001=1×10−7.【解答】解:根据题意可得,0.000 000 1=1×10−7.故选D.3.【答案】B【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生变化,左视图不变.故选B.4.【答案】C【考点】同底数幂的除法同底数幂的乘法幂的乘方与积的乘方【解析】本题考查了同底数幂的乘法和除法,幂的乘方和积的乘方,熟练掌握同底数幂的乘法和除法,幂的乘方和积的乘方运算法则是解题关键,分别根据同底数幂的乘法和除法,幂的乘方和积的乘方运算法则,逐一计算,即可求得答案.【解答】解:A,a2⋅a3=a5,故不符合题意;B,a12÷a2=a10,故不符合题意;C,(a2)3=a6,故符合题意;D,(−a2)3=−a6,故不符合题意.故选C.5.【答案】A【考点】三角形内角和定理平行线的判定与性质平行线的性质【解析】本题考查了平行线的性质,垂线的性质,三角形内角和定理,解题关键是正确作出辅助线,作CE平行直线a,得到∠ACB=∠1+∠2,再进一步求得∠ACB=60∘,即可得到答案.【解答】解:如图,过点C作CE与直线a平行,∵ a//b,∴ CE//b,∴ ∠1=∠ACE,∠2=∠ECB,∴ ∠ACB=∠1+∠2,∵ AB⊥BC,∴ ∠ABC=90∘,∵ ∠BAC=30∘,∴ ∠ACB=60∘,∴ ∠1+∠2=60∘.故选A.6.【答案】D【考点】坐标与图形变化-平移【解析】让新点的横坐标减去原来点的横坐标,若是负数,则是向左平移负数的绝对值单位;反之,则是向右平移正数的单位;新点的纵坐标减去原来点的纵坐标,若是负数,则是向下平移负数的绝对值单位;反之,则是向上平移正数的单位.【解答】解:∵横坐标的变化为2−(−2)=4,纵坐标的变化为−3−3=−6.∴平移过程是向右平移4个单位长度,再向下平移6个单位长度.故选D.7.【答案】D【考点】根的判别式一元二次方程的定义【解析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(−2)2−4×k×1>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,∴k≠0且Δ>0,即(−2)2−4×k×1>0,解得k<1且k≠0,∴k的取值范围为k<1且k≠0.故选D.8.【答案】C【考点】列表法与树状图法概率公式【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:412=13.故选C.9.【答案】C【考点】作图—基本作图【解析】本题考查了作图-基本作图.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED =12CD⋅OE,但不能得出∠OCD=∠ECD,故选C.10.【答案】A【考点】动点问题【解析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=12AE⋅AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为:y=12AE⋅AF=12x(6−x)=−12x2+3x(2<x≤4).故y与x的函数图象为:故选A.二、填空题【答案】1或11【考点】翻折变换(折叠问题)【解析】此题暂无解析【解答】解:如图1,F是线段CD上的一个动点,由翻折可知,∠FEA=∠FEA′,∵ CD//AB,∴ ∠CFE=∠AEF,∴ ∠CFE=∠CEF,∴ CE=CF,在Rt△BCE中,EC=√BC2+EB2=√32+42=5,∴ CF=CE=5,∵ AB=CD=6,∴ DF=CD−CF=6−5=1,如图2,F是DC延长线上一点,由翻折可知,∠FEA=∠FEA′,∴∠CEF=∠FEB,∵ CD//AB,∴ ∠CFE=∠FEB,∴ ∠CFE=∠CEF,∴ CE=CF,在Rt△BCE中,EC=√BC2+EB2=√32+42=5,∴ CF=CE=5,∵ AB=CD=6,∴ DF=CD+CF=6+5=11,故答案为:1或11.三、解答题【答案】解:原式=x−1+1x−1⋅(x−1)2 (x+1)(x−1)=xx+1,∵x是满足−1<x<2的整数,∴ x=0,1,要使原分式有意义,则x≠1,∴x=0,原式=0.【考点】分式有意义、无意义的条件分式的化简求值【解析】此题暂无解析【解答】解:原式=x−1+1x−1⋅(x−1)2 (x+1)(x−1)=xx+1,∵x是满足−1<x<2的整数,∴ x=0,1,要使原分式有意义,则x≠1,∴x=0,原式=0.【答案】10025,90∘(3)建议:①勤洗手,多通风;②自觉配合测体温,进出登记等.【考点】条形统计图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:(1)30÷30%=100(人),故当日该市共计新增新冠肺炎确诊病例共100人.故答案为:100.(2)由题意得,m+n=100−20−25−30=25,360∘×25100=90∘.故答案为:25;90∘.(3)建议:①勤洗手,多通风; ②自觉配合测体温,进出登记等. 【答案】(1)证明:如图,连结OM .∵ MA ,MC 分别切⊙O 于点A ,C , ∴ MA ⊥OA ,MC ⊥OC . 在Rt △MAO 和Rt △MCO 中, {MO =MO,AO =CO,∴ Rt △MAO ≅Rt △MCO(HL), ∴ MC =MA . ∵ OC =OB , ∴ ∠2=∠B .又∵ ∠1+∠2=90∘,∠D +∠B =90∘, ∴ ∠1=∠D , ∴ DM =MC , ∴ DM =AM . 3,√3 【考点】 圆的综合题 切线的性质 正方形的性质含30度角的直角三角形 等边三角形的性质 直角三角形全等的判定 【解析】(2)解:①由四边形AOCM 是正方形,可知CM =OA =12AB =12×4=2.②由△CDM 为等边三角形,可知∠CMD =60∘. 由(1)得,Rt △MAO ≅Rt △MCO ,∴ ∠CMO =∠AMO =12(180∘−∠CMD)=60∘,∴ CM =√3=√3=2√33. 故答案为:3;2√33.【解答】(1)证明:如图,连结OM .∵ MA ,MC 分别切⊙O 于点A ,C , ∴ MA ⊥OA ,MC ⊥OC . 在Rt △MAO 和Rt △MCO 中, {MO =MO,AO =CO,∴ Rt △MAO ≅Rt △MCO(HL), ∴ MC =MA . ∵ OC =OB , ∴ ∠2=∠B .又∵ ∠1+∠2=90∘,∠D +∠B =90∘, ∴ ∠1=∠D , ∴ DM =MC , ∴ DM =AM .(2)解:①由四边形AOCM 是正方形,可知CM =OA =12AB =12×4=2.②由△CDM 为等边三角形,可知∠CMD =60∘. 由(1)得,Rt △MAO ≅Rt △MCO ,∴ ∠CMO =∠AMO =12(180∘−∠CMD)=60∘, ∴ CM =3=3=2√33. 故答案为:3;2√33.【答案】解:根据图示,可得BC=DE,在直角三角形ADE中,∠ADE=37∘,tan37∘=AEDE,∴DE=AEtan37∘,在直角三角形ABC中,∠ACB=60∘,tan60∘=ABBC,∴BC=ABtan60∘,∴AEtan37∘=ABtan60∘,即AE0.75=AE+251.732,∴ 1.732AE=0.75AE+0.75×25,即0.982AE=18.75,解得AE≈19.1,∴AB=AE+EB=19.1+25=44.1(米).答:塔吊的高度AB为44.1米.【考点】解直角三角形的应用-仰角俯角问题【解析】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键,根据题意得到AEtan37∘=ABtan60∘,代入即可求得答案.【解答】解:根据图示,可得BC=DE,在直角三角形ADE中,∠ADE=37∘,tan37∘=AEDE,∴DE=AEtan37,在直角三角形ABC中,∠ACB=60∘,tan60∘=ABBC,∴BC=ABtan60∘,∴AEtan37∘=ABtan60∘,即AE0.75=AE+251.732,∴ 1.732AE=0.75AE+0.75×25,即0.982AE=18.75,解得AE≈19.1,∴AB=AE+EB=19.1+25=44.1(米). 答:塔吊的高度AB为44.1米.【答案】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据题意,得{2x+y=260,x+3y=280,解得{x=100,y=60,答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2020年该加工厂需兴建全自动生产线a条,根据题意,得(260−100)a+(160−60)(10−a)≥1200,解得a≥313,由于a是正整数,所以a至少取4,即2020年该加工厂至少需投资兴建4条全自动生产线.【考点】二元一次方程组的应用——数字问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据题意,得{2x+y=260,x+3y=280,解得{x=100,y=60,答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2020年该加工厂需兴建全自动生产线a条,根据题意,得(260−100)a+(160−60)(10−a)≥1200,解得a≥313,由于a是正整数,所以a至少取4,即2020年该加工厂至少需投资兴建4条全自动生产线.【答案】解:(1)把A(−2, b)代入y=−8x,得b=−8−2=4,所以A点坐标为(−2, 4),把A(−2, 4)代入y=kx+5,得−2k+5=4,解得k=12,所以一次函数解析式为y=12x+5.(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=12x+5−m,根据题意方程组{y=−8x,y=12x+5−m只有一组解,消去y得−8x =12x+5−m,整理得12x2−(m−5)x+8=0,Δ=(m−5)2−4×12×8=0,解得m=9或m=1,即m的值为1或9.【考点】反比例函数与一次函数的综合待定系数法求一次函数解析式一次函数图象与几何变换根的判别式反比例函数图象上点的坐标特征【解析】(1)先利用反比例函数解析式y=−8x求出b=4,得到A点坐标为(−2, 4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式为y=12x+5;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=12x+5−m,则直线y=12x+5−m与反比例函数有且只有一个公共点,即方程组{y=−8xy=12x+5−m只有一组解,然后消去y得到关于x的一元二次函数,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)把A(−2, b)代入y=−8x,得b=−8−2=4,所以A点坐标为(−2, 4),把A(−2, 4)代入y=kx+5,得−2k+5=4,解得k=12,所以一次函数解析式为y=12x+5.(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=12x+5−m,根据题意方程组{y=−8x,y=12x+5−m只有一组解,消去y得−8x =12x+5−m,整理得12x2−(m−5)x+8=0,Δ=(m−5)2−4×12×8=0,解得m=9或m=1,即m的值为1或9.【答案】解:(1)理由:∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,{AD=AB,∠DAG=∠BAE,AG=AE,∴△ADG≅△ABE(SAS),∴∠AGD=∠AEB,如图所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE.(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,{AD=AB,∠DAG=∠BAE,AG=AE,∴△ADG≅△ABE(SAS),∴DG=BE,如图,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=√2,在Rt△AMG中,根据勾股定理得:GM=√AG2−AM2=√6,∵DG=DM+GM=√2+√6,∴BE=DG=√2+√6.(3)面积的最大值为6.如图,对于△EGH,点H在以EG为直径的圆上,所以当点H与点A重合时,△EGH的高最大,∴S△EGH=12AG×AE=12×8=4,对于△BDH,点H在以BD为直径的圆上,所以当点H与点A重合时,△BDH的高最大,∴S△BDH=12AD×AB=12×4=2,∴△GHE与△BHD面积之和的最大值是4+2=6.【考点】全等三角形的性质与判定几何变换综合题三角形的面积解直角三角形旋转的性质正方形的性质勾股定理全等三角形的判定全等三角形的性质【解析】(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90∘,利用垂直的定义即可得DG⊥BE;(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,在直角三角形AMD中,求出AM的长,即为DM的长,根据勾股定理求出GM的长,进而确定出DG的长,即为BE的长;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.【解答】解:(1)理由:∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,{AD=AB,∠DAG=∠BAE,AG=AE,∴△ADG≅△ABE(SAS),∴∠AGD=∠AEB,如图所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE.(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,{AD=AB,∠DAG=∠BAE,AG=AE,∴△ADG≅△ABE(SAS),∴DG=BE,如图,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=√2,在Rt△AMG中,根据勾股定理得:GM=√AG2−AM2=√6,∵DG=DM+GM=√2+√6,∴BE=DG=√2+√6.(3)面积的最大值为6.如图,对于△EGH,点H在以EG为直径的圆上,所以当点H与点A重合时,△EGH的高最大,∴S△EGH=12AG×AE=12×8=4,对于△BDH,点H在以BD为直径的圆上,所以当点H与点A重合时,△BDH的高最大,∴S△BDH=12AD×AB=12×4=2,∴△GHE与△BHD面积之和的最大值是4+2=6.【答案】解:(1)∵二次函数y1=12x2+bx+c的图象过点A(0, −6),B(−2, 0),∴{c=−6,2−2b+c=0,解得{b=−2,c=−6,∴二次函数的解析式为y1=12x2−2x−6.(2)∵y1=12x2−2x−6的对称轴为直线x=2,B(−2, 0)与C关于直线x=2对称,∴C(6, 0).将A(0, −6),C(6, 0)代入直线AC的函数解析式y2=mx+n,得{n=−6,6m+n=0,解得{m=1,n=−6,∴直线AC的函数解析式y2=x−6. 设E(x, x−6),则F(x, 12x2−2x−6),∵0<x<6,∴EF=(x−6)−(12x2−2x−6)=−12x2+3x=−12(x−3)2+92,∴当x=3时,EF有最大值92.(3)假设在抛物线上存在一点P,使得△ACP是以AC为底边的等腰三角形.如图,设AC中点是Q,∵A(0, −6),C(6, 0),∴Q(3, −3).∵PA=PC,AQ=CQ,∴PQ⊥AC,∴直线PQ的斜率是−1,设直线PQ的解析式为y=−x+t,把Q(3, −3)代入,得−3=−3+t,解得t=0,∴直线PQ的解析式为y=−x.由方程组{y=−x,y=12x2−2x−6,解得{x=1+√13,y=−1−√13,或{x=1−√13,y=−1+√13,故所求点P的坐标为P1(1+√13, −1−√13),P2(1−√13, −1+√13).【考点】动点问题待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数的最值【解析】(1)将A(0, −6),B(−2, 0)代入y1=12x2+bx+c,得到关于b、c的二元一次方程组,求解即可得到二次函数的解析式;再利用配方法把一般式化为顶点式,即可求出顶点坐标;(2)先根据抛物线的对称性求出C点坐标,利用待定系数法求出直线AC的函数解析式,再设E(x, x−6),则F(x, 12x2−2x−6),用含x的代数式表示EF,然后根据二次函数的性质即可求出EF的最大值;(3)假设在抛物线上存在一点P,△ACP是以AC为底边的等腰三角形.先根据中点坐标公式求出AC中点Q的坐标,再根据等腰三角形三线合一的性质得出PQ⊥AC,由互相垂直的两直线斜率之积为−1得到直线PQ的斜率是−1,再求出直线PQ的解析式,将它与二次函数的解析式联立得到方程组,求出方程组的解即可.【解答】解:(1)∵二次函数y1=12x2+bx+c的图象过点A(0, −6),B(−2, 0),∴{c=−6,2−2b+c=0,解得{b=−2,c=−6,∴二次函数的解析式为y1=12x2−2x−6.(2)∵y1=12x2−2x−6的对称轴为直线x=2,B(−2, 0)与C关于直线x=2对称,∴C(6, 0).将A(0, −6),C(6, 0)代入直线AC的函数解析式y2=mx+n,得{n=−6,6m+n=0,解得{m=1,n=−6,∴直线AC的函数解析式y2=x−6.设E(x, x−6),则F(x, 12x2−2x−6),∵0<x<6,∴EF=(x−6)−(12x2−2x−6)=−12x2+3x=−12(x−3)2+92,∴当x=3时,EF有最大值92.(3)假设在抛物线上存在一点P,使得△ACP是以AC为底边的等腰三角形.如图,设AC中点是Q,∵A(0, −6),C(6, 0),∴Q(3, −3).∵PA=PC,AQ=CQ,∴PQ⊥AC,∴直线PQ的斜率是−1,设直线PQ的解析式为y=−x+t,把Q(3, −3)代入,得−3=−3+t,解得t=0,∴直线PQ的解析式为y=−x.由方程组{y=−x,y=12x2−2x−6,解得{x=1+√13,y=−1−√13,或{x=1−√13,y=−1+√13,故所求点P的坐标为P1(1+√13, −1−√13),P2(1−√13, −1+√13).。

2019-2020学年洛阳市中考数学监测试题

2019-2020学年洛阳市中考数学监测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D . 2.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )A .3B .4C .5D .63.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.不等式5+2x <1的解集在数轴上表示正确的是( ).A .B .C .D .5.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 6.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H,下列结论:①△AED ≌△DFB ;②S 四边形 BCDG =CG 2;③若AF=2DF ,则BG=6GF,其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.7.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是4438.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD 的面积为()A.30 B.27 C.14 D.329.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2410.下列说法错误的是()A.2-的相反数是2 B.3的倒数是13C.()()352---=D.11-,0,4这三个数中最小的数是0二、填空题(本题包括8个小题)11.已知|x|=3,y2=16,xy<0,则x﹣y=_____.12.若一元二次方程220x x k-+=有两个不相等的实数根,则k的取值范围是.13.不等式组32132x xx->⎧⎪⎨≤⎪⎩的解是____.14.如图,五边形ABCDE是正五边形,若12l l//,则12∠-∠=__________.15.因式分解:2m2﹣8n2= .16.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.17.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.三、解答题(本题包括8个小题)19.(6分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB 上的高CD.如图①,以等边三角形ABC 的边AB 为直径的圆,与另两边BC、AC 分别交于点E、F.如图②,以钝角三角形ABC 的一短边AB 为直径的圆,与最长的边AC 相交于点E.20.(6分)如图,菱形ABCD中,,E F分别是,BC CD边的中点.求证:AE AF=.21.(6分)在平面直角坐标系xOy中,若抛物线2y x bx c=++顶点A的横坐标是1-,且与y轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.22.(8分)计算:131|132sin 60(2016)83π-︒︒⎛⎫+-+- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =. 23.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动: A 超市:所有商品均打九折(按标价的90%)销售; B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:分别写出y A 、y B 与x 之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24.(10分)先化简分式: (a -3+4+3a a )÷-2+3a a ∙+3+2a a ,再从-35-3、2、-2 中选一个你喜欢的数作为a 的值代入求值.25.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.26.(12分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.2.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B .3.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.4.C【解析】【分析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.5.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=3cm,则AB=2AC=23cm.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.6.D【解析】【详解】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,3,∴S 四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.7.C【解析】【详解】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.8.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.9.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236AD EF==⨯=,∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.10.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.二、填空题(本题包括8个小题)11.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy <0,所以x 、y 异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.12.:k <1.【解析】【详解】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.13.16x <≤【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32132x x x >①②-⎧⎪⎨≤⎪⎩ 解不等式①,得x >1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.72【解析】分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB 交2l 于点F ,∵12//l l ,∴∠2=∠3,∵五边形ABCDE 是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.15.2(m+2n )(m ﹣2n ).【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.解:2m 2﹣8n 2,=2(m 2﹣4n 2),=2(m+2n )(m ﹣2n ).考点:提公因式法与公式法的综合运用.16.2【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm ,圆柱高为2dm ,∴AB=2dm ,BC=BC′=2dm ,∴AC 2=22+22=8,∴2dm .∴这圈金属丝的周长最小为dm.故答案为:dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.17.2【解析】【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:2012xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.1【解析】试题分析:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.三、解答题(本题包括8个小题)19.(1)详见解析;(2)详见解析.【解析】(1)连接AE 、BF ,找到△ABC 的高线的交点,据此可得CD ;(2)延长CB 交圆于点F ,延长AF 、EB 交于点G ,连接CG ,延长AB 交CG 于点D ,据此可得.【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质. 20.证明见解析.【解析】【分析】 根据菱形的性质,先证明△ABE ≌△ADF ,即可得解.【详解】在菱形ABCD 中,AB =BC =CD =AD ,∠B =∠D.∵点E ,F 分别是BC ,CD 边的中点,∴BE =12BC ,DF =12CD , ∴BE =DF.∴△ABE ≌△ADF ,∴AE =AF.21.()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-.【解析】【分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标.()1抛物线2y x bx c =++顶点A 的横坐标是1-, b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ =,∴点O 在PQ 的垂直平分线上.又QP //y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=. ∴点Q 的坐标为()3,2--或()1,2-.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键.22. (1)1;(2)-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式﹣1﹣2×2+1﹣1﹣2=1. (2)原式=[31x +﹣(1)(1)1x x x +-+]•21(2)x x ++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.23.解:(1)y A=27x+270,y B=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.24.3a+;5【解析】【详解】原式=((3)3a aa++-3+4+3aa)32aa+⋅-∙+3+2aa=(3)343a a aa+--+32aa+⋅-∙+3+2aa=243aa-+32aa+⋅-∙+3+2aa=3a+a=2,原式=525.(1)答案见解析;(2)1 3 .【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人),八年级获一等奖人数:4×14=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.26.见解析【解析】【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )A .B .C .D .2.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个3.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .1254.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2B .1000100030x x-+=2C .1000100030x x --=2D .1000100030x x--=2 6.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .1+3B .2+3C .23﹣1D .23+18.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个9.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元 C .225元 D .259.2元10.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A.99°B.109°C.119°D.129°二、填空题(本题包括8个小题)11.计算:2(a-b)+3b=___________.12.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.13.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.14.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.16.计算32)3_____17.若a、b为实数,且b2211a a-+-+4,则a+b=_____.18.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.三、解答题(本题包括8个小题)19.(6分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.20.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.求证:CD ∥AB ;填空:①当∠DAE = 时,四边形ADFP 是菱形; ②当∠DAE = 时,四边形BFDP 是正方形.21.(6分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD 的面积.22.(8分)解方程(2x+1)2=3(2x+1)23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .24.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.25.(10分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.26.(12分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率mn0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=;试估算盒子里黑、白两种颜色的球各有多少只?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C2.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大. 【详解】①∵y 1=kx+b 的图象从左向右呈下降趋势, ∴k <0正确;②∵y 2=x+a ,与y 轴的交点在负半轴上, ∴a<0,故②错误; ③当x<3时,y 1>y 2错误; 故正确的判断是①. 故选B . 【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y 随x 的变化趋势:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小. 3.B 【解析】 【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点, ∴BE=3, 又∵AB=4, ∴222243AB BE +=+=5,∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245,∵FE=BE=EC ,∴∠BFC=90°,∴==185.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8, ∴矩形ABCD 的面积为4×8=32, 故选:C. 【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP 面积变化情况是解题的关键,属于中考常考题型. 7.D 【解析】 【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 1-,解得.故选D. 8.D 【解析】 【分析】根据抛物线的图象与系数的关系即可求出答案. 【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2ba->0,∴b >0,∴abc >0,故①正确;令x=3,y >0,∴9a+3b+c >0,故②正确; ∵OA=OC <1,∴c >﹣1,故③正确; ∵对称轴为直线x=1,∴﹣2ba=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a+-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧, ∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确. 故选D . 【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.9.A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 10.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.二、填空题(本题包括8个小题)11.2a+b.【解析】【分析】。

河南九年级数学竞赛试卷【含答案】

河南九年级数学竞赛试卷【含答案】

河南九年级数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)(a + b)4. 下列哪个函数是奇函数?()A. y = x²B. y = |x|C. y = x³D. y = x² + 15. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 任何两个无理数之积都是无理数。

()3. 任何两个实数都可以比较大小。

()4. 任何两个正数之和都是正数。

()5. 任何两个负数之积都是正数。

()三、填空题(每题1分,共5分)1. 若a、b为实数,且a≠0,那么a² + 2ab + b² = _______。

2. 若x² = 9,那么x = _______ 或 _______。

3. 两个相同的数相乘,其积是这个数的_______。

4. 若一个等边三角形的边长为a,那么它的面积是_______。

5. 若一个圆的半径为r,那么它的周长是_______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请简述二次方程的解法。

3. 请简述正多边形的性质。

4. 请简述无理数的定义。

5. 请简述函数的性质。

五、应用题(每题2分,共10分)1. 已知一个正方形的边长为a,求它的对角线长。

河南省洛阳市2019-2020学年中考数学二模试卷含解析

河南省洛阳市2019-2020学年中考数学二模试卷含解析

河南省洛阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16002.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.如果关于x的方程x2﹣k x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥44.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°6.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.当a>0 时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.(a2)3=a5A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a9.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .210.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( )A .12B .2C .255D .13411.在同一直角坐标系中,二次函数y=x 2与反比例函数y=(x >0)的图象如图所示,若两个函数图象上有三个不同的点A (x 1,m ),B (x 2,m ),C (x 3,m ),其中m 为常数,令ω=x 1+x 2+x 3,则ω的值为( )A .1B .mC .m 2D .12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .14.因式分解:323x y x -=_______________.15.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.16.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.17.观察下列等式:111第2个等式:a 2=1111()35235=⨯-⨯; 第3个等式:a 3=1111()57257=⨯-⨯; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____;(2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为_____. 18.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.20.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)21.(6分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当1y>2y>0时,x的取值范围.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2:1,点C2的坐标是.23.(8分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.24.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?25.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.26.(12分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a--+)+2421aa+-,其中a=﹣2+2.27.(12分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,考点:一元二次方程的应用.2.B【解析】【分析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.3.D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D .【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x >3−1, 合并同类项得:−12x >2, 系数化为1得:x <-4.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法. 5.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.D【解析】【分析】根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0, 0<a2<a,所以,a<a2<﹣a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置. 7.A直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A 选项:a 0=1,正确;B 选项:a ﹣1= 1a,故此选项错误; C 选项:(﹣a )2=a 2,故此选项错误;D 选项:(a 2)3=a 6,故此选项错误;故选A .【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键. 8.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A .x 4•x 4=x 4+4=x 8≠x 16,故该选项错误;B .(a 3)2=a 3×2=a 6≠a 5,故该选项错误;C .(ab 2)3=a 3b 6≠ab 6,故该选项错误;D .a+2a=(1+2)a=3a ,故该选项正确;故选D .考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.9.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式2m x -≤﹣1的解集为x≥4,∴12m+3=4,解得m=1.故选D.考点:不等式的解集10.C【解析】【分析】如图,由图可知BD=2、CD=1、BC=5,根据sin∠BCA=BDBC可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC=22BD CD+=2221+=5,则sin∠BCA=BDBC=5=25,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.11.D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.12.C∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.14.x 3(y+1)(y-1)【解析】【分析】先提取公因式x 3,再利用平方差公式分解可得.【详解】解:原式=x 3(y 2-1)=x 3(y+1)(y-1),故答案为x 3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.15.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b ,可得:2=-1+b ,解得:b=3,故答案为316.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC ==,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.17.1111()9112911=⨯-⨯ 49 【解析】【分析】(1)观察等式可得()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭ 然后根据此规律就可解决问题; (2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)12311111111111(1)()()2323525722121n a a a a n n ⎛⎫+++⋯+=⨯-+⨯-+⨯-+⋯+- ⎪-+⎝⎭ 1149(1)22199n =-=+, 解得:n=49. 故答案为:11119112911⎛⎫=⨯- ⎪⨯⎝⎭49. 【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.18.50(1﹣x )2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m <2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m 2-3)=-8m+2>3,然后解不等式即可; (2)先利用m 的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m 的值.【详解】(1)△=[2(m ﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得 m <2;(2)∵m <2,且 m 为非负整数,∴m=3 或 m=1,当 m=3 时,原方程为 x 2-2x-3=3,解得 x 1=3,x 2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x 2﹣2=3,解得 x 1x 2= ,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=3(a≠3)的根与△=b 2-4ac 有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.20.(122+2ab 4a b ;(2)+475. 【解析】【分析】(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD•CD 的最大值,从而可求得四边形ABCD 面积的最大值;(2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D',交AC 于F ,FD'即为所求最大值,再求得 △ACD′的面积即可.【详解】(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b , ②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab 4a b +; (2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC =19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.21.(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1. 【解析】【分析】(1)根据△AOB 的面积可求AB ,得A 点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.22.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.23.见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.24.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解25.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE ≌△FCE ,∴AE=EF ,在Rt △ADE 中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC ,∠AED=∠CEH ,∴△ADE ∽△CHE ,∴ = , ∴ = , ∴EH= ,∴△ACF 中边AF 的中垂距为26.(1)-1;(2)26182+【解析】【分析】 (1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +- 当a=﹣2时,原式222542+-=26182+ 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.27.(1)127;(2)45(9﹣t );(3)①S =﹣23t 2+163t ﹣327;②S=﹣27t 2+1.③S=24175(9﹣t )2;(3)3或215或4或173. 【解析】【分析】(1)根据题意点R 与点B 重合时t+43t=3,即可求出t 的值; (2)根据题意运用t 表示出PQ 即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB .S=S △PQR ﹣S △KBR =12×3×3﹣12×t×47t=﹣27t 2+1. ③如图3中,当3<t <9时,重叠部分是△PQK .S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53,∴t=9﹣103=173.综上所述,满足条件的t的值为3或215或4或173.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2019-2020学年河南省洛阳外国语学校九年级(下)第三次测试数学试卷 解析版

2019-2020学年河南省洛阳外国语学校九年级(下)第三次测试数学试卷  解析版

2019-2020学年河南省洛阳外国语学校九年级(下)第三次测试数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,绝对值最大的数是()A.πB.﹣3C.﹣4D.﹣22.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(3分)右图是由6个小正方体搭建而成的几何体,它的俯视图是()A.B.C.D.4.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°5.(3分)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+16.(3分)方程(x﹣3)(x﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为()A.9或12B.9或10C.10或12D.10或117.(3分)某校书法兴趣小组20名学生日练字页数如下表所示:日练字页数23456人数26543这些学生日练字页数的中位数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页8.(3分)将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.9.(3分)如图,矩形ABCD中,AD=4,AB=6,过点A,C作相距为4的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.D.310.(3分)如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边△ABC的顶点C 的坐标为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:=.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.(3分)如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为.14.(3分)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O 为圆心,OC的长为半径作交OB于点E,若OA=6,∠AOB=120°,则图中阴影部分的面积为(结果保留π).15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:,请从﹣3,﹣1,1,3中选一个值代入求值.17.(9分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?18.(9分)如图,AB是⊙O的直径,C是半圆上任意一点,连接BC并延长到点D,使得CD=CB,连接AD,点E是弧的中点.(1)证明:△ABC≌△ADC.(2)①当∠E=°时,△ABD是直角三角形;②当∠D=°时,四边形OAEC是菱形.19.(9分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CF是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)20.(9分)如图,已知一次函数y=kx﹣2的图象与反比例函数y=的图象交于点B(1,3),一次函数的图象分别交x轴、y轴于点C,点A.(1)求一次函数与反比例函数的解析式;(2)在反比例函数图象上是否存在一点P,使得S△AOP=4S△AOC,若存在,求出点P的坐标,若不存在,说明理由.21.(10分)某市中招体育测试改革,其中篮球和足球作为选考项目,某商店抓住这一商机决定购进一批篮球和足球共200个,这两种球的进价和售价如表所示:篮球足球进价(元/个)180150售价(元/个)250200(1)若商店计划销售完这批球后能获利11600元,问篮球和足球应分别购进多少个?(2)设购进篮球x个,获利为y元,求y与x之间的函数关系;(3)若商店计划投入资金不多于31560元且销售完这批球后商店获利不少于11000元,请问有哪几种购球方案,并写出获利最大的购球方案.22.(10分)(1)问题发现如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是;②线段AD,BE之间的数量关系为.(2)类比探究如图2,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE =EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3)解决问题如图3,在平面直角坐标系中,点A坐标为(4,0),点B为y轴上任意一点,连接AB,将BA绕点B逆时针旋转90°至BC,连接OC,请直接写出OC的最小值.23.(11分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x 轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)将△BOC绕平面直角坐标系中某点逆时针旋转90°,对应点为B1,O1,C1,当△B1O1C1中有两个顶点落在抛物线上时,直接写出C1的坐标.2019-2020学年河南省洛阳外国语学校九年级(下)第三次测试数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,绝对值最大的数是()A.πB.﹣3C.﹣4D.﹣2【分析】根据绝对值的性质来判断即可,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.【解答】解:∵|﹣2|=2,|﹣3|=3,|﹣4|=4,|π|=π,∴4>π>3>2,故选:C.2.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.3.(3分)右图是由6个小正方体搭建而成的几何体,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一排1个正方形,第二排有3个正方形,第3排有1个正方形.故选:C.4.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【分析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.5.(3分)在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.6.(3分)方程(x﹣3)(x﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为()A.9或12B.9或10C.10或12D.10或11【分析】先利用因式分解法求出x的值,再根据等腰三角形的概念分类讨论、计算可得.【解答】解:∵(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,解得x=3或x=4,若3是腰,则三角形三边长为3、3、4,此时周长为10;若4是腰长,则三角形三边长为4、4、3,此时周长为11;故选:D.7.(3分)某校书法兴趣小组20名学生日练字页数如下表所示:日练字页数23456人数26543这些学生日练字页数的中位数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页【分析】根据表格中的数据可以求得这组数据的中位数和平均数,从而可以解答本题.【解答】解:由表格可得,人数一共有:2+6+5+4+3=20,∴这些学生日练字页数的中位数:4页,平均数是:=4(页),故选:C.8.(3分)将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【解答】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共6×6×6=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为=.故选:A.9.(3分)如图,矩形ABCD中,AD=4,AB=6,过点A,C作相距为4的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.D.3【分析】过点F作FH⊥AE于H,则FH=4,由AAS证得△ADE≌△F AH,得出AF=AE,证四边形AECF是菱形,设DE=x,由勾股定理得出方程,解方程即可.【解答】解:过点F作FH⊥AE于H,如图所示:则FH=4,∵四边形ABCD是矩形,∴AB∥CD,∴∠F AH=∠AED,∵∠ADE=∠AHF=∠DAF=90°,AD=4,FH=4,∴AD=FH,在△ADE和△F AH中,,∴△ADE≌△F AH(AAS),∴AF=AE,∵AE∥CF,AF∥EC,∴四边形AECF是平行四边形,∵AF=AE,∴四边形AECF是菱形,设DE=x,则BF=x,CE=CF=6﹣x,在Rt△BCF中,(6﹣x)2=x2+42,∴x=,故选:C.10.(3分)如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边△ABC的顶点C 的坐标为()A.B.C.D.【分析】根据轴对称判断出点C变换后在x轴下方,然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出坐标即可.【解答】解:∵△ABC是等边三角形,AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,C的横坐标为2,∴C(2,+1),由题意可得:第一次变换后点C的坐标为(2﹣1,﹣﹣1),即(1,﹣﹣1),第二次变换后点C的坐标为(2﹣2,+1),即(0,+1),第三次变换后点C的坐标为(2﹣3,﹣﹣1),即(﹣1,﹣﹣1),第n次变换后点C的坐标为(2﹣n,﹣﹣1)(n为奇数)或(2﹣n,+1)(n为偶数),第2019次变换后的三角形在x轴下方,点C的纵坐标为﹣﹣1,横坐标为2﹣2019×1=﹣2017,∴点C的对应点C′的坐标是(﹣2017,﹣﹣1),故选:D.二、填空题(每小题3分,共15分)11.(3分)计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣112.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.13.(3分)如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为65°.【分析】先根据三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质得出∠C=∠CAD,进而可得出结论.【解答】解:∵△ABC中,∠B=55°,∠C=30°,∴∠BAC=180°﹣55°﹣30°=95°.∵直线MN是线段AC的垂直平分线,∴∠C=∠CAD=30°,∴∠BAD=∠BAC﹣∠CAD=95°﹣30°=65°.故答案为:65°.14.(3分)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O 为圆心,OC的长为半径作交OB于点E,若OA=6,∠AOB=120°,则图中阴影部分的面积为3π+.(结果保留π).【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:如图,连接OD,AD,∵点C为OA的中点,∴OC=OA=OD,∵CD⊥OA,∴∠CDO=30°,∠DOC=60°,∴△ADO为等边三角形,∴CD=3,∴S扇形AOD=,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(6π﹣×3×3)=12π﹣3π﹣6π+=3π+.故答案为3π+.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为或10.【分析】分两种情况讨论:点F在矩形内部;点F在矩形外部,分别根据折叠的性质以及勾股定理,列方程进行计算求解,即可得到DE的长.【解答】解:分两种情况:①如图1,当点F在矩形内部时,∵点F在AB的垂直平分线MN上,∴AN=4;∵AF=AD=5,由勾股定理得FN=3,∴FM=2,设DE为y,则EM=4﹣y,FE=y,在△EMF中,由勾股定理得:y2=(4﹣y)2+22,∴y=,即DE的长为.②如图2,当点F在矩形外部时,同①的方法可得FN=3,∴FM=8,设DE为z,则EM=z﹣4,FE=z,在△EMF中,由勾股定理得:z2=(z﹣4)2+82,∴z=10,即DE的长为10.综上所述,点F刚好落在线段AB的垂直平分线上时,DE的长为或10故答案为:或10.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:,请从﹣3,﹣1,1,3中选一个值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后从﹣3,﹣1,1,3中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:====,∵(x+3)(x﹣3)≠0,x﹣1≠0,∴x≠±3,x≠1,∴x可以为﹣1,当x=﹣1时,原式==﹣.17.(9分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为80人;扇形统计十图中“骑自行车”所在扇形的圆心角为72度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?【分析】(1)用步行的人数除以所占的百分比,计算即可求出总人数,再用360°乘以骑自行车的所占的百分比计算即可得解;(2)求出骑自行车的人数,然后补全统计图即可;(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.【解答】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°,故答案为:80、72;(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥25,∴原来开私家车的人中至少有25人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.18.(9分)如图,AB是⊙O的直径,C是半圆上任意一点,连接BC并延长到点D,使得CD=CB,连接AD,点E是弧的中点.(1)证明:△ABC≌△ADC.(2)①当∠E=135°时,△ABD是直角三角形;②当∠D=60°时,四边形OAEC是菱形.【分析】(1)如图1中,根据SAS证明三角形全等即可.(2)如图2中,证明∠B=45°即可解决问题.(3)如图3中,连接OE.证明△COE,△AOE都是等边三角形即可解决问题.【解答】(1)证明:如图1中,∵AB是⊙O的直径,∴∠BCA=∠DCA=90°,又∵CD=CB,AC=AC,∴△ABC≌△ADC(SAS).(2)解:①如图2中,∵△ABD是直角三角形,AB=AD ∴∠B=∠D=45°,∵∠B+∠E=180°∴∠E=135°.故答案为135.②如图3中,连接OE.∵四边形OAEC是菱形,又∵OC=OE=OA,∴OC=EC=OE=AE=OA,∴△COE,△EOA均为等边三角形,∴∠COE=∠EOA=60°,∴∠COA=120°,∴∠B=AOC=60°,∵∠D=∠B,∴∠D=60°,故答案为60.19.(9分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CF是限高标志牌的高度(标志牌上写有:限高 2.4米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)【分析】据题意得出tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=3x的长.【解答】解:据题意得tan B=,∵MN∥AD,∴∠A=∠B,∴tan A=,∵DE⊥AD,∴在Rt△ADE中,tan A=,∵AD=9,∴DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠2=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=3x(x>0),CE=2.5,代入得()2=x2+(3x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=3x=≈2.4,∴该停车库限高2.4米.故答案为2.4.20.(9分)如图,已知一次函数y=kx﹣2的图象与反比例函数y=的图象交于点B(1,3),一次函数的图象分别交x轴、y轴于点C,点A.(1)求一次函数与反比例函数的解析式;(2)在反比例函数图象上是否存在一点P,使得S△AOP=4S△AOC,若存在,求出点P的坐标,若不存在,说明理由.【分析】(1)用待定系数法,把已知点B的坐标代入两个函数解析式中便可求得比例系数;(2)先求出一次函数图象与坐标轴的交点A和C的坐标,进而求得△AOC的面积,设P点的横坐标为t,根据S△AOP=4S△AOC,列出t的方程求得t便可.【解答】解:把B(1,3)代入y=kx﹣2中,得3=k﹣2,解得k=5,∴一次函数的解析式为y=5x﹣2;把B(1,3)代入中,得m=3,∴反比例函数的解析式为y=;(2)令x=0,则y=5x﹣2=﹣2,令y=0,则y=5x﹣2=0,得x=,∴A(0,﹣2),C(,0),∴AO=2,OC=,∴,设P(t,),则,∵S△AOP=4S△AOC,∴|t|=4×,∴t=±∴点P的坐标为()或().21.(10分)某市中招体育测试改革,其中篮球和足球作为选考项目,某商店抓住这一商机决定购进一批篮球和足球共200个,这两种球的进价和售价如表所示:篮球足球进价(元/个)180150售价(元/个)250200(1)若商店计划销售完这批球后能获利11600元,问篮球和足球应分别购进多少个?(2)设购进篮球x个,获利为y元,求y与x之间的函数关系;(3)若商店计划投入资金不多于31560元且销售完这批球后商店获利不少于11000元,请问有哪几种购球方案,并写出获利最大的购球方案.【分析】(1)设购进篮球m个,则购进足球(200﹣m)个,根据利润=(篮球售价﹣篮球进价)×篮球的数量+(足球售价﹣足球进价)×足球数量且销售完这批商品后能获利11600元,即可得出关于m的一元一次方程组,解之即可得出结论;(2)根据“利润=(篮球售价﹣篮球进价)×篮球的数量+(足球售价﹣足球进价)×足球数量”即可得出y与x之间的函数关系;(3)根据题意列不等式组求出x的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设购进篮球m个,则购进足球(200﹣m)个.由题意,得(250﹣180)m+(200﹣150)×(200﹣m)=11600解得m=80∴200﹣m=120,即购进篮球80个,购进足球120个.(2)由题意,可得y=(250﹣180)x+(200﹣150)(200﹣x)=20x+10000即y=20x+10000(0≤x≤200);(3)由题意,得解得50≤x≤52且x为整数∴共有3种方案,如下表篮球足球方案一50150方案二51149方案三52148由y=20x+10000,∵20>0,∴y随x的增大而增大∴当写2时,y取得最大值.即获利最大的购球方案为:购进篮球52个,购进足球148个.22.(10分)(1)问题发现如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是60°;②线段AD,BE之间的数量关系为AD=BE.(2)类比探究如图2,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE =EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3)解决问题如图3,在平面直角坐标系中,点A坐标为(4,0),点B为y轴上任意一点,连接AB,将BA绕点B逆时针旋转90°至BC,连接OC,请直接写出OC的最小值.【分析】(1)证明△ACD≌△BCE(SAS),即可解决问题;(2)结论:∠AFB=45°,AD=BE.证明△ACD∽△BCE,可得==,∠CBF=∠CAF,由此即可解决问题;(3)设B(0,b),如图3,作CM⊥y轴于M.根据全等三角形的性质得到BO=CM=b,OA=BM=4,求得C(b,4+b),于是得到点C在直线y=x+4上运动,当OC垂直于直线y=x+4时,OC的值最小,于是得到结论.【解答】解:(1)如图1中,∵△ABC和△CDE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ACD=∠CBF,设BC交AF于点O.∵∠AOC=∠BOF,∴∠BFO=∠ACO=60°,∴∠AFB=60°,故答案为60°,AD=BE;(2)结论:∠AFB=45°,AD=BE.理由:如图2中,∵∠ABC=∠DEC=90°,AB=BC,DE=EC,∴∠ACD=45°+∠BCD=∠BCE,==,∴△ACD∽△BCE,∴==,∠CBF=∠CAF,∵∠AFB+∠CBF=∠ACB+∠CAF,∴∠AFB=∠ACB=45°,即AD=BE,∠AFB=45°;(3)设B(0,b),如图3,作CM⊥y轴于M.∵∠CMB=∠ABC=∠AOB=90°,∴∠ABO+∠CBM=90°,∵∠CBM+∠BCM=90°,∴∠ABO=∠BCM,在△ABO和△BCM中,,∴△ABO≌△BCM(AAS),∴BO=CM=b,OA=BM=4,∴OM=4+b,∴C(b,4+b),∴点C在直线y=x+4上运动,当OC垂直于直线y=x+4时,OC的值最小,∵直线y=x+4与x轴交于(﹣4,0),与y轴交于(0,4),∴OC最小值=2.23.(11分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x 轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)将△BOC绕平面直角坐标系中某点逆时针旋转90°,对应点为B1,O1,C1,当△B1O1C1中有两个顶点落在抛物线上时,直接写出C1的坐标.【分析】(1)利用待定系数法求二次函数解析式即可;(2)求出直线BC的解析式,设D(m,0),E(m,m﹣2),P(m,m2﹣m﹣2),根据OD=4PE,可得出m=4(m2﹣m﹣2﹣m+2),解出m即可得出答案;(3)考虑两种情况:①O1,C1在抛物线上,②B1,C1在抛物线上,列出方程求解即可.【解答】解:(1)∵抛物线的对称轴为x=1,且过点A(﹣2,0),∴,解得,∴y=x﹣2;(2)∵A(﹣2,0),对称轴x=1,∴B(4,0),∵抛物线与y轴交于点C,∴C(0,﹣2),设直线BC的解析式为:y=kx+b,∴,∴,∴直线BC的解析式为:y=x﹣2,设D(m,0),∵DP∥y轴,∴E(m,m﹣2),P(m,m2﹣m﹣2),∵OD=4PE,∴m=4(m2﹣m﹣2﹣m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,),E(5,),∴四边形POBE的面积=S△OPD﹣S△EBD=×5×﹣×1×=;∴当OD=4PE时,四边形POBE的面积为.(3)C1的坐标为(2,﹣2)或(﹣2,0).①O1,C1在抛物线上∵O1C1∥x轴,对称轴x=1,∴x C=2,∴C1(2,﹣2).②B1,C1在抛物线上设=n,则=n+2,∴+4,∴(n+2)﹣2+4解得:n=﹣4,∴C1(﹣2,0).综合可得C1的坐标为(﹣2,0)或(2,﹣2).。

河南省洛阳市2019-2020学年中考第四次大联考数学试卷含解析

河南省洛阳市2019-2020学年中考第四次大联考数学试卷含解析

河南省洛阳市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A .最高分90B .众数是5C .中位数是90D .平均分为87.52.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k<5B .k<5,且k≠1C .k≤5,且k≠1D .k>53.在△ABC 中,∠C =90°,1cos 2A =,那么∠B 的度数为( ) A .60°B .45°C .30°D .30°或60°4.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .若∠BAC =90°,则四边形AEDF 是矩形 C .若AD 平分∠BAC ,则四边形AEDF 是矩形 D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形5.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D6.将弧长为2πcm 、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( ) A .2 cmB .22 cmC .23cmD .10 cm7.设点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是 A .第一象限B .第二象限C .第三象限D .第四象限8.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是( )A.﹣9997199B.10001199C.10001201D.99972019.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,910.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm11.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.412.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)131xx的取值范围是_____.14.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.15.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.16.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C 到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)17.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____18.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.20.(6分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P 为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PC CE CD CB;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE =1,求△PBD 的面积.21.(6分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根. 22.(8分)如图,已知⊙O,请用尺规做⊙O 的内接正四边形ABCD ,(保留作图痕迹,不写做法)23.(8分)化简求值:212(1)211x x x x -÷-+++,其中31x =-. 24.(10分)如图,∠BCD =90°,且BC =DC ,直线PQ 经过点D .设∠PDC =α(45°<α<135°),BA ⊥PQ 于点A ,将射线CA 绕点C 按逆时针方向旋转90°,与直线PQ 交于点E .当α=125°时,∠ABC = °;求证:AC =CE ;若△ABC 的外心在其内部,直接写出α的取值范围.25.(10分)先化简,再求值:(x 2x 2+- +24x 4x 4-+)÷x x 2-,其中x=1226.(12分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 延长与圆相交于点F ,与BC 相交于点C . (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.27.(12分)如图①,在正方形ABCD 中,点E 与点F 分别在线段AC 、BC 上,且四边形DEFG 是正方形.(1)试探究线段AE 与CG 的关系,并说明理由.(2)如图②若将条件中的四边形ABCD 与四边形DEFG 由正方形改为矩形,AB=3,BC=1.①线段AE 、CG 在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE 为等腰三角形时,求CG 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5. 2.B 【解析】试题解析:∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∴100k -≠⎧⎨∆>⎩,即()2104410k k -≠⎧⎨-->⎩,解得:k <5且k≠1.故选B .3.C 【解析】 【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B 的值即可. 【详解】解:∵1 cos2A ,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.4.C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.5.A【解析】【分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.6.B 【解析】 【分析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高. 【详解】解:设圆锥母线长为Rcm ,则2π=120180Rπ︒⨯︒,解得R=3cm ;设圆锥底面半径为rcm ,则2π=2πr ,解得r=1cm.故选择B. 【点睛】本题考查了圆锥的概念和弧长的计算. 7.A 【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数ky x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限; ②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 8.C 【解析】 【分析】根据按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,21n +型;分子为21n +型,可得第100个数为210011000121001201+=⨯+. 【详解】按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,21n +型;分子为21n +型,可得第n 个数为2121n n ++,∴当100n =时,这个数为2211001100012121001201n n ++==+⨯+, 故选:C . 【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键. 9.C 【解析】 【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人, ∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2, ∴中位数为2. 故选C . 【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 10.C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C . 考点:平移的性质. 11.C 【解析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!12.D【解析】A选项:∠1+∠2=360°-90°×2=180°;∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1【解析】【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【详解】根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤1【点睛】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.1【解析】【分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.【详解】解:()20420÷÷2020%=÷100=只.故答案为:1.【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.15.210.【解析】【分析】利用邻补角的定义求出∠ABC+∠BCD ,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD =180°×2﹣210°=150°,∴∠A+∠D =360°﹣150°=210°. 故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD 是关键.16.【解析】【分析】作FP ⊥地面于P ,CJ ⊥PF 于J ,FQ ∥PA 交CD 于Q ,QH ⊥CJ 于H .NT ⊥地面于T .解直角三角形求出FP 、NT 即可解决问题.【详解】解:作FP ⊥地面于P ,CJ ⊥PF 于J ,FQ ∥PA 交CD 于Q ,QH ⊥CJ 于H .NT ⊥地面于T .由题意△QDF ,△QCH 都是等腰直角三角形,四边形FQHJ 是矩形,∴DF =DQ =30cm ,CQ =CD−DQ =60−30=30cm ,∴FJ =QH =cm ,∵AC =AB−BC =125−25=100cm ,∴PF =(+100)cm ,同法可求:NT =(100+),∴两个转盘的最低点F,N距离地面的高度差为=(152+100)-(100+52)=102故答案为2【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.1 2【解析】【分析】利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=AC CD,由此即可解决问题.【详解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴2234,∵四边形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC=ACCD=41=3+52,故答案为12.【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.18.3 5【解析】【分析】根据勾股定理求出OA 的长度,根据余弦等于邻边比斜边求解即可.【详解】∵点A 坐标为(3,4),∴,∴cosα=35, 故答案为35 【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0,解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.20. (1)见解析;(2) AC ∥BD ,理由见解析;(3)52【解析】【分析】(1)直接利用相似三角形的判定方法得出△BCE ∽△DCP ,进而得出答案;(2)首先得出△PCE ∽△DCB ,进而求出∠ACB=∠CBD ,即可得出AC 与BD 的位置关系;(3)首先利用相似三角形的性质表示出BD ,PM 的长,进而根据三角形的面积公式得到△PBD 的面积.【详解】(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)解:结论:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵PC CE CD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=42,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴EC PECB BD=,即4142BD=,∴BD=2,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=52 2∴△PBD的面积S=12BD•PM=12×2×522=52.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.21.(1)6;(2)﹣(x+1),1.【解析】【详解】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=122.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 233 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.24.(1)125;(2)详见解析;(3)45°<α<90°.【解析】【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC =180°,而∠ADC+∠EDC =180°,即可求解; (2)证明△ABC ≌△EDC (AAS )即可求解;(3)当∠ABC =α=90°时,△ABC 的外心在其直角边上,∠ABC =α>90°时,△ABC 的外心在其外部,即可求解.【详解】(1)在四边形BADC 中,∠B+∠ADC =360°﹣∠BAD ﹣∠DCB =180°,而∠ADC+∠EDC =180°,∴∠ABC =∠PDC =α=125°,故答案为125;(2)∠ECD+∠DCA =90°,∠DCA+∠ACB =90°,∴∠ACB =∠ECD ,又BC =DC ,由(1)知:∠ABC =∠PDC ,∴△ABC ≌△EDC (AAS ),∴AC =CE ;(3)当∠ABC =α=90°时,△ABC 的外心在其斜边上;∠ABC =α>90°时,△ABC 的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS )、三角形外心. 25.-13【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=[x2x2+-+()24x2-]÷xx2-=[()22x4x2---+()24x2-]÷xx2-=()22xx2-·x2x-=xx2-,当x=12时,原式=12122-=-13.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,»»»12BF DF BD==,再由圆周角定理可得BOE A∠=∠,从而得到∠ OBE+∠ DBC=90°,即90OBC∠=︒,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,»»»12BF DF BD==,∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.(2)解:∵ OB=6,BC=8,BC⊥OB,∴2210OC OB BC+=,∵1122OBCS OC BE OB BC=⋅=⋅V,∴684.810OB BCBEOC-⨯===,∴29.6BD BE==.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法. 27.(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为34CGAE=;理由见解析;②当△CDE为等腰三角形时,CG的长为32或2120或158.【解析】试题分析:()1AE CG AE CG=⊥,,证明ADEV≌CDGV,即可得出结论.()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG V V ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,, 理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE V ≌CDG V ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF V 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O e 的直径,∵DF EG =,∴EG 也是O e 的直径,∴∠ECG=90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒,∴DAC DCG ∠=∠,∵ADE CDG ∠=∠,∴ADE CDG V V ∽,∴3.4CG DC AE AD == ②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =,5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,, ∴CDH CAD V V ∽,∴,CD CH CA CD = 3,53CH ∴= ∴95CH =, ∴97425255AE x AC CH ==-=-⨯=, 720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年河南省洛阳市九年级下学期数学竞赛试卷
一、选择题(每题4分,共40分)
1.(4分)下列说法中不正确的是()
A.若a为任一有理数,则a 的倒数是
B.若|a|=|b|,则a=±b
C.x2=(﹣2)2,则x=±2
D.x2+1一定是正数
2.(4分)图中从三个方向看所得的图形所对应的直观图是()
A .
B .
C .
D .
3.(4分)式子m+6m﹣5m 2的值是()
A.正数B.负数
C.非负数D.可为正数也可为负数
4.(4分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有()
A.3种B.4种C.5种D.6种
5.(4分)在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为()
A .
B .
C .
D .
6.(4分)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()
第1 页共39 页。

相关文档
最新文档