ANSYS(瞬态 第4-1节)

合集下载

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。

0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。

其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。

对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。

对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。

4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。

则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

对话框5中,Material菜单,New Model选项,添加多种材料的热参数。

ansys教程完整

ansys教程完整
Objective
输入 显示提示信息,输入 ANSYS命令,所有输入 的命令将在此窗口显示 。
应用菜单 包含例如文件管理、选 择、显示控制、参数设 置等功能.
主菜单 包含ANSYS的主要功能 ,分为前处理、求解、 后处理等。
工具条 将常用的命令制成工具 条,方便调用.
输出 显示软件的文本输出。 通常在其他窗口后面, 需要查看时可提到前面 。
6. 声学分析 ●定常分析 ●模态分析 ●动力响应分析 7. 压电分析 ●稳态、瞬态分析 ●模态分析 ●谐响应分析 8. 多场耦合分析 ●热-结构 ● 磁-热 ●磁-结构 ●流体-热 ●流体-结构 ●热-电 ●电-磁-热-流体-结构
9. 优化设计及设计灵敏度分析 ●单一物理场优化 ●耦合场优化 10.二次开发功能 ●参数设计语言 ●用户可编程特性 ●用户自定义界面语言 ●外部命令
启动ANSYS
Objective
1-1. 启动ANSYS软件.
要启动ANSYS: 开始> 程序 > ANSYS 12.1 >Mechnical APDL Product Launcher
启动ANSYS(续)
当显示出这六个窗 口后,就可以使用 ANSYS了.
ANSYS窗口
1-2. ANSYS GUI中六个窗口的总体功能
5. 流体动力学分析 ● 定常/非定常分析 ●层流/湍流分析 ●自由对流/强迫对流/混合对流分析 ●可压缩流/不可压缩流分析 ●亚音速/跨音速/超音速流动分析 ●任意拉格郎日-欧拉分析(ALE) ●多组份流动分析(多达6组份) ●牛顿流与非牛顿流体分析 ●内流和外流分析 ●共轭传热及热辐射边界 ●分布阻尼和风扇模型 ●移动壁面及自由界面分析
Volumes Areas

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

ANSYSWorkbench在结构瞬态动力学分析中的应用_巨文涛

ANSYSWorkbench在结构瞬态动力学分析中的应用_巨文涛

=
{ un }
2
+
{ un }
Δt ( 6)
其中: α 、δ 为 New mark 积分参数 在时刻控制方程 为了计算下一时刻的位移 u n + 1 , ( 2. 4 ) 为 [ M] C] K] { un + 1 } + [ { un + 1 } + [ { un + 1 } = { Fa } ( 7) 由( 5 ) 和( 6 ) 得 { u n + 1 } = a0 ( { u n + 1 } - { u n } ) - a2 { u n } - a3 { u n } ( 8) { u n + 1 } { u n } + a6 { u n } + a7 { u n + 1 } ( 9) 1 1 1 δ , a = , a = -1 , a4 a1 = 其中 a0 = 2, αΔt 2 αΔt 3 2 α αΔt δ Δt δ a5 = ( - 2) , = -1 , a6 = Δt( 1 - δ) ,a7 = Δtδ 2 α α ( 8 ) 和( 9 ) 得 由( 7 ) 、 M]+ a1[ C] + [ K] M]a0 ( a0[ ) { un + 1 } = { Fa } + [ { u n } + a2 { u n } + a3 { u n } + [ C] ( a1 { u n } + a4 { u n } + a5 ( 10 ) { un } ) 根据以上各式, 速 可以得到 t n + 1 时刻的位移 u n + 1 、 度 u n + 1 和 u n + 1 加速度。 利用式( 5 ) 和( 6 ) 得到的 New mark 求解方法的无 条件稳定必须满足: 1 1 1 1 + δ) 2 , ( 11 ) δ≥ , + δ + α > 0 α≥ ( 4 2 2 2 New mark 参数 1 1 2 ( 12 ) δ = +γ α = ( 1 + γ) , 4 2 其中: γ 为振幅衰减因子 通过观察( 11 ) 和( 12 ) 可以发现无条件稳定也可以 1 1 2 α≥ ( 1 + γ) 且 γ≥0 。因此只要 γ 表述为 δ = + γ, 2 4 ≥0 , 则求解就是稳定的。 2. 2 HHT 算法 HHT 时间积分法由下式给出 在完全瞬态分析中, [ M] { u n + 1 - αm } + [ { u n + 1 - αf } + [ { u n + 1 - αf } = C] K] { Fa n + 1 - αm } 其中 { u n + 1 - αm } = ( 1 - α m ) { u n + 1 } + α m { u n } { u n + 1 - αf } = ( 1 - α f ) { u n + 1 } + α f { u n } { u n + 1 - αf } = ( 1 - α f ) { u n + 1 } + α f { u n } ( 13 )

ansys_workbench瞬态动力分析(4)分析

ansys_workbench瞬态动力分析(4)分析

积分时间步长
Training Manual
• AUTOTS对于全瞬态分析缺省是打开的. 对于缩 减法和模态叠加法,是不可用的. • AUTOTS 会减小ITS (直到 Dtmin) 在下列情况:
– – – – – – 在响应频率处,小于20个点 求解发散 求解需要大量的平衡迭代(收敛很慢) 塑性应变在一个时间步内累积超过15% 蠕变率超过0.1 如果接触状态要发生变化 ( 决大多数接触单元可由 KEYOPT(7) 控制)
缩减/完整结构矩阵
Training Manual
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。
Training Manual
DYNAMICS 11.0
• 求解方法
– 完整矩阵方法为缺省方法。允许下列非 线性选项:
• 大变形 • 应力硬化 • Newton-Raphson 解法
• 集中质量矩阵
– 主要用于细长梁和薄壁壳或波的传播
• 方程求解器
– 由程序自行选择
分析选项
• 求解选项 • 选择大位移瞬态分析 或小变形瞬态分析 .
DYNAMICS 11.0
• 完整矩阵:
– 不进行自由度缩减,采用完整的[K]、[C]和[M]矩阵; – 下面的讨论都是基于此种方法。
积分时间步长
Training Manual
• 积分时间步长(亦称为ITS 或 Dt )是时间积 分法中的一个重要概念
– ITS = 两个时刻点间的时间增量 Dt ; – 积分时间步长决定求解的精确度,因而其数值应仔 细选取。 – 对于缩减矩阵法与模态叠加法瞬态分析ANSYS 只 允许ITS常值. – 完全法瞬态分析, ANSYS 可以自动调整时间步大 小在用户指定的范围内

Ansys热分析教程_瞬态分析

Ansys热分析教程_瞬态分析

载荷步和子步
在瞬态分析中,载荷步和子步的定义与非线性稳态分析十分类似。载 荷定义的每个载荷步的终点,并可以随时间阶跃或渐变的施加。 每个载荷步的求解是在子步上得到。 子步长根据时间积分步长得到。 自动时间步 (ATS) 同样适用于瞬态分析, 可以简化ITS选择。
ITS选择将影响到瞬态分析的精度和非线性收敛性 (如果存在)。
K T Q
n 1
K
Equivalent conductivity matrix
Q
Equivalent heat flow vector
If nonlinearities are present, the incremental form of this equation is iterated upon at every time point.
* MASS71热质量单元比较
特殊,它能够存贮热能单不 能传导热能。因此,本单元 不需要热传导系数。
瞬态分析前处理考虑因素(续)
象稳态分析一样,瞬态分析也可以是线性或非线性的。如果是 非线性的,前处理与稳态非线性分析有同样的要求。
稳态分析和瞬态分析对明显的区别在于加载和求解 过程。
在瞬态热分析数值方法的一个简单介绍以后,我们将集中解释 这些过程。
积分。
ANTYPE,TRANS + TIMINT,OFF ANTYPE,STATIC ANTYPE,STATIC + TIMINT,ON ANTYPE,TRANS
另外的时间积分例子
在本例中,不是在分析的开始关闭时间积分 效果来建立初始条件,而是在分析的结束关 闭时间积分来“加速”瞬态。
注意改变到稳态边界时 的突变。最后一个载荷 步的终止时间可以是任 意的,但必须比前面的瞬 态载荷步时间数值要大 。

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动⼒学瞬态分析详解§3.1瞬态动⼒学分析的定义瞬态动⼒学分析(亦称时间历程分析)是⽤于确定承受任意的随时间变化载荷结构的动⼒学响应的⼀种⽅法。

可以⽤瞬态动⼒学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作⽤下的随时间变化的位移、应变、应⼒及⼒。

载荷和时间的相关性使得惯性⼒和阻尼作⽤⽐较重要。

如果惯性⼒和阻尼作⽤不重要,就可以⽤静⼒学分析代替瞬态分析。

瞬态动⼒学的基本运动⽅程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些⽅程可看作是⼀系列考虑了惯性⼒([M]{})和阻尼⼒([C]{})的静⼒学平衡⽅程。

ANSYS程序使⽤Newmark时间积分⽅法在离散的时间点上求解这些⽅程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动⼒学的预备⼯作瞬态动⼒学分析⽐静⼒学分析更复杂,因为按“⼯程”时间计算,瞬态动⼒学分析通常要占⽤更多的计算机资源和更多的⼈⼒。

可以先做⼀些预备⼯作以理解问题的物理意义,从⽽节省⼤量资源。

例如,可以做以下预备⼯作:1.⾸先分析⼀个较简单模型。

创建梁、质量体和弹簧组成的模型,以最⼩的代价深⼊的理解动⼒学认识,简单模型更有利于全⾯了解所有的动⼒学响应所需要的。

2.如果分析包括⾮线性特性,建议⾸先利⽤静⼒学分析掌握⾮线性特性对结构响应的影响规律。

在某些场合,动⼒学分析中是没必要包括⾮线性特性的。

3.掌握结构动⼒学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长⼗分有⽤。

4.对于⾮线性问题,考虑将模型的线性部分⼦结构化以降低分析代价。

<<⾼级技术分指南>>中将讲述⼦结构。

§3.3三种求解⽅法瞬态动⼒学分析可采⽤三种⽅法:完全(Full)法、缩减(Reduced)法及模态叠加法。

有限元分析软件ANSYS命令流中文说明4 4

有限元分析软件ANSYS命令流中文说明4 4

有限元分析软件ANSYS命令流中文说明4 4有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型ANTYPE,Antype,status,ldstep,action其中antype表示分析类型STATIC:静态分析MODAL:模态分析TRANS:瞬态分析SPECTR:谱分析2 KBC,KEY制定载荷为阶跃载荷还是递增载荷EKY=0递增方式KEY=1阶跃方式3 SOLVE开始一个求解运算4 LSSOLVE读入并求解多个载荷步5 TIME,time设置求解时间有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法:PARSAV,ALL,PAR,TXT!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名/SOLU ANTYPE,REST,CruStep-1,,CONTINUE!ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号PARRES,NEW,PAR,TXT!PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名如果有单元生死的问题,可以这样处理:ALLSEL,ALL*GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数ESEL,S,LIVE!选中"生"的单元*GET,E_SUM_AL,ELEM,COUNT*DIM,E_POT_AL,E_SUM_MAX!单元选择的指示*DIM,E_NUM_AL,E_SUM_AL!单元编号的数组J=0!读出所选单元号*DO,I,1,E_SUM_MAX*VGET,E_POT_AL(I),ELEM,I,ESEL!对所有单元做循环,被选中的单元标志为"1"*IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I*ENDIF*ENDDO ALLSEL,ALL在重启动之后恢复单元生死状态*if,E_SUM_AL,ne,0,then*do,i,1,Num_Alive esel,a,E_NUM_AL(i)*enddo ealive,all allsel*endif/WINDOW,WN,XMIN,XMAX,YMIN,YMAX,NCOPY注意x的坐标是-1到1.67,y坐标是-1到1 Xmin=off on,FULL,LEFT,RIGH,TOP,BOT,LTOP,LBOT,RTOP,RBOT注意一个问题,除了1号窗口外,其他的不能用鼠标操作,只用先发/view 和/dist,然后用/replot。

ansys_热分析_瞬态_稳态

ansys_热分析_瞬态_稳态

Guidelines
目录 (续)
第三章 稳态传热分析 一、稳态传热的定义 二、热分析的单元 三、ANSYS稳态热分析的基本过程 练习 第四章 瞬态传热分析 一、瞬态传热分析的定义 二、瞬态热分析的单元及命令 三、ANSYS瞬态热分析的主要步骤
1、建模 2、加载求解 3、后处理
四、相变问题 练习
Guidelines
系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量; { }为温度对时间的导数;
{TQ}为节点热流率向量,包含热生成。
Guidelines
第六讲、线性与非线性
如果有下列情况产生,则为非线性热分析: ①、材料热性能随温度变化,如K(T),C(T)等; ②、边界条件随温度变化,如h(T)等; ③、含有非线性单元; ④、考虑辐射传热 非线性热分析的热平衡矩阵方程为:
第三讲、热传递的方式
Definition
3、热辐射
热辐射指物体发射电磁能,并被其它物体吸收转变为热的热 量交换过程。物体温度越高,单位时间辐射的热量越多。 热传导和热对流都需要有传热介质,而热辐射无须任何 介质。实质上,在真空中的热辐射效率最高。
在工程中通常考虑两个或两个以上物体之间的辐射,系统中 每个物体同时辐射并吸收热量。它们之间的净热量传递 可以用斯蒂芬 —波尔兹曼方程来计算: q=εσA1F12(T14T24),式中q为热流率, ε为辐射率(黑度), σ为斯蒂芬 -波尔兹曼常数,约为5.67×10-8W/m2.K4,A1为辐射面1 的面积,F12为由辐射面1到辐射面2的形状系数,T1为辐 射面1的绝对温度,T2为辐射面2的绝对温度。由上式可 以看出,包含热辐射的热分析是高度非线性的。
线性: LINK32
两维二节点热传导单元

ANSYS瞬态热分析.

ANSYS瞬态热分析.
·写入载荷步文件: Command: LSWRITE GUI: Main Menu> Preprocessor>Loads>Write LS File 或先求解: Command: SOLVE GUI: Main Menu> Solution>Solve>Current LS 注意:在第二载荷步中,要删去所有设定的温度,除非这些节点 的温度在瞬态分析与稳态分析相同。
瞬态热分析步骤二:加载求解
③、输出选项 · 控制打印输出:本选项可将任何结果数据输出到*.out 文件中 Command: OUTPR GUI: Main Menu>Solution>-Load Step Opts->Output Ctrls>Solu Printout
瞬态热分析步骤二:加载求解
②、非线性选项 • 自动时间步长:本选项为 ON时,在求解过程中将自动调整时 间步长。 Command: AUTOTS GUI: Main Menu> Solution>-Load Step Opts-> Time/Frequenc > Time and Substps
瞬态热分析步骤二:加载求解
②、非线性选项 • 时间积分效果:如果将此选项设定为OFF,将进行稳态热分析。 Command: TIMINT GUI: Main Menu> Solution>-Load Step Opts-> Time/Frequenc > Time Integration
·写入载荷步文件:
Command: LSWRITE GUI: Main Menu> Preprocessor>Loads>Write LS File 或先求解: Command: SOLVE GUI: Main Menu> Solution>Solve>Current LS

ANSYSMaxwell瞬态分析案例解析

ANSYSMaxwell瞬态分析案例解析

1.Maxwell 2D: 金属块涡流损耗(一)启动W o r k b e n c h并保存1.在windows系统下执行“开始”→“所有程序”→ANSYS 15.0→Workbench 15.0命令,启动ANSYS Workbench 15.0,进入主界面。

2.进入Workbench后,单击工具栏中的 按钮,将文件保存。

(二)建立电磁分析1.双击Workbench平台左侧的Toolbox→Analysis Systems→Maxwell 2D此时在ProjectSchematic中出现电磁分析流程图。

2.双击表A中的A2,进入Maxwell软件界面。

在Maxwell软件界面可以完成有限元分析的流程操作。

3.选择菜单栏中Maxwell 2D→Solution Type命令,弹出Solution Type对话框(1)Geometry Mode:Cylinder about Z(2)Magnetic:Transient(3)单击OK按钮4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成mm,并单击OK按钮。

(三)建立几何模型和设置材料1.选择菜单栏中Draw→Rectangle 命令,创建长方形在绝对坐标栏中输入:X=500,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=20,dY=0,dZ=500,并按Enter键2.选中长方形,选择菜单栏中Edit→Duplicate along line命令在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=50,dY=0,dZ=0,并按Enter键弹出Duplicate along line对话框,在对话框中Total Number:3,然后单击OK按钮。

3.选中3个长方形右击,在快捷菜单中选择Assign Material命令,在材料库中选择Aluminum,然后单击OK按钮。

ANSYS workbench稳态及瞬态热分析

ANSYS workbench稳态及瞬态热分析

b. 网格控制:在Details of “Mesh ” 中单击sizing,size function选择 Proximity and Curvature(临近 以及曲率)选项
c. 选中Mesh,单击鼠标右键
→Generate Mesh
c
1
稳态热分析实例
划分网格 e. 对于曲面模型使用Proximity and Curvature(临近以及曲率)网格控制会
k导热系数(W/(m·℃)),q二次导数为热流密度(W/m^2)
1
热分析简介
基本的传热方式:热传导、热对流、热辐射、相变 2. 热对流(Convection) 对流是指温度不同的各个部分流体之间发生相对运动所引起的热量传递方 式。 热对流满足牛顿冷却方程:
q" h(Ts Tb)
q"为热流密度; h为物质的对流传热系数 ; TS是固体的表面温度; Tb为周围流体温度。
(续)
1
流程简介ቤተ መጻሕፍቲ ባይዱ
材料属性
1
流程简介
装配体与接触
•对于复杂的装配体模型,如果零件初始不接触将不会互相传热
•如果初始有接触就会发生传热
•对于不同的接触类型,将会决定接触面以及目标面之间是否会发生热量传递。 可以利用pinball调整模型可能出现的 间隙,如下表所示:
接触类型
•节点位于Pinball 内:
Mechanical。选中模型树 Geometry 下模型1 2. 在Detail of “1”中,展开Material选 项,单击Assignment后三角 3. 在下拉菜单中选择Copper Alloy
1
稳态热分析实例
划分网格 a. 首先使用程序自动划分网格,查

ANSYS动力学分析指南――谱分析

ANSYS动力学分析指南――谱分析

ANSYS动力学分析指南——谱分析§4.1谱分析的定义谱分析是一种将模态分析的结果与一个已知的谱联系起来计算模型的位移和应力的分析技术。

谱分析替代时间-历程分析,主要用于确定结构对随机载荷或随时间变化载荷(如地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等等)的动力响应情况。

§4.2什么是谱谱是谱值与频率的关系曲线,它反映了时间-历程载荷的强度和频率信息。

ANSYS的谱分析有三种类型:·响应谱分析Ø单点响应谱(Single-point Response Spectrum,SPRS)Ø多点响应谱(Multi-point Response Spectrum,MPRS)·动力设计分析方法(Dynamic Design Analysis Method,DDAM)·功率谱密度(Power Spectral Density,PSD)在ANSYS/Professional产品中只提供单点响应谱方法。

§4.2.1响应谱分析一个响应谱代表单自由度系统对一个时间-历程载荷函数的响应,它是一个响应与频率的关系曲线,其中响应可以是位移、速度、加速度、力等。

响应谱又分为如下两种形式:§4.2.1.1单点响应谱在模型的一个点集上定义一条(或一族)响应谱曲线,例如在所有支撑处,图4-1(a)所示。

ANSYS/LinearPlus program中只能进行单点响应谱分析。

§4.2.1.2多点响应谱在模型的不同点集上定义不同的响应谱曲线,图4-1(b)所示。

图4-1单点响应谱和多点响应谱§4.2.2动力设计分析方法该法是一种用于分析船用装备抗振性的技术,它所使用的谱是从美国海军研究实验室报告(NRL-1396)中一系列经验公式和振动设计表得来的。

§4.2.3功率谱密度功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。

ansys非线性瞬态结构分析重要命令

ansys非线性瞬态结构分析重要命令
Nonlinear Isotropic Hardening Material Model非线性各向同性硬化模型
非线性各向同性硬化模型(TB,NLISO)选项基于Voce硬化规律或power硬化规律。该模型的优势在于材料行为由函数确定,而函数由TBDATA命令定义的四个材料常数确定。你可以通过拟合材料拉伸应力-应变曲线来得到这四个常数。不同于MISO,不需要担心如何恰当选定应力-应变点来输入。但是该选项只是适用于如下图所示的拉伸曲线。该选项适合大应变分析。可以综合Chaboche, creep, viscoplastic, and Hill anisotropy等选项来反正复杂材料行为。
Swelling Material Model
User-Defined Material Model
2 Plasticity塑性
大多数工程材料在达到所谓的弹性比例极限前都表现出线性的应力-应变关系。超出该极限,应力-应变关系变为非线性,但也不会变成完全没有弹性。塑性以不可恢复的变形为特点,当应力超过屈服极限材料即表现塑性。一般弹性极限与屈服极限差别很小,ANSYS中一般将这两点当成一点。塑性是一个不可恢复、与路径相关的现象。换句话说,载荷施加顺序及塑性响应顺序都影响最终结果。如果分析中会产生塑性形变,最好以较小的载荷步和时间步求解,以便模型会更遵循载荷-响应曲线。
双线性随动硬化模型(TB,BKIN)假设总应力范围等于屈服强度的两倍,以便包括包辛格效应。建议该选项使用于遵循von Mises屈服准则的一般小形变情况。不建议做大变形应用。BKIN选项可以综合蠕变和希尔各向异性选项来仿真更复杂的材料行为。
Multilinear Kinematic Hardening Material Model多线性随动硬化模型

ansys练习五——物块反弹(瞬态)

ansys练习五——物块反弹(瞬态)

瞬态分析实例——物块反弹
分析步骤指南: 分析步骤指南:
Training Manual
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
• 求解
瞬态分析实例——物块反弹
瞬态): 载荷步 2 ( 瞬态): 回到求解控制菜单并设定
– 时间 时间=1.5 – 打开自动时间载荷步 开始 ITS = 0.02, 最小 ITS = its (从第 4 打开自动时间载荷步, 从第 步 ) ,最大 ITS = 0.02 – 瞬态求解 (时间积分效应设定为on) (时间积分效应设定为 时间积分效应设定为on) – 释放物块 – 求解
Training Manual
瞬态分析实例——物块反弹
7. 不要退出 ANSYS:
– 一会儿可以用重启动继续此 实例
– 将随时间过去的结果制成动画 注意:为了保存制作动画所需 注意: 的全部画面,也许要减小图形窗口的尺寸。 的全部画面,也许要减小图形窗口的尺寸。
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
瞬态分析实例——物块反弹
6. 查看结果 查看结果:

ansys非线性瞬态结构分析重要命令

ansys非线性瞬态结构分析重要命令
3瞬态分析
3.1 瞬态分析的三种方法
瞬态分析有三种方法:full, mode-superposition ,andreduced。对于涉及非线性(plasticity, large deflections, large strain, and so on)的情况一般使用全积分方法。全积分也是最费时的方法。
自动时间步
AUTOTS,ON
DELTIM, DTIME, DTMIN, DTMAX, Carry
如果使用自动时间步,当Carry=OFF,以DTIME为起始时间步长,最小时间步不小于DTMIN,最大不大于DTMAX,当Carry=ON,以上一载荷步的最后子时间步长为起始时间步长。
另一个效果相同的命令组合:
OUTRES,Item,Freq,Cname
Item:NSOL,节点结果;ESOL,单元结果;ALL,所有。
Freq:n,每第n个子步;-n,均分成n段;NONE,一个也不存;ALL,每一子步;LAST,最后一子步;%array%按数组提供的时刻来存储。
例1:
NSUBST,6
OUTRES,ERASE设置到默认值,对于静态和瞬态分析,默认的是输出每一载荷步的最后子步的所有结果;谐态分析是每一子步。
线搜索选项
LNSRCH, Key
线搜索选项(LNSRCH)。该选项可代替自适应下降选项。如果线搜索选项是打开的,程序将自动关闭自适应选项。
非线性分析收敛标准
CNVTOL, Lab, VALUE, TOLER, NORM, MINREF
设置分析终结标准
NCNV, KSTOP, DLIM, ITLIM, ETLIM, CPLIM
Lab:
SPARSE-Sparse direct equation solver

ansys动力学瞬态动力分析

ansys动力学瞬态动力分析
型旳非线性- 大变形、接触、塑性等等。
6
瞬态分析- 术语和概念
求解措施
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法 缩减矩阵法
完整矩阵法 缩减矩阵法
7
瞬态分析 – 术语和概念
求解措施 (接上页)
运动方程旳两种求解法: • 模态叠加法(在第六章中讨论) • 直接积分法:
– 运动方程能够直接对时间按步积分。在每个时间点, 需求解一组联立旳静态平衡方程(F=ma);
33
瞬态分析环节
要求边界条件和初始条件(接上页)
实例 - 高尔夫球棒端头旳初速度
• 假定只对高尔夫球棒端头建模,而且整个端头运动 ,这时有初始条件v00。 同步又假定 u0 = a0 = 0;
• 在这种情况下使用IC 命令法是以便旳 1 选择球棒上旳全部节点; 2 用 IC 命令施加初始速度或; – 选择 Solution > Apply > Initial Condit’n > Define + – 选用全部节点 – 选择方向并输入速度值 3 激活全部节点; 4 要求终止时间,施加其他载荷条件(假如存在 旳话),然后求解。
c elastic wave speed E
E Young's modulus
mass density
14
瞬态分析
第三节:环节
• 在此节中只讨论完整矩阵 • 五个主要环节:
– 建模 – 选择分析类型和选项 – 要求边界条件和初始条件 – 施加时间历程载荷并求解 – 查看成果
15
瞬态分析环节
31
瞬态分析环节
要求边界条件和初始条件(接上页)
• 载荷步2: – 打开瞬态效应; – 删除强加位移; – 指定终止时间,连续进行瞬态分析。

ANSYS电磁场分析指南第四章2D瞬态磁场分析

ANSYS电磁场分析指南第四章2D瞬态磁场分析

第四章2-D瞬态磁场分析什么是瞬态磁场分析瞬态磁场分析处置的既不是静态的也不是谐波的磁场,而是由电压、电流或外加场的随时刻无规律转变所引发的磁场转变。

在瞬态磁场分析中咱们所感爱好的典型物理量是:·涡流·涡流致使的磁力·涡流致使的能量损耗瞬态磁场分析能够是线性,也能够是非线性。

2-D瞬态磁场分析顶用到的单元在涡流区域,瞬态模型只能用矢量位方程描述。

只能用以下单元类型来模拟涡流区。

表12D实体单元表2通用电路单元创建2D瞬态磁场分析的物理环境犹如ANSYS其他类型分析一样,瞬态磁分析要成立物理环境、建模、给模型区域赋属性、划分网格、加边界条件和载荷、求解、然后检察结果。

2D瞬态磁分析的大多数步骤都相同或相似于2D静态磁场分析步骤。

本章讨论2D瞬态磁场分析中需要特殊处置的部份。

关于2D瞬态磁场分析中如何设置GUI参考框、单元选项(KEYOPTs)、实常数、单位制与2D静态磁场分析相同,第2章已经作了详细描述。

当概念材料性质时,一样也采纳与第2章中一样的方式。

成立模型,划分网格,指定属性《ANSYS建模与分网指南》详细介绍了建模进程。

成立了模型后,对每一个模型区要指定属性,即指定在第一步中概念好的单元类型、单元选项、材料特性、实常数、单元坐标系等。

利用AATT或VATT命令或其等效途径来指定属性。

详见第2章静态磁场分析部份。

施加边界条件和励磁载荷在瞬态磁分析中,可将边界条件和载荷施加到实体模型上(关键点、线和面),也能够施加到有限元模型上(节点和单元)。

加载方式与第2章静态分析类似。

也能够用命令加载和施加边界条件,对2D 瞬态分析还能够用加载步选项。

本手册第16章对这些载荷步选择有详细描述。

依照概念,瞬态分析中的边界条件和载荷是时刻的函数,实际分析计算时,要将“载荷-时刻”曲线分解成适合的载荷步,“载荷-时刻”曲线的每一个"拐点"确实是一个载荷步。

在每一个载荷步中,不仅要概念载荷或边界条件的值,而且还要概念它们所对应的时刻值和一些载荷步选项(如阶跃转变载荷或斜坡转变载荷、自动时刻步长等),重复将这些载荷数据写到载荷步文件中,直到所有的载荷步终止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QUST
26

(2) 定义材料属性


首先进入Define Material Model Behavior 对话框,操作如下: GUI:Main Menu > Preprocessor > Material Props 下面定义瞬态热分析所需的材料参数, 如热传导率、比热容及材料密度:
QUST
27
自动时间步 (ATS) 同样适用于瞬态分析,可以简化 ITS选择。 ITS选择将影响到瞬态分析的精度和非线性收敛性 (如果存在)。
QUST
6


5. 瞬态传热分析
2
均匀初始温度:如果整个模 型的初始温度为均匀且非0 ,使用下列菜单指定:
3 4 1
QUST
7
5. 瞬态传热分析
非均匀的初始温度
1 4
QUST
2
4. 瞬态传热分析
QUST
3
5. 瞬态传热分析

ANSYS 缺省是渐进加载的。渐进加载可以提 高瞬态求解的适应性,如果有非线性时可以提 高收敛性。
QUST
4
5. 瞬态传热分析
QUST
5
5. 瞬态传热分析


在瞬态分析中,载荷步和子步的定义与非线性稳态分 析十分类似。载荷定义的每个载荷步的终点,并可以 随时间阶跃或渐进的施加。 每个载荷步的求解是在子步上得到。子步长根据时间 积分步长得到。

4. 瞬态传热分析
QUST
1
4. 瞬态传热分析


瞬态传热分析的基本步骤与稳态热分析类似,主要的 区别是瞬态传热分析中的载荷是随时间变化的。为了 表达随时间变化的载荷,首先必须将载荷-时间曲线 分为载荷步。载荷-时间曲线中的每一个拐点为一个 载荷步,如图3-9 所示。对于每一个载荷步,必须定 义载荷值及时间值,同时必须选择载荷步为Ramped 方式变化或Stepped 方式变化。 如果需要知道系统受随时间变化(或不变)的载荷和边 界条件时的响应,就需要进行“瞬态分析” 。
QUST
25

2.建立有限元模型
首先建立瞬态传热分析所需的有限元模型 选择单元. (1) 选择热分析单元,操作如下:



GUI:Main Menu > Preprocessor > Element Type > Add/Edit/Delete 在弹出的对话框中,单击Add。在单元类型 库对话框中选择Plane55单元。单击OK。 命令:ET,1,PLANE55
Qocessor > Loads > Analysis Type > New Analysis 选择Transient 分析,单击OK。采用ANSYS 默认设置,在弹出的子对话框中单击OK。 命令:ANTYPE,4 TRNOPT,FULL LUMPM,0
QUST
16

设定一个只有一个子步的,时间很小的载荷步(例如 0.001) 命令:TIME GUI:Main Menu > Solution > Analysis Type > Sol'n Controls > basic 4)写入载荷步文件 命令:LSWRITE GUI:Main Menu > Solution > Load Step Opts > Write LS File 或先求解: GUI:Main Menu > Solution > Solve > Current LS

定义热传导率
GUI:Main Menu > Preprocessor > Material Props > Thermal > Conductivity > Isotropic 在弹出的定义材料热传导率对话框中的KXX 栏键 入“5”。


命令:MPDATA,KXX,1,,5
QUST
28

QUST
10

定义瞬态传热分析的初始条件 瞬态传热分析的初始条件分为两种情况:其一, 初始温度场已知;其二,初始温度场未知。
QUST
11



已知初始温度场 如果初始温度场是已知的,则定义过程比较简单,定 义过程如下: 1. 定义均匀温度场 命令:TUNIF GUI:Main Menu > Solution > Define Loads > Apply > Structural > Temperature > Uniform Temp 如果已知模型的起始温度是均匀的,可设定所有节点 初始温度。
QUST
34
命令:SMRT, 3 AMESH,All 保存数据库,其操作如下: GUI:Toolbar > SAVE-DB 命令:SAVE

QUST
35

4.施加载荷并求解 求解之前首先要选择分析类型,然后定义 边界条件及其载荷步选项,最后计算。首先 选择分析类型。 (1) 选择分析类型 选择Transient分析,操作如下:

QUST
30

(3)建立实体模型


根据本例所用模型,首先需要创建矩形,然后 是圆,最后在矩形板中央减去(Substract)圆。 下面介绍建立实体模型的操作: 创建矩形 命令:RECTNG,0,0.15,0,0.05,
QUST
31

创建圆面
其操作如下: GUI:Main Menu > Preprocessor > Modeling > Create > Circle > By dimensions 在弹出对话框中,单击OK得到圆面。 命令:CYL4, 0.075, 0.025, 0.01
QUST
17



非线性选项常用选项如下: 1)迭代次数选项选项 命令:NEQIT GUI:Main Menu > Preprocessor > Loads > Load Step Opts > Nonlinear > Equilibrium Iter 每个子步默认的次数为25,这对大多数非线性 热分析已经足够。

QUST
32

相减
根据ANSYS建模过程中面序号赋值原理,直 接可以肯定圆面序号为2,矩形序号为1,因 此采用直接键入命令建实体模型: 命令:asba,1,2

QUST
33

(4) 设定网格尺寸并划分网格 下面介绍网格尺寸的设定(SmartSize 方 式): 设定网格尺寸参数并划分网格,通过 SmartSize控制网格密度,操作如下: GUI:Main Menu > Preprocessor > Meshing > MeshTool 选择SmartSize=3。单击Mesh。单击拾取 对话框中Pick All按钮。得到网格图。
QUST
18


自动时间步长选项 命令:AUTOTS GUI:Main Menu > Solution > Analysis Type > Sol'n Controls 打开后求解过程中将自动调整时间步长。
QUST
19


时间积分选项 命令:TIMINT GUI:Main Menu > Solution > Load Step Opts > Time/Frequenc > Time Integration 如果将此选项设定为OFF,将进行稳态热分析。
QUST
14


3. 设定非均匀的初始温度 命令:IC GUI:Main Menu > Solution > Define Loads > Apply > Initial Condit'n > Define 在瞬态传热分析中,节点温度可以通过此项设 定为不同的值。
QUST
15


QUST
38

(3)定义热约束


瞬态传热分析中的载荷是随着时间发生 变化的。对于每一个载荷步都需要指明载 荷值及时间值, 还需要指定载荷步选项,如加载方式是 Ramped方式还是Stepped方式。
定义比热容
GUI:Main Menu > Preprocessor > Material Props > Thermal > Specific Heat 在弹出的定义比热容对话框中的C栏键入 “200”。 命令:MPDATA,C,1,,200

QUST
29

定义密度
GUI:Main Menu > Preprocessor > Material Props > Thermal > Density 在弹出密度定义对话框中的DENS栏键入 “5000”。 命令:MPDATA,DENS,1,,5000 材料属性定义完毕.
如果模型的初始温度分布 已知但不均匀,使用这些 菜单将初始条件施加在特 定节点上
2
3 5
QUST
8
5. 瞬态传热分析



ANSYS 瞬态传热分析的主要步骤 1.建立有限元模型 2.施加载荷并求解 3.求解 4.查看分析结果
QUST
9



择分析类型 进行瞬态传热分析需要首先需要定义分析类型及其相 关选项。下面介绍分析类型及其选项的设定: 进行第一次分析或者重新进行分析 命令:ANTYPE,TRANSIENT,NEW GUI:Main Menu > Solution > Analysis Type > New Analysis > Transient 延续上一次分析 命令:ANTYPE,TRANSIENT,REST GUI:Main Menu > Solution > Analysis Type > Restart
相关文档
最新文档