4外文翻译
4翻译

毕 业 设 计(论 文)外 文 参 考资 料 及 译 文译文题目: CIC MegaCore Function 学生姓名: 高佳 学 号: 1021129024 专 业: 通信工程 所在学院: 龙蟠学院 指导教师: 姜志鹏 职 称: 讲师2013年11月06日CIC MegaCore Function----From DescriptionThis document describes the Altera CIC MegaCore function. The Altera CIC MegaCore function implements a cascaded integrator-comb filter with data ports that are compatible with the Avalon Streaming interface. CIC filters (also known as Hogenauer filters) are computationally efficient for extracting baseband signals from narrow-band sources using decimation, and for constructing narrow-band signals from processed baseband signals using interpolation.CIC filters use only adders and registers, and require no multipliers to handle large rate changes. Therefore, CIC is a suitable and economical filter architecture for hardware implementation, and is widely used in sample rate conversion designs such as digital down converters (DDC) and digital up converters (DUC).The Altera CIC MegaCore function supports the following features:■Support for interpolation and decimation filters with variable rate change factors (2 to 32,000), a configurable number of stages (1 to 12), and two differential delay options (1 or 2).■Single clock domain with selectable number of interfaces and a maximum of 1,024 channels.■Selectable data storage options with an option to use pipelined integrators.■Configurable input data width (1 to 32 bits) and output data width (1 to full resolution data width).■Selectable output rounding modes (truncation, convergent rounding, rounding up, or saturation) and Hogenauer pruning support.■Optimization for speed by specifying the number of pipeline stages used by each integrator.■Compensation filter coefficients generation.■Easy-to-use MegaWizard interface for parameterization and hardware generation.■IP functional simulation models for use in Altera-supported VHDL and Verilog HDL simulators.■DSP Builder ready.Cascaded Integrator Comb (CIC) filters are widely used in modern communication systems. As the signal processing in all aspects of requirements are constantly improve, in digital technology, the design of the filter appears increasingly important.Those who have signal processing ability of device can be referred to as a filter.In the modern telecommunications equipment and all kinds of control system, filter is widely used.Of all the electronic devices, using the most, the most widely used, technology is the most complex filter.Filter quality directly decides the product quality, good performance of filter can make the system more stable, so the filter of the countries all over the research and production has always been highly valued.With the wide application of digital technology, field programmable gate array (FPGA) has been the rapid development, integration and speed is growing.FPGA has high integration and reliability of the gate array (FPGA), and programmable resistance, maximum limit reduces the design cost, shorten the development cycle.Using CIC filters provides a silicon efficient architecture for performing sample rate conversion. This is achieved by extracting baseband signals from narrow-band sources using decimation, and constructing narrow-band signals from processed baseband signals using interpolation. The key advantage of CIC filters is that they use only adders and registers,and do not require multipliers to implement in hardware for handling large rate changes.A CIC filter (also known as a Hogenauer filter) can be used to perform either decimation or interpolation. A decimation CIC filter comprises a cascade of integrators (called the integrator section), followed by a down sampling block (decimator) and a cascade of differentiators (called the differentiator or comb section). Similarly an interpolation CIC filter comprises a cascade of differentiators, followed by an up sampling block (interpolator) and a cascade of integrators .In a CIC filter, both the integrator and comb sections have the same number of integrators and differentiators. Each pairing of integrator and differentiator is called a stage. The number of stages ( N ) has a direct effect on the frequency response of a CIC filter. The response of the filter is determined by configuring the number of stages N , therate change factor R and the number of delays in the differentiators (called the differential delay) M . In practice, the differential delay is set to 1 or 2.The MegaWizard interface only allows you to select legal combinations of parameters, and warns you of any invalid configurations .For high rate change factors, the maximum required data width for no data loss is large for many practical cases. To reduce the output data width to the input level, quantization is normally applied at the end of the output stage. In this case, the following rounding or saturation options are available:■Truncation : The LSBs are dropped. (This is equivalent to rounding to minus infinity.)■Convergent rounding . Also known as unbiased rounding . Rounds to the nearest even number . If the most significant deleted bit is one, and either the least significant of the remaining bits or at least one of the other deleted bits is one, then one is added to the remaining bits.■Round up: Also known as rounding to plus infinity. Adds the MSB of the discarded bits for positive and negative numbers via the carry in.■Saturation: Puts a limit value (upper limit in the case of overflow, or lower limit in the case of negative overflow) at the output when the input exceeds the allowed range. The upper limit is+2n-1 and lower limit is –2n.These rounding options can only be applied to the output st age of the filter. The data widths at the intermediate stages are not changed. The next section describes cases where the data width at the intermediate stages can be changed.Hogenauer pruning [Reference ] is a technique that utilizes truncation or rounding in intermediate stages with the retained numb er of bits decreasing monotonically from stage to stage, while the total error introduced is still no greater than the quantization error introduced by rounding the full precision output. This technique helps to reduce the number of logic cells used by the filter and gives better performance.The existing algorithms for computing the Hogenauer bit width growth for large N and R values are computationally expensive.For more information about these algorithms, refer to U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 2nd Edition, Spinger, 2004.The CIC MegaCore function has pre-calculated Hogenauer pruning bit widths stored within the MegaCore function. There is no need to wait for Hogenauer pruning bit widths to be calculated if Hogenauer pruning is enabled for a decimation filter. Hogenauer pruning is only available to decimation filters when the selected output data width is smaller than the full output resolution data width.There are often many channels of data in a digital signal processing (DSP) system that require filtering by CIC filters with the same configuration. These can be combined into one filter, which shares the adders that exist in each stage and reduces the overall resource utilization. This combined filter uses fewer resources than using many individual CIC filters. For example, a two-channel parallel filter requires two clock cycles to calculate two outputs. The resulting hardware would need to run at twice the data rate of an individual filter. This is especially useful for higher rate changes where adders grow particularly large.To minimize the number of logic elements , a multiple input single output (MISO) architecture can be used for decimation filters, and a single input multiple output (SIMO) architecture for interpolation filters as described in the following sections.In many practical designs, channel signals come from different input interfaces. On each input interface, the same parameters including rate change factors are applied to the channel data that the CIC filter is going to process. The CIC MegaCore function allows the flexibility to exploit time sharing of the low rate differentiator sections. This is achieved by providing multiple input interfaces and processing chains for the high rate portions, then combining all of the processing associated with the lower rate portions into a single processing chain. This strategy can lead to full utilization of the resources and represents the most efficient hardware implementation. These architectures are known as multiple input single output (MISO) decimation filters.Single input multiple output (SIMO) is a feature associated with interpolation CIC filters. In this architecture, all the channel signals presented for filtering come from a single input interface.Like the MISO case, it is possible to share the low sampling rate differentiator section amongst more channels than the higher sampling frequency integrator sections. Therefore, this architecture features a single instance of the differentiator section, and multiple parallel instances of the integrator sections.After processing by the differentiator section, the channel signals are split into multiple parallel sections for processing in a high sampling frequency by the integrator sections. The sampling frequency of the input data is such that it is only possible to time multiplex two channels per bus, therefore the CIC filter must be configured with two input interfaces. Because two interfaces are required, the rate change factor must also be at least two to exploit this architecture. Up to 1,024 channels can be supported by using multiple input interfaces in this way.Single input multiple output (SIMO) is a feature associated with interpolation CIC filters. In this architecture, all the channel signals presented for filtering come from a single input interface. Like the MISO case, it is possible to share the low sampling rate differentiator section amongst more channels than the higher sampling frequency integrator sections.Therefore, this architecture features a single instance of the differentiator section, and multiple parallel instances of the integrator sections.After processing by the differentiator section, the channel signals are split into multiple parallel sections for processing in a high sampling frequency by the integrator sections.The required sampling frequency of the output data is such that it is only possible to time multiplex two channels per bus. Therefore the CIC filter must be configured with four output interfaces. Because four interfaces are required, the rate change factor must also be at least four to exploit this architecture, but in this example a rate change of eight is illustrated.SIMO architecture is applied when an interpolation filter type is chosen and the number of interfaces selected in the MegaWizard interface is greater than one.The total number of input channels must be a multiple of the number of interfaces. To satisfy this requirement, you may need to either insert dummy channels or use more than one CIC MegaCore function. Data is transferred as packets using AvalonStreaming interfaces. CIC filters have a low-pass filter characteristic. There are only three parameters (the rate change factor R , the number of stages N , and the differential delay M ) that can be modified to alter the passband characteristics and aliasing/imaging rejection. However, due to their drooping passband gains and wide transition regions, CIC filters alone cannot provide the flat passband and narrow transition region filter performance that is typically required in decimation or interpolation filtering applications.This problem can be alleviated by connecting the decimation or interpolation CIC filter to a compensation FIR filter which narrows the output bandwidth and flattens the passband gain.You can use a frequency sampling method to determine the coefficients of a FIR filter that equalizes the undesirable passband droop of the CIC and construct an ideal frequency response.The ideal frequency response is determined by sampling the normalized magnitude response of the CIC filter before inverting the response.Generally, it is only necessary to equalize the response in the passband, but you can sample further than the passband to fine tune the cascaded response of the filter chain.The Avalon-ST interface can also support more complex protocols for burst and packet transfers with packets interleaved across multiple channels.The Avalon-ST interface inherently synchronizes multi-channel designs, which allows you to achieve efficient, time-multiplexed implementations without having to implement complex control logic.CIC MegaCore函数----摘自 描述这篇文章对Altera公司的CIC 宏函数作了说明。
自动化专业毕业论文外文文献翻译

目录Part 1 PID type fuzzy controller and parameters adaptive method (1)Part 2 Application of self adaptation fuzzy-PID control for main steam temperature control system in power station (7)Part 3 Neuro-fuzzy generalized predictive control of boiler steam temperature ..................................................................... (13)Part 4 为Part3译文:锅炉蒸汽温度模糊神经网络的广义预测控制21Part 1 PID type fuzzy controller and Parametersadaptive methodWu zhi QIAO, Masaharu MizumotoAbstract: The authors of this paper try to analyze the dynamic behavior of the product-sum crisp type fuzzy controller, revealing that this type of fuzzy controller behaves approximately like a PD controller that may yield steady-state error for the control system. By relating to the conventional PID control theory, we propose a new fuzzy controller structure, namely PID type fuzzy controller which retains the characteristics similar to the conventional PID controller. In order to improve further the performance of the fuzzy controller, we work out a method to tune the parameters of the PID type fuzzy controller on line, producing a parameter adaptive fuzzy controller. Simulation experiments are made to demonstrate the fine performance of these novel fuzzy controller structures.Keywords: Fuzzy controller; PID control; Adaptive control1. IntroductionAmong various inference methods used in the fuzzy controller found in literatures , the most widely used ones in practice are the Mamdani method proposed by Mamdani and his associates who adopted the Min-max compositional rule of inference based on an interpretation of a control rule as a conjunction of the antecedent and consequent, and the product-sum method proposed by Mizumoto who suggested to introduce the product and arithmetic mean aggregation operators to replace the logical AND (minimum) and OR (maximum) calculations in the Min-max compositional rule of inference.In the algorithm of a fuzzy controller, the fuzzy function calculation is also a complicated and time consuming task. Tagagi and Sugeno proposed a crisp type model in which the consequent parts of the fuzzy control rules are crisp functional representation or crisp real numbers in the simplified case instead of fuzzy sets . With this model of crisp real number output, the fuzzy set of the inference consequence willbe a discrete fuzzy set with a finite number of points, this can greatly simplify the fuzzy function algorithm.Both the Min-max method and the product-sum method are often applied with the crisp output model in a mixed manner. Especially the mixed product-sum crisp model has a fine performance and the simplest algorithm that is very easy to be implemented in hardware system and converted into a fuzzy neural network model. In this paper, we will take account of the product-sum crisp type fuzzy controller.2. PID type fuzzy controller structureAs illustrated in previous sections, the PD function approximately behaves like a parameter time-varying PD controller. Since the mathematical models of most industrial process systems are of type, obviously there would exist an steady-state error if they are controlled by this kind of fuzzy controller. This characteristic has been stated in the brief review of the PID controller in the previous section.If we want to eliminate the steady-state error of the control system, we can imagine to substitute the input (the change rate of error or the derivative of error) of the fuzzy controller with the integration of error. This will result the fuzzy controller behaving like a parameter time-varying PI controller, thus the steady-state error is expelled by the integration action. However, a PI type fuzzy controller will have a slow rise time if the P parameters are chosen small, and have a large overshoot if the P or I parameters are chosen large. So there may be the time when one wants to introduce not only the integration control but the derivative control to the fuzzy control system, because the derivative control can reduce the overshoot of the system's response so as to improve the control performance. Of course this can be realized by designing a fuzzy controller with three inputs, error, the change rate of error and the integration of error. However, these methods will be hard to implement in practice because of the difficulty in constructing fuzzy control rules. Usually fuzzy control rules are constructed by summarizing the manual control experience of an operator who has been controlling the industrial process skillfully and successfully. The operator intuitively regulates the executor to control the process by watching theerror and the change rate of the error between the system's output and the set-point value. It is not the practice for the operator to observe the integration of error. Moreover, adding one input variable will greatly increase the number of control rules, the constructing of fuzzy control rules are even more difficult task and it needs more computation efforts. Hence we may want to design a fuzzy controller that possesses the fine characteristics of the PID controller by using only the error and the change rate of error as its inputs.One way is to have an integrator serially connected to the output of the fuzzy controller as shown in Fig. 1. In Fig. 1,1K and 2K are scaling factors for e and ~ respectively, and fl is the integral constant. In the proceeding text, for convenience, we did not consider the scaling factors. Here in Fig. 2, when we look at the neighborhood of NODE point in the e - ~ plane, it follows from (1) that the control input to the plant can be approximated by(1)Hence the fuzzy controller becomes a parameter time-varying PI controller, itsequivalent proportional control and integral control components are BK2D and ilK1 P respectively. We call this fuzzy controller as the PI type fuzzy controller (PI fc). We can hope that in a PI type fuzzy control system, the steady-state error becomes zero.To verify the property of the PI type fuzzy controller, we carry out some simulation experiments. Before presenting the simulation, we give a description of the simulation model. In the fuzzy control system shown in Fig. 3, the plant model is a second-order and type system with the following transfer function:)1)(1()(21++=s T s T K s G (2) Where K = 16, 1T = 1, and 2T = 0.5. In our simulation experiments, we use thediscrete simulation method, the results would be slightly different from that of a continuous system, the sampling time of the system is set to be 0.1 s. For the fuzzy controller, the fuzzy subsets of e and d are defined as shown in Fig. 4. Their coresThe fuzzy control rules are represented as Table 1. Fig. 5 demonstrates the simulation result of step response of the fuzzy control system with a Pl fc. We can see that the steady-state error of the control system becomes zero, but when the integration factor fl is small, the system's response is slow, and when it is too large, there is a high overshoot and serious oscillation. Therefore, we may want to introduce the derivative control law into the fuzzy controller to overcome the overshoot and instability. We propose a controller structure that simply connects the PD type and the PI type fuzzy controller together in parallel. We have the equivalent structure of that by connecting a PI device with the basic fuzzy controller serially as shown in Fig.6. Where ~ is the weight on PD type fuzzy controller and fi is that on PI type fuzzy controller, the larger a/fi means more emphasis on the derivative control and less emphasis on the integration control, and vice versa. It follows from (7) that the output of the fuzzy controller is(3)3. The parameter adaptive methodThus the fuzzy controller behaves like a time-varying PID controller, its equivalent proportional control, integral control and derivative control components are respectively. We call this new controller structure a PID type fuzzy controller (PID fc). Figs. 7 and 8 are the simulation results of the system's step response of such control system. The influence of ~ and fl to the system performance is illustrated. When ~ > 0 and/3 = 0, meaning that the fuzzy controller behaves like PD fc, there exist a steady-state error. When ~ = 0 and fl > 0, meaning that the fuzzy controller behaves like a PI fc, the steady-state error of the system is eliminated but there is a large overshoot and serious oscillation.When ~ > 0 and 13 > 0 the fuzzy controller becomes a PID fc, the overshoot is substantially reduced. It is possible to get a comparatively good performance by carefully choosing the value of αandβ.4. ConclusionsWe have studied the input-output behavior of the product-sum crisp type fuzzy controller, revealing that this type of fuzzy controller behaves approximately like a parameter time-varying PD controller. Therefore, the analysis and designing of a fuzzy control system can take advantage of the conventional PID control theory. According to the coventional PID control theory, we have been able to propose some improvement methods for the crisp type fuzzy controller.It has been illustrated that the PD type fuzzy controller yields a steady-state error for the type system, the PI type fuzzy controller can eliminate the steady-state error. We proposed a controller structure, that combines the features of both PD type and PI type fuzzy controller, obtaining a PID type fuzzy controller which allows the control system to have a fast rise and a small overshoot as well as a short settling time.To improve further the performance of the proposed PID type fuzzy controller, the authors designed a parameter adaptive fuzzy controller. The PID type fuzzy controller can be decomposed into the equivalent proportional control, integral control and the derivative control components. The proposed parameter adaptive fuzzy controller decreases the equivalent integral control component of the fuzzy controller gradually with the system response process time, so as to increase the damping of the system when the system is about to settle down, meanwhile keeps the proportional control component unchanged so as to guarantee quick reaction against the system's error. With the parameter adaptive fuzzy controller, the oscillation of the system is strongly restrained and the settling time is shortened considerably.We have presented the simulation results to demonstrate the fine performance of the proposed PID type fuzzy controller and the parameter adaptive fuzzy controller structure.Part 2 Application of self adaptation fuzzy-PID control for main steam temperature control system inpower stationZHI-BIN LIAbstract: In light of the large delay, strong inertia, and uncertainty characteristics of main steam temperature process, a self adaptation fuzzy-PID serial control system is presented, which not only contains the anti-disturbance performance of serial control, but also combines the good dynamic performance of fuzzy control. The simulation results show that this control system has more quickly response, better precision and stronger anti-disturbance ability.Keywords:Main steam temperature;Self adaptation;Fuzzy control;Serial control1. IntroductionThe boiler superheaters of modem thermal power station run under the condition of high temperature and high pressure, and the superheater’s temperature is highest in the steam channels.so it has important effect to the running of the whole thermal power station.If the temperature is too high, it will be probably burnt out. If the temperature is too low ,the efficiency will be reduced So the main steam temperature mast be strictly controlled near the given value.Fig l shows the boiler main steam temperature system structure.Fig.1 boiler main steam temperature systemIt can be concluded from Fig l that a good main steam temperature controlsystem not only has adequately quickly response to flue disturbance and load fluctuation, but also has strong control ability to desuperheating water disturbance. The general control scheme is serial PID control or double loop control system with derivative. But when the work condition and external disturbance change large, the performance will become instable. This paper presents a self adaptation fuzzy-PID serial control system. which not only contains the anti-disturbance performance of serial control, but also combines the good dynamic character and quickly response of fuzzy control .1. Design of Control SystemThe general regulation adopts serial PID control system with load feed forward .which assures that the main steam temperature is near the given value 540℃in most condition .If parameter of PID control changeless and the work condition and external disturbance change large, the performance will become in stable .The fuzzy control is fit for controlling non-linear and uncertain process. The general fuzzy controller takes error E and error change ratio EC as input variables .actually it is a non-linear PD controller, so it has the good dynamic performance .But the steady error is still in existence. In linear system theory, integral can eliminate the steady error. So if fuzzy control is combined with PI control, not only contains the anti-disturbance performance of serial control, but also has the good dynamic performance and quickly response.In order to improve fuzzy control self adaptation ability, Prof .Long Sheng-Zhao and Wang Pei-zhuang take the located in bringing forward a new idea which can modify the control regulation online .This regulation is:]1,0[,)1(∈-+=αααEC E UThis control regulation depends on only one parameter α.Once αis fixed .the weight of E and EC will be fixed and the self adaptation ability will be very small .It was improved by Prof. Li Dong-hui and the new regulation is as follow;]1,0[,,,3,)1(2,)1(1,)1(0,)1({321033221100∈±=-+±=-+±=-+=-+=ααααααααααααE EC E E EC E E EC E E EC E UBecause it is very difficult to find a self of optimum parameter, a new method is presented by Prof .Zhou Xian-Lan, the regulation is as follow:)0(),ex p(12>--=k ke αBut this algorithm still can not eliminate the steady error .This paper combines this algorithm with PI control ,the performance is improved .2. Simulation of Control System3.1 Dynamic character of controlled objectPapers should be limited to 6 pages Papers longer than 6 pages will be subject to extra fees based on their length .Fig .2 main steam temperature control system structureFig 2 shows the main steam temperature control system structure ,)(),(21s W s W δδare main controller and auxiliary controller,)(),(21s W s W o o are characters of the leading and inertia sections,)(),(21s W s W H H are measure unit.3.2 Simulation of the general serial PID control systemThe simulation of the general serial PID control system is operated by MATLAB, the simulation modal is as Fig.3.Setp1 and Setp2 are the given value disturbance and superheating water disturb & rice .PID Controller1 and PID Controller2 are main controller and auxiliary controller .The parameter value which comes from references is as follow :667.37,074.0,33.31)(25)(111111122===++===D I p D I p p k k k s k sk k s W k s W δδFig.3. the general PID control system simulation modal3.3 Simulation of self adaptation fuzzy-PID control system SpacingThe simulation modal is as Fig 4.Auxiliary controller is:25)(22==p k s W δ.Main controller is Fuzzy-PI structure, and the PI controller is:074.0,33.31)(11111==+=I p I p k k s k k s W δFuzzy controller is realized by S-function, and the code is as fig.5.Fig.4. the fuzzy PID control system simulation modalFig 5 the S-function code of fuzzy control3.4 Comparison of the simulationGiven the same given value disturbance and the superheating water disturbance,we compare the response of fuzzy-PID control system with PID serial control system. The simulation results are as fig.6-7.From Fig6-7,we can conclude that the self adaptation fuzzy-PID control system has the more quickly response, smaller excess and stronger anti-disturbance.4. Conclusion(1)Because it combines the advantage of PID controller and fuzzy controller, theself adaptation fuzzy-PID control system has better performance than the general PID serial control system.(2)The parameter can self adjust according to the error E value. so this kind of controller can harmonize quickly response with system stability.Part 3 Neuro-fuzzy generalized predictive controlof boiler steam temperatureXiangjie LIU, Jizhen LIU, Ping GUANAbstract: Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained.Keywords: Neuro-fuzzy networks; Generalized predictive control; Superheated steam temperature1. IntroductionContinuous process in power plant and power station are complex systems characterized by nonlinearity, uncertainty and load disturbance. The superheater is an important part of the steam generation process in the boiler-turbine system, where steam is superheated before entering the turbine that drives the generator. Controlling superheated steam temperature is not only technically challenging, but also economically important.From Fig.1,the steam generated from the boiler drum passes through the low-temperature superheater before it enters the radiant-type platen superheater. Water is sprayed onto the steam to control the superheated steam temperature in both the low and high temperature superheaters. Proper control of the superheated steam temperature is extremely important to ensure the overall efficiency and safety of the power plant. It is undesirable that the steam temperature is too high, as it can damage the superheater and the high pressure turbine, or too low, as it will lower the efficiency of the power plant. It is also important to reduce the temperaturefluctuations inside the superheater, as it helps to minimize mechanical stress that causes micro-cracks in the unit, in order to prolong the life of the unit and to reduce maintenance costs. As the GPC is derived by minimizing these fluctuations, it is amongst the controllers that are most suitable for achieving this goal.The multivariable multi-step adaptive regulator has been applied to control the superheated steam temperature in a 150 t/h boiler, and generalized predictive control was proposed to control the steam temperature. A nonlinear long-range predictive controller based on neural networks is developed into control the main steam temperature and pressure, and the reheated steam temperature at several operating levels. The control of the main steam pressure and temperature based on a nonlinear model that consists of nonlinear static constants and linear dynamics is presented in that.Fig.1 The boiler and superheater steam generation process Fuzzy logic is capable of incorporating human experiences via the fuzzy rules. Nevertheless, the design of fuzzy logic controllers is somehow time consuming, as the fuzzy rules are often obtained by trials and errors. In contrast, neural networks not only have the ability to approximate non-linear functions with arbitrary accuracy, they can also be trained from experimental data. The neuro-fuzzy networks developed recently have the advantages of model transparency of fuzzy logic and learning capability of neural networks. The NFN is have been used to develop self-tuning control, and is therefore a useful tool for developing nonlinear predictive control. Since NFN is can be considered as a network that consists of several local re-gions, each of which contains a local linear model, nonlinear predictive control based onNFN can be devised with the network incorporating all the local generalized predictive controllers (GPC) designed using the respective local linear models. Following this approach, the nonlinear generalized predictive controllers based on the NFN, or simply, the neuro-fuzzy generalized predictive controllers (NFG-PCs)are derived here. The proposed controller is then applied to control the superheated steam temperature of the 200MW power unit. Experimental data obtained from the plant are used to train the NFN model, and from which local GPC that form part of the NFGPC is then designed. The proposed controller is tested first on the simulation of the process, before applying it to control the power plant.2. Neuro-fuzzy network modellingConsider the following general single-input single-output nonlinear dynamic system:),1(),...,(),(),...,1([)(''+-----=uy n d t u d t u n t y t y f t y ∆+--/)()](),...,1('t e n t e t e e (1)where f[.]is a smooth nonlinear function such that a Taylor series expansion exists, e(t)is a zero mean white noise and Δis the differencing operator,''',,e u y n n n and d are respectively the known orders and time delay of the system. Let the local linear model of the nonlinear system (1) at the operating point )(t o be given by the following Controlled Auto-Regressive Integrated Moving Average (CARIMA) model:)()()()()()(111t e z C t u z B z t y z A d ----+∆= (2) Where )()(),()(1111----∆=z andC z B z A z A are polynomials in 1-z , the backward shift operator. Note that the coefficients of these polynomials are a function of the operating point )(t o .The nonlinear system (1) is partitioned into several operating regions, such that each region can be approximated by a local linear model. Since NFN is a class of associative memory networks with knowledge stored locally, they can be applied to model this class of nonlinear systems. A schematic diagram of the NFN is shown in Fig.2.B-spline functions are used as the membership functions in theNFN for the following reasons. First, B-spline functions can be readily specified by the order of the basis function and the number of inner knots. Second, they are defined on a bounded support, and the output of the basis function is always positive, i.e.,],[,0)(j k j j k x x λλμ-∉=and ],[,0)(j k j j k x x λλμ-∈>.Third, the basis functions form a partition of unity, i.e.,.][,1)(min,∑∈≡j mam j k x x x x μ(3)And fourth, the output of the basis functions can be obtained by a recurrence equation.Fig. 2 neuro-fuzzy network The membership functions of the fuzzy variables derived from the fuzzy rules can be obtained by the tensor product of the univariate basis functions. As an example, consider the NFN shown in Fig.2, which consists of the following fuzzy rules: IF operating condition i (1x is positive small, ... , and n x is negative large),THEN the output is given by the local CARIMA model i:...)()(ˆ...)1(ˆ)(ˆ01+-∆+-++-=d t u b n t y a t y a t yi i a i in i i i a )(...)()(c i in i b i in n t e c t e n d t u b c b -+++--∆+ (4)or )()()()()(ˆ)(111t e z C t u z B z t yz A i i i i d i i ----+∆= (5) Where )()(),(111---z andC z B z A i i i are polynomials in the backward shift operator 1-z , and d is the dead time of the plant,)(t u i is the control, and )(t e i is a zero mean independent random variable with a variance of 2δ. The multivariate basis function )(k i x a is obtained by the tensor products of the univariate basis functions,p i x A a nk k i k i ,...,2,1,)(1==∏=μ (6)where n is the dimension of the input vector x , and p , the total number of weights in the NFN, is given by,∏=+=nk i i k R p 1)( (7)Where i k and i R are the order of the basis function and the number of inner knots respectively. The properties of the univariate B-spline basis functions described previously also apply to the multivariate basis function, which is defined on the hyper-rectangles. The output of the NFN is,∑∑∑=====p i i i p i ip i i i a y aa yy 111ˆˆˆ (8) 3. Neuro-fuzzy modelling and predictive control of superheatedsteam temperatureLet θbe the superheated steam temperature, and θμ, the flow of spray water to the high temperature superheater. The response of θcan be approximated by a second order model:The linear models, however, only a local model for the selected operating point. Since load is the unique antecedent variable, it is used to select the division between the local regions in the NFN. Based on this approach, the load is divided into five regions as shown in Fig.3,using also the experience of the operators, who regard a load of 200MW as high,180MW as medium high,160MW as medium,140MW as medium low and 120MW as low. For a sampling interval of 30s , the estimated linear local models )(1-z A used in the NFN are shown in Table 1.Fig. 3 Membership function for local modelsTable 1 Local CARIMA models in neuro-fuzzy modelCascade control scheme is widely used to control the superheated steam temperature. Feed forward control, with the steam flow and the gas temperature as inputs, can be applied to provide a faster response to large variations in these two variables. In practice, the feed forward paths are activated only when there are significant changes in these variables. The control scheme also prevents the faster dynamics of the plant, i.e., the spray water valve and the water/steam mixing, from affecting the slower dynamics of the plant, i.e., the high temperature superheater. With the global nonlinear NFN model in Table 1, the proposed NFGPC scheme is shown in Fig.4.Fig. 4 NFGPC control of superheated steam temperature with feed-for-ward control.As a further illustration, the power plant is simulated using the NFN model given in Table 1,and is controlled respectively by the NFGPC, the conventional linear GPC controller, and the cascaded PI controller while the load changes from 160MW to 200MW.The conventional linear GPC controller is the local controller designed for the“medium”operating region. The results are shown in Fig.5,showing that, as expected, the best performance is obtained from the NFGPC as it is designed based on a more accurate process model. This is followed by the conventional linear GPC controller. The performance of the conventional cascade PI controller is the worst, indicating that it is unable to control satisfactory the superheated steam temperature under large load changes. This may be the reason for controlling the power plant manually when there are large load changes.Fig.5 comparison of the NFGPC, conventional linear GPC, and cascade PI controller.4. ConclusionsThe modeling and control of a 200 MW power plant using the neuro-fuzzy approach is presented in this paper. The NFN consists of five local CARIMA models.The out-put of the network is the interpolation of the local models using memberships given by the B-spline basis functions. The proposed NFGPC is similarly constructed, which is designed from the CARIMA models in the NFN. The NFGPC is most suitable for processes with smooth nonlinearity, such that its full operating range can be partitioned into several local linear operating regions. The proposed NFGPC therefore provides a useful alternative for controlling this class of nonlinear power plants, which are formerly difficult to be controlled using traditional methods.Part 4 为Part3译文:锅炉蒸汽温度模糊神经网络的广义预测控制Xiangjie LIU, Jizhen LIU, Ping GUAN摘要:发电厂是非线性和不确定性的复杂系统。
(完整版)外文翻译

外文文献原稿和译文原稿logistics distribution center location factors:(1) the goods distribution and quantity. This is the distribution center and distribution of the object, such as goods source and the future of distribution, history and current and future forecast and development, etc. Distribution center should as far as possible and producer form in the area and distribution short optimization. The quantity of goods is along with the growth of the size distribution and constant growth. Goods higher growth rate, the more demand distribution center location is reasonable and reducing conveying process unnecessary waste.(2) transportation conditions. The location of logistics distribution center should be close to the transportation hub, and to form the logistics distribution center in the process of a proper nodes. In the conditional, distribution center should be as close to the railway station, port and highway.(3) land conditions. Logistics distribution center covers an area of land in increasingly expensive problem today is more and more important. Is the use of the existing land or land again? Land price? Whether to conform to the requirements of the plan for the government, and so on, in the construction distribution center have considered.(4) commodities flow. Enterprise production of consumer goods as the population shift and change, should according to enterprise's better distribution system positioning. Meanwhile, industrial products market will transfer change, in order to determine the raw materials and semi-finished products of commodities such as change of flow in the location of logistics distribution center should be considered when the flow of the specific conditions of the relevant goods.(5) other factors. Such as labor, transportation and service convenience degree, investment restrictions, etc.How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center.At present,most of the research on logistics cost concentrates off theoretical analysis of direct factors of logistics cost, and solves the problem of over-high logistics Cost mainly by direct channel solution.This research stresses on the view of how to loeate distribution center, analyzes the influence of locating distribution center on logistics cost.and finds one kind of simple and easy location method by carrying on the location analysis of distribution center through computer modeling and the application of Exeel.So the location of agricultural product logistics distribution center can be achieved scientifically and reasonably, which will attain the goal of reducing logistics cost, and have a decision.making support function to the logisties facilities and planning of agricultural product.The agricultural product logistics distribution center deals with dozens and even hundreds of clients every day, and transactions are made in high-frequency. If the distribution center is far away from other distribution points,the moving and transporting of materials and the collecting of operational data is inconvenient and costly. costly.The modernization of agricultural product logistics s distribution center is a complex engineering system,not only involves logistics technology, information technology, but also logistics management ideas and its methods,in particular the specifying of strategic location and business model is essential for the constructing of distribution center. How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center. The so—called logistics costs refers to the expenditure summation of manpower, material and financial resources in the moving process of the goods.such as loading and unloading,conveying,transport,storage,circulating,processing, information processing and other segments. In a word。
4字祝福语外文翻译

4字祝福语外文翻译Blessing is a universal language that transcends borders and connects people from different cultures and backgrounds. Whether it's a simple "good luck" or a heartfelt "may all your dreams come true," the power of a four-word blessing can bring warmth and joy to anyone who receives it.In Chinese culture, four-word blessings are often used to convey well-wishes and good intentions. These concise and meaningful phrases are believed to carry positive energy and bring blessings to the recipient. From "平安幸福" (peace and happiness) to "事业有成" (success in career), these four-word blessings encompass a wide range of wishes for health, prosperity, and happiness.When it comes to translating these four-word blessings into foreign languages, it's important to capture not only the literal meaning but also the cultural and emotional nuances behind the words. Each language has its own unique expressions and idioms that convey similar sentiments, and finding the right words to convey the essence of a blessing is crucial in ensuring that the message resonates with the recipient.In English, four-word blessings can take on various forms, from simple and straightforward phrases like "love and happiness" to more poetic expressions such as "joyful heart, peaceful mind." The key is to convey the sincerity and warmth behind the blessing, regardless of the specific words used.In Spanish, four-word blessings often reflect the rich cultural traditions and values of the language. Phrases like "amor y paz" (love and peace) and "salud y prosperidad" (health and prosperity) encapsulate the deeply rooted beliefs in family, love, and well-being.In French, the elegance and beauty of the language are reflected in four-word blessings such as "joie et bonheur" (joy and happiness) and "paix et amour" (peace and love). These phrases evoke a sense of romance and sophistication, adding an extra layer of charm to the blessings.In Japanese, the art of expressing blessings is deeply ingrained in the language and culture. Four-word blessings like "健康と幸せ" (health and happiness) and "平和と愛" (peace and love) reflect the Japanese values of harmony, gratitude, and mindfulness.No matter the language, the essence of a four-word blessing remains the same – to convey heartfelt wishes for the well-being and happiness of the recipient. Whether it's in Chinese, English, Spanish, French, Japanese, or any other language, the power of a sincere blessing knows no bounds.In a world where communication knows no borders, the ability to convey blessingsin different languages is a testament to the universal desire for love, happiness, and peace. As we continue to connect with people from diverse backgrounds and cultures, the exchange of blessings in various languages serves as a reminder of our shared humanity and the beauty of diversity.In conclusion, the translation of four-word blessings into foreign languages is not simply a matter of finding equivalent words, but rather a delicate art of capturing the essence and spirit of the blessings across different cultures and languages. It is a celebration of the universal language of love, kindness, and goodwill that unites us all, regardless of where we come from or what language we speak. So, whether it's "平安幸福," "love and happiness," or "paix et amour," may the blessings we share bring warmth and joy to all who receive them.。
企业固定资产管理外文文献翻译最新

企业固定资产管理外文文献翻译最新4 System designunderstand its usage.Employees to access enterprise fi某ed assets management system management module to the staff is divided into threebroad categories: system administrators assist and consult the information personnel; According to different user's identity, they see the application interface is different also, so that we can make different users access to the application of different functions. After the user login page is to authenticate. Only by verifying employees can login system into the corresponding page. Staff management module is mainly to achieve the management of users and administrators at all levels. Contained in the user information management features: change user information and query the user information and the administrator management is including ads or modify the administrator information and query the administrator to join the new user. Ordinary users can onlyto query and fi某ed assets of the fi某ed assets of the state-owned enterprises collect module for the corresponding operation, for the higher authority of user information module and management module for fi某ed assets, only the administrator can operate.文献出处: Daum J H. The study on fi某ed assets management of enterprise [J]. Measuring business e某cellence, 2023, 2(1): 6-17. 译文摘要计算机技术的飞速发展,使计算机技术已经渗透到了各行各业,它早已成为各行业不可或缺的一部分。
外文翻译原文

Stability of hybrid system limit cycles: application to the compass gait biped RobotIan A. Hiskens'Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbana IL 61801 USAAbstractLimit cycles are common in hybrid systems. However the non-smooth dynamics of such systems makes stability analysis difficult. This paper uses recent extensions of trajectory sensitivity analysis to obtain the characteristic multipliers of non-smooth limit cycles. The stability of a limit cycle is determined by its characteristic multipliers. The concepts are illustrated using a compass gait biped robot example.1 IntroductionHybrid system are characterized by interactions between continuous (smooth) dynamics and discrete events. Such systems are common across a diverse range of application areas. Examples include power systems [l], robotics [2, 3], manufacturing [4] and air-traffic control [5]. In fact, any system where saturation limits are routinely encountered can be thought of as a hybrid system. The limits introduce discrete events which (often) have a significant influence on overall behaviour.Many hybrid systems exhibit periodic behaviour. Discrete events, such as saturation limits, can act to trap the evolving system state within a constrained region of state space. Therefore even when the underlying continuous dynamics are unstable, discrete events may induce a stable limit set. Limit cycles (periodic behaviour) are often created in this way. Other systems, such as robot motion, are naturally periodic.Limit cycles can be stable (attracting), unstable (repelling) or non-stable (saddle). The stability of periodic behaviour is determined by characteristic (or Floquet) multipliers. A periodic solution corresponds to a fixed point of a Poincare map. Stability of the periodic solution is equivalent to stability of the fixed point. The characteristic multipliers are the eigenvalues of the Poincare map linearized about the fixed point. Section 4 reviews the connection between this linearized map and trajectory sensitivities.Poincare maps have been used to analyse the stability of limit cycles in various forms of hybrid systems. However calculation of the underlying trajectory sensitivities has relied upon particular system structures, see for example [7, 8], or numerical differencing, for example [6]. This paper uses a recent generalization of trajectory sensitivity analysis [9] to efficiently detemine the stability of limit cycles in hybrid systems.A hybrid system model is given in Section 2. Section 3 develops the associated variational equations. This is followed in Section 4 by a review of stability analysis of limit cycles. Conclusions and extensions are presented in Section 5.2 ModelDeterministic hybrid systems can be represented by a model that is adapted from a differential-algebraic (DAE) structure. Events are incorporated via impulsive action and switching of algebraic equations, giving the Impulsive Switched (DAIS) modelwheren x R ∈ are dynamic states and my R ∈ are algebraic states;(.)δ is the Dirac delta;(.)u is the unit-step function;,:n mnj f h RR +→;(0)(),:i n mng gR R ±+→; some elements of each(.)gwill usually be identicallyzero, but no elements of the composite g should be identically zero; the()i g± aredefined with the same form as g in (2), resulting in a recursive structure for g;,dey yare selected elements of y that trigger algebraic switching and state reset(impulsive) events respectively;dyandeymay share common elements.The impulse and unit-step terms of the DAIS model can be expressed in alternative forms:Each impulse term of the summation in (1) can be expressed in the state reset formwhere the notation x+denotes the value of x just after the reset event, whilstx-andy-refer to the values of x and y just prior to the event.The contribution of each()i g± in (2) can be expressed aswith (2) becomingThis form is often more intuitive than (2).It can be convenient to establish the partitionswherex -are the continuous dynamic states, for example generator angles, velocities andfluxes;z are discrete dynamic states, such as transformer tap positions and protection relay logic states;λ are parameters such as generator reactances, controller gains and switching times. The partitioning of the differential equations f ensures that away from events,x -evolves according to .(,)x y f x --=, whilst z and λ remain constant. Similarly,the partitioning of the reset equationsjhensures thatx -and λ remain constantat reset events, but the dynamic states z are reset to new values given by(,)jh y x z--+=-. The model can capture complex behaviour, from hysteresis and non-windup limits through to rule-based systems [l]. A more extensive presentation of this model is given in [9].Away from events, system dynamics evolve smoothly according to the familiardifferential-algebraic modelwhere g is composed of(0)gtogether with appropriate choices of()i g- or()i g+ ,depending on the signs of the corresponding elements of yd. At switching events (2),some component equations of g change. To satisfy the new g = 0 equation, algebraic variables y may undergo a step change. Reset events (3) force a discrete change in elements of x. Algebraic variables may also step at a reset event to ensure g= 0 is satisfied with the altered values of x. The flows of and y are defined respectively aswhere x(t) and y(t) satisfy (l),(2), along with initial conditions,3 'Ikajectory SensitivitiesSensitivity of the flowsxφandyφto initial conditionsxare obtained bylinearizing (8),(9) about the nominal trajectory,The time-varying partial derivative matrices given in (12),(13) are known as trajectory sensitiuities, and can be expressed in the alternative formsThe formxx ,xy provides clearer insights into the development of thevariational equations describing the evolution of the sensitivities. The alternative form 0(,)x t x φ, 0(,)yt x φ highlights the connection between the sensitivities and the associated flows. It is shown in Section 4 that these sensitivities underlie the linearization of the Poincare map, and so play a major role in determining the stability of periodic solutions.Away from events, where system dynamics evolve smoothly, trajectory sensitivities 0xx andxy are obtained by differentiating (6),(7) withrespect to 0x.This giveswhere/xf x f≡∂∂, and likewise for the other Jacobian matrices. Note that,,,xyxyf fg gare evaluated along the trajectory, and hence are time varyingmatrices. It is shown in 19, 101 that the numerical solution of this(potentially high order) DAE system can be obtained as a by-product of numerically integrating the original DAE system (6),(7). The extra computational cost is minimal. Initial conditions forxx are obtained from (10) aswhere I is the identity matrix. Initial conditions for 0zy follow directly from(17),Equations (16),(17) describe the evolution of the sensitivitiesxx andxybetween events. However at an event, the sensitivities are generally discontinuous. It is necessary to calculate jump conditions describing the step change inxx andxy . For clarity, consider a single switching/reset event, so the model (1),(2) reduces(effectively) to the formLet ((),()x y ττ) be the point where the trajectory encounters the triggering hypersurface s(x,y) = 0, i.e., the point where an event is initiated. This point is called the junction point and r is the junction time. It is assumed the encounter is transversal.Just prior to event triggering, at time τ-, we haveSimilarly,,y x++are defined for time τ+, just after the event has occurred. It isshown in [9] that the jump conditions for the sensitivitiesxx are given byThe assumption that the trajectory and triggering hypersurface meet transversally ensures a non-zero denominator for 0x τ The sensitivitiesxy . immediatelyafter the event are given byFollowing the event, i.e., for t τ+>, calculation of the sensitivities proceeds according to (16),(17) until the next event is encountered. The jump conditions provide the initial conditions for the post-event calculations.4 Limit Cycle AnalysisStability of limit cycles can be determined using Poincare maps [11, 12]. This section provides a brief review of these concepts, and establishes the connection with trajectory sensitivities.A Poincark map effectively samples the flow of a periodic system once every period. The concept is illustrated in Figure 1. If the limit cycle is stable, oscillations approach the limit cycle over time. The samples provided by the corresponding Poincare map approach a fixed point. A non-stable limit cycle results in divergent oscillations. For such a case the samples of the Poincare map diverge.To define a Poincare map, consider the limit cycle Γshown in Figure 1. Let ∑ be a hyperplane transversal to Γ at*x. The trajectory emanating from*xwill again encounter ∑ at*xafter T seconds, where T is the minimum period of the limit cycle. Due to the continuity of the flowxφwith respect to initial conditions, trajectories starting on ∑ in a neighbourhood of*x. will, in approximately T seconds, intersect ∑ in the vicinity of*x. Hencexφand ∑define a mappingwhere()kT x ττ≈ is the time taken for the trajectory to return to ∑. Complete details can hefound in [11,12]. Stability of the Paincare map (22) is determined by linearizing P at the fixed point*x, i.e.,From the definition of P(z) given by (22), it follows that DP(*x) is closely related to thetrajectory sensitivities***(,)(,)xxT T x x xφφ∂≡∂. In fact, it is shown in [11] thatwhereσ is a vector normal to ∑.The matrix*(,)xT x φis exactly the trajectory sensitivity matrix after one period of the limitcycle, i.e., starting from*xand returning to*x. This matrix is called the Monodromymatrix .It is shown in [11] that for an autonomous system, one eigenvalue of *(,)xT x φ isalways 1, and the corresponding eigenvector lies along **(,)f y x The remaining eigenvalues*(,)xT x φof coincide with the eigenvalues of DP(*x ), and are known as the characteristicmultipliers mi of the periodic solution. The characteristic multipliers are independent of the choice of cross-section ∑ . Therefore, for hybrid systems, it is often convenient to choose ∑ as a triggering hypersurface corresponding to a switching or reset event that occurs along the periodic solution.Because the characteristic multipliers mi are the eigenvalues of the linear map DP(x*), they determine the stability of the Poincarb map P(kx), and hence the stability of the periodic solution.Three cases are of importance: 1. Alli m lie within the unit circle, i.e., 1im<,i ∀.The map is stable, so the periodicsolution is stable. 2. Allim lie outside the unit circle. The periodic solution is unstable.3. Someim lie outside the unit circle. The periodic solution is non-stable.Interestingly, there exists a particular cross-section*∑, such thatwhere *ς∈∑.This cross-section*∑is the hyperplane spanned by the n - 1 eigenvectors of*(,)xT x φthat are not aligned with **(,)f y x . Therefore the vector *σthat is normal to*∑ is the left eigenvector of *(,)xT x φ corresponding to the eigenvalue 1. The hyperplane*∑is invariant under*(,)xT x φ, i.e., **(,)f y x maps vectors *ς∈∑back into*∑.5 ConclusionsHybrid systems frequently exhibit periodic behaviour. However the non-smooth nature of such systems complicates stability analysis. Those complications have been addressed in this paper throughapplication of a generalization of trajectory sensitivity analysis. Deterministic hybrid systems can be represented by a set ofdifferential-algebraic equations, modified to incorporate impulse (state reset) action and constraint switching. The associated variational equations establish jump conditions that describe the evolution of sensitivities through events. These equations provide insights into expansion/contraction effects at events. This is a focus of future research.Standard Poincar6 map results extend naturally to hybrid systems. The Monodromy matrix is obtained by evaluating trajectory sensitivities over one period of the (possibly non-smooth) cyclical behaviour. One eigenvalue of this matrix is always unity. The remaining eigenvalues are the characteristic multipliers of the periodic solution. Stability is ensured if all multipliers lieReferences[l] LA. Hiskens and M.A. Pai, “Hybrid systems view of power system modelling,” in Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000.[2] M.H. Raibert, Legged Robots That Balance, MIT Press, Cambridge, MA, 1986.[3] A. Goswami, B. Thuilot, and B. Espiau, “A study of the passive gait of a compass-like biped ro bot: symmetry and chaos,’’ International Journal of Robotics Research, vol. 17, no. 15, 1998.[4] S. Pettersson, “Analysis and design of hybrid systems,” Ph.D. Thesis, Department of Signals and Systems, Chalmers University of Technology, Goteborg, Sweden, 1999.[5] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic management:A study in multiagent hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 509-521, April 1998.[6] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in a passive compass gait biped and passivity-mimicking contr ol laws,” Journal of Au tonomous Robots, vol. 4, no. 3, 1997. 171 B.K.H. Wong, H.S.H. Chung, and S.T.S. Lee, ‘Computation of the cycle state-variable sensitivity matrix of PWM DC/DC converters and its applica tion,” IEEE Transactions on Circuit s and Systems I, vol. 47, no. 10, pp. 1542-1548, October 2000.[8] M. Rubensson, B. Lennartsson, and S. Petters son, “Convergence to limit cycles in hybrid systems - an example,” in Prepri nts of 8th International Federation of Automatic Control Symposium on Large Scale Systems: Theo y d Applications, Rio Patras, Greece, 1998, pp. 704-709.[9] I.A. Hiskens and M.A. Pai, “Trajectory sensitivity analysis of hyhrid systems,” IEEE Transactions on Circuits and Systems I, vol. 47, no. 2, pp. 204-220, February 2000.[10]D. Chaniotis, M.A. Pai, and LA. Hiskens, “Sen sitivity analysis of differential-algebraic systems using the GMRES method - Ap plication to power systems,” in Proceedings of the IEEE International Symposium on Circuits and Systems, Sydney, Australia, May 2001.[11]T.S Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York, NY, 1989.[12]R. Seydel, Practical Bifurcation and Stability Analysis, Springer-Verlag. New York, 2nd edition, 1994.。
物流配送外文文献及翻译

1、 INTRODUCTIONLogistics is normally considered as nothing more than getting the right product to theright place at the right time for the least cost、 Faced with a rapidly changing environment, revolutionary changes in technology, continued government deregulation, the shortening of product life cycle, proliferation of product lines and shifts in traditional manufacturer-retailer relationships, many organisations have had to rethink their traditional assumptions、Over the last ten years one of the most significant changes in management thinking wasthe emphasis on the search for strategies that will provide superior value in competition、Logistics management has the potential to assist the organisation in the achievement of botha cost/productivity advantage and a value advantage、 The importance of logistics and its integration in the supply chain was argued by、China is a huge consumer market that accounted for a third of global economic growthover the past three years、 Its development speed and potential cannot be ignored by the restof the world、 As a result of China’s internal and external economic attributes, most of the、 In particular in the automobileglobal consumer brands have established operations thereindustry, many of the leading global OEMs including Honda, Toyota, General Motors, Volkswagen and Ford have established joint-venture partnerships with local car manufacturers、 Auto sales in China rose by 76% in the year to July 2003 and by 2011,、 InChina is expected to surpass Japan to become the wor ld’s second largest auto marketorder to compete in the Chinese market share and satisfy increasing demand, these operations are continuously expanding their production volumes with astonishing speed、Such expansion is, however carried out in the context of a legacy environment、China spans a large geographical area with, in many parts, under-developed infrastructure、 This presents a challenge to efficient deployment of logistics strategies、Furthermore, the involvement of third party logistics providers, favoured by most globalOEMs, is an emergent consideration in China、 Finally, the conflicts that inevitably arise inthe joint venture partnerships lead to delays in the introduction of western logistics management e xperiences and methods from the OEMs、All these factors increase the、difficulties in managing logistics by China’s local auto makers2、 The overall development of foreign distribution Overview2、1 The United States of modern logistics developmentTwenty-first century from the 60s on wards, the rationalization of distribution of goodsin general are valued in the United States to take the following measures: First, the warehouse will replace the old distribution center: The second is the management of the introduction of computer networks, on the loading and unloading, handling, custody, standardized operation, improve operating efficiency; Third, the common chain distribution centers set up to promote the growth of chain-effective、 United States chain stores have a variety of distribution centers, mainly in the wholesale-based, r etail and warehouse-type three types、2、2 Japan's modern logistics developmentOn logistics and distribution of wood with the following features: well-developed distribution channels, frequent, low-volume stock, logistics and distribution reflects the common and set the trend sticks, logistics and distribution cooperative, the Government planning in the development of modern logistics and distribution play an important role inthe process of 、2、3 European modern development of logisticsCountries in Europe, especially Germany, logistics refers to the user's orders in accordance with the requirements of positions in the logistics sub-goods distribution, the goods will be sent to the consignee with good activities、Germany's logistics industry formed of basic commodities from origin to distribution center, from the distribution center (and sometimes through more than one distribution center) arrive at the modern mode of end customers、 Traveled in Germany, it can be said of the logistics and distribution in Germany has been formed to final demand-oriented to the modernization of transport and high-techinformation network as a bridge to a reasonable R69 distribution center hub to run a complete system、2、4 the main reasons of logistics industry developing faster in developed countriesRelying on high-tech to the core economies of scale to allow flexibility based on a variety of forms、3、China's 3PL enterprises are facing a major obstacle to business3、1 The current situation of China's 3PLChina's 3PL enterprises: service radius of a small, low entry barriers、 With the gradual warming heat logistics, urban logistics industry is also increasingly unitary covered by the importance and development、However, due to historical reasons in our country, the long-standing emphasis on production of a light flow, heavy flow to light the idea of the logistics, distribution of development in the not yet ripe at this stage, there is the issue more prominent in the following two aspects: the service delivery difficult to play a central role,the process of distribution of the low level of modernization、China's 3PL companies with foreign 3PL companies mainly in the gap between the three aspects: First, procurement capacity, and the other is logistics, and the third is cash flow、Aspects of logistics and distribution, foreign retailers have done very well, has a set of efficient logistics information system, which can effectively improve the inventory turnover rate, so as to enhance the return on assets and profitability、 And domestic retailers in this、area has just started, or have not yet started3、2 distribution center lower the overall distribution, commercial chain failed to give full play to the advantagesFrom our point of view the existing commercial retail enterprises, in addition to some large, well-known commercial enterprises, the general commercial "chain" businesses are not set up their own logistics and distribution centers or use third-party logistics center、Although these companies have also established some of his own "chain" stores, but in fact operating goods stores do not do "unified procurement, unified distribution, unified billing,"、 The which allows some commercial retail enterprises, "chain" seems to exist in name onlyother has been established in their own logistics and distribution centers or use third-party logistics distribution center of commodities in commercial enterprises, the effectiveness of distribution centers has not been effective, which in turn affected the procurement cost of an integrated chain advantages, including outstanding manifested by the distribution center for goods distribution ratio of unity is very low、 Uniform distribution logistics center can notbe achieved, indicating the store's commercial enterprises "unified purchase" did not、materialize, rather than a unified procurement chain has lost the core strengths3、3 China's more enterprises are facing a major obstacle of the higher logistics costWal-Mart 8 5% of the commodities distribution through the distribution center, in which 80% is through the "zero inventory" of the more complete form of the distribution database、Wal-Mart as a result of the use of the "Cross distribution" and "auto-replenishment" of supply chain technology, so that goods turnover in the Treasury down to 2 days、 And retail enterprises in China are in the 15-30 days, which reflects the retail , distribution enterprises, underdeveloped logistics system, distribution costs are too high、 Rapid expansion of retail enterprises in China's size and speed in the short term if they can not form a qualitative edge is a dangerous speculation、Over the years the practice has proved that the multi-purpose logistics distribution center, intensive, low-cost supply hub, as well as the use of information technology to reorganize and upgrade the entire flow of the supply chain management is the core of large-scale retail enterprises strategy is to support the retail giant super-conventional development、The face of large-scale retail and distribution businesses o f the main distribution center logistics requirements planning, focusing on how to reflect the integration of information flow in business flow, logistics, capital flow, so that the operation of retail enterprises to expand the logistics for the entire enterprise supply chain collaboration nodes and so that the whole positive and negative to minimize logistics cost of goods (including consumers, stores, logistics, distribution centers, headquarters, suppliers and partners), and a timely response t o sales demand and timely replenishment、This is also a large-scalecross-regional, multi-format, chain retail enterprises have the capacity of the core competitive advantage、3、4 Lack of modern logistics management knowledge and expertise of logistics personnel、This is the third-party logistics industry in restricting the development of China's most important one of the bottlenecks、Logistics knowledge, especially in modern integrated third party logistics knowledge is far from being universal, but that its main business areas is to provide transportation and warehousing services, not know that it is new to these traditional business integration of its business fields Far too simple to become connected with transport and storage of raw materials, semi-finished products supply, production process, material flow, the whole process of product distribution services, as cover flow, solid logistics, capital flow, information flow is equal to the integrated systemof systems、4 to enhance core competitiveness, the implementation of integrated management"integrated management" is the original English Integrated SupplyProcess, refers to the production enterprises, office, life of a non-core business areas of the operation and management of integration as a Overall, as a business-oriented t o manage outsourcing projects, by the special "integrated management" of the suppliers to provide full-service projects、"Integrated management" is not simply puts together the management of the business, but to improve management efficiency and reduce management costs as the core, combined with advanced information technology and network management features such as one organically integrated、Compared with the general outsourcing services, integrated management has the following characteristics:(1) It is not a business, but a complete outsourcing business from the operation of themanagement integration of outsourcing;(2) Outsourcing is not a core operation, but a comprehensive business management、Responsible for the entire business as a first-class suppliers, and its main task is to use its unique resources to conduct a comprehensive knowledge management, the operation of the specific is it managed by the secondary and tertiary suppliers to implement, so in themanagement of outsourcing functions based on the specific operation of the outsourcing; (3) In the case of the most important first-level suppliers, other than remuneration in thefixed service, its the only way to increase revenue for users to save costs as much as possible in order to share the proceeds of cost savings, rather than as general outsourcing as suppliers, mainly through an increase in turnover, that is, to increase spending to increase the user's own earnings、 "Double bottom" principle of cooperation between the two sides can make a stable and lasting、5 The third party logistics enterprise strategic choiceSummarized the latest of several foreign logistics theory and the development ofthird-party logistics with the current practice of foreign, third-party logistics firm's strategic choice to have the following three:(1)Lean Logistics StrategySince the lag theory and practice of logistics, our most extensive third-party logistics company or business, it can not accurately position their logistics services、 If you do not reverse this situation as soon as possible, will be third-party logistics industry in China have restricted role、 Lean production theory of logistics for our third-party logistics company provides a new development ideas for these enterprises to survive in the new economy and development opportunities、 Lean Logistics concept originated in lean manufacturing、 Itis produced from the Toyota Motor Corporation 70 years in the last century by the original "Toyota Production System", after research by the Massachusetts Institute of Technology professor and summary, was published in 1990 published "change the world of machines), a book、 Lean thinking is the use of various modern management methods and means, based on the needs of society to fully play the role of people as a fundamental and effective allocation and rational use of corporate resources to maximize economic benefits for enterprises to seek a new Management philosophy、 Lean Logistics Lean Thinking is the application in logistics management, logistics development must reflect、The so-called Lean Logistics means: the process by eliminating the production and supply of non-value added waste in order to reduce stocking time, improve customer satisfaction、 The aim ofLean Logistics according to customer needs, providing customers with logistics services, while pursuing the provision of logistics services in the process to minimize waste and delay, the process of increasing value added logistics services、Lean logistics system is characterized by its high-quality, low cost, continuous improvement, driven by customer demand oriented logistics system、 It requires establishing the customer first thought, on time, accurate and fast delivery of goods and information、In short, Lean Logistics, as a new management ideas, bound to have a third-party logistics enterprises in China have far-reaching impact, it will change the appearance of the extensive third party logistics management concept, the formation of third party logistics Core competitiveness、the establishment of small and medium third party logistics value chain allianceThird-party logistics enterprises of small and medium can not be independent because of their one-stop logistics services to provide full shortcomings, and because the small size of assets, services, not wide area so that small and medium enterprises in China's logistics third party logistics industry at a disadvantage、 Therefore, third party logistics for small and medium enterprises, starting from their own resources to construct their own core competence is the key、 As small and medium enterprise features of a single third-party logistics and incomplete, so based on their respective core competencies based on the structure of the logistics business enterprise cooperation is an effective capacity to make up for deficiencies, constitutes a feasible way of competitive advantage of logistics、 Value chain is the use of systems approach to investigate the interaction between business and the、 Value analysis of all activities and their access to the resources of competitive advantageof the business activities fall into two categories: basic activities and support activities、Basic activities are involved in product creation and sale of the material transferred to the buyer and after-sales service activities、 Basic activities of supporting activities is to assistthe revenue by providing outsourcing, technology, human resources and a variety of functions to support each other、 Theory to analyze the value chain study the value of third party logistics chain composition, can be found in auxiliary activities, third party logisticsenterprise and general business is no different, the basic activities in the third-party logistics companies has its own characteristics、 Third-party logistics enterprises there is generally no commodity production process, only the re-circulation process, d oes not account for major components of a wide range of third-party logistics companies and thus become the basic operating activities of storage, transport, packaging, distribution, customer service and marketing, etc、 link、 Various aspects of the basic work activities, due to their own limited resources and capacity, can not have every aspect of an advantage in that value chain in terms of some of the deficiencies, resulting in their overall logistics function not complete, lack of corresponding competitiveness and comparative advantage in some sectors of the value chain due to lack of overall effect should not play、 Therefore, third party logistics industry, small and medium sized logistics enterprises within the Union, should be based on the value chain between complementary on the basis of cooperation, make full use of professional logistics companies and logistics functions of specialized logistics organization and coordination of agents Flexible complementary integrated logistics capabilities、Third-party logistics for small and medium enterprises, value chain should start with the advantage of links to explore and develop the core competitiveness of enterprises, through the reconstruction of the value chain to avoid weaknesses、(2)Large third-party logistics enterprise virtualization of strategyRapid development in IT and the Internet era, companies can not fight alone singles, but must be in the competition and collaboration, in cooperation and development、Thus, under modern conditions resulting from modern large-scale virtualized development of third-party logistics has a strong necessity、Large third-party logistics enterprise virtualization is the logistics management resources of others who will have "all", through the network, the other part into its own logistics, with the help of others break the power of physical boundaries, extending to achieve their various Function, and thus expand their ability to enhance their strength、Therefore, the logistics information technology, virtualization is a means for the connection and coordination of temporary and dynamic alliance in the form of virtual logistics、 Integrated logistics virtualization technology as ameans of electronic communication, customer-focused, based on the opportunity to participate in members of the core competencies as a condition to an agreement for the common pursuit of goals and tasks, the different parts of the country's existing Resources to quickly mix into a no walls, beyond the space constraints, by means of electronic networks, contact the unified command of the virtual business entity, the fastest launch of high-quality, low-cost logistics service、Modern large-scale virtualization, including third-party logistics functions, organization, geographic three virtualization、Virtualization capabilities with third-party logistics enterprise IT technology will be distributed in different locations, different companies take different functions within the logistics resources (information, human, material and other resources) organized to accomplish a specific task, to achieve the optimization of social resources、 Virtualization refers to the organizational structure of the logistics organization is always dynamically adjusted, not fixed, but also decentralized, flexible, self-management, flat network structure, its objectives and in accordance with changes in the environmentre-combination, in a timely manner Reflect the market dynamics、 Virtual is the regional third party logistics network through the Internet link the global logistics resources, removing barriers and national barriers, to production management to achieve "virtual neighbors、 "1 导言物流通常被认为就是将恰当的产品以最低的成本,在恰当的时间送达恰当的地点。
外文翻译原文

IntroductionLatvian legislation for forest protection belts Latvian legislation demands that forest protection belts are established around all cities and towns. The concept of protection belts originates from the Soviet Era and is maintained in Latvian legislation despite the radical changes to the political system after regaining indepen-dence in 1991. The legal background for the establish-ment of protection belts is as follows:•Law on Protection Belts (1997, 2002)•Forest Law (2000)•Law on Planning of Territorial Development (1998).Designating a greenbelt around the city of Riga, LatviaJanis DonisLatvian State Forestry Research Institute ‘Silava’, Salaspils, LatviaAbstract: Latvian legislation demands that forest protection belts are established around all cities and towns. The main goal of a protection belt is to provide suitable opportuni-ties for recreation to urban dwellers and to minimise any negative impacts caused by urban areas on the surrounding environment. Legislation states the main principles to be adopted, which include the maximum area of protection belts, their integration in terri-torial development plans and restrictions placed on forest management activities. The largest part of the forest area around Riga is owned by the municipality of Riga, which, as a result, has two competing interests: to satisfy the recreational needs of the inhabitants of Riga, and to maximise the income from its property. In order to compile sufficient background information to solve this problem, the Board of Forests of Riga Municipality initiated the preparation of a proposal for the designation of a new protection belt.The proposal was based on the development and application of a theoretical framework developed during the 1980s. The analysis of the recreational value of the forest (5 class-es of attractiveness) was carried out based on categories of forest type, dominant tree species, dominant age, stand density, distance from urban areas and the presence of at-tractive objects. Information was derived from forest inventory databases, digital forest maps and topographic maps. Additional information was digitised and processed using ArcView GIS 3.2. Local foresters were asked about the recreation factors unique to differ-ent locations, such as the number of visitors and the main recreation activities. From a recreational point of view and taking into account legal restrictions and development plans for the Riga region, it was proposed to create three types of zones in the forest: a protection belt, visually sensitive areas and non-restricted areas.Key words:greenbelt forest, recreational value, GIS, zoningThe Law on Protection Belts states that protection belts around cities (with forests as part of a green zone)have to be established (a) to provide suitable conditions for recreation and the improvement of the health of urban dwellers, and (b) to minimise the negative im-pact of urban areas on the surrounding environment.Urban For.Urban Green.2 (2003):031–0391618-8667/03/02/01-031 $ 15.00/0Address for correspondence:Latvian State Forestry Re-search Institute ‘Silava’, Rı¯gas iela 111, Salaspils, LV-2169,Latvia. E-mail: donis@silava.lv© Urban & Fischer Verlaghttp://www.urbanfischer.de/journals/ufugRegulation nr 263 (19.06.2001) on the ‘Methodology for the establishment of forest protection belts around towns’issued by the Cabinet of Ministers (CM) states: (a) The area of a protection belt depends on the numberof inhabitants in the town: towns with up to 10,000 inhabitants should have a maximum of 100 ha of protection belt, those with between 10,000 and 100,000 inhabitants a maximum of 1,500 ha, and towns with more than 100,000 inhabitants a maxi-mum of 15,000 ha;(b) the borders of protection belts have to be able to beidentifiable on the ground, using features such as roads, ditches, power lines, and so forth;(c) protection belts have to be recorded in the territorialplans of regions adjacent to the town or city; and (d) establishment of protection belts has to be agreedupon by local municipalities.According to law, protection belts should be man-aged using adapted silvicultural measures. Clear-cut-ting, for example, is prohibited in a protection belt to mitigate any negative impacts of the city on the sur-rounding environment. The Forest Law of 2000 and subsequent regulations including the Regulation on Cutting of Trees, and the Regulation on Nature Conser-vation in Forestry define clear-cuts as felled areas larg-er than 0.1 ha where the basal area is reduced below a critical level in one year. These regulations also state the permitted intensity and periodicity of selective cut-ting (30–50%, at least 5 years between entries).The third element of the legal framework relevant for protection belts in Latvia is the Law on Planning of Territorial Development (1998). It defines:(a) Principles and responsibilities of the different or-ganisations involved;(b) the contents of territorial plans;(c) the procedures for public hearing; and(d) the procedures for the acceptance of plans.The law also states that protection belts around towns have to be designated in territorial plans. Thus, the legislation gives very detailed descriptions of the restrictions to maximum area, activities and guidelines for delineation and so forth, while there are no ‘rules’for the choice of what areas are to be included in pro-tection belts. It is up to territorial planners to propose what areas to include and for negotiation among mu-nicipalities to approve the selection.Protection belt for the city of RigaRiga and the Riga region are situated in the Coastal Lowland of Latvia within the Gulf of Riga. The main landform types are the Baltic Ice Lake plain, the Litto-rina Sea plain and the Limnoglacial plain and bog plain. The total area of the administrative area of the City of Riga covers 307.2 km2, and that of the Riga re-gion 3,059 km2. In 2000 the city of Riga had 815,000 inhabitants, while an additional 145,000 people resided in the greater Riga region. During the last decade the number of inhabitants in Riga decreased by 10.5%and in Riga region by 5.3%. In the mid-1990s the main types of industry in Riga were food processing, timber and wood processing, metal fabricating and engineer-ing, while in the region agriculture and forestry, wood processing, pharmaceuticals, and the power industry were the main activities. Due to reduced industrial ac-tivities today, the main sources of pollution in Riga re-gion are road transport and households.The greater part of the Riga region is covered by for-est, i.e. 1,642 km2or 53%. About 26% of the land is used for agriculture, 4% is covered by bogs, and 4% by water. The Riga region also has a coastal dune zone of some 30 km along the Gulf of Riga. The main tree species to be found in the Riga region are Scots pine (Pinus sylvestris L.),birch (Betula spp.) and Norway spruce (Picea abies (L.) Karsten) (see Table 1). In the administrative area of the city of Riga, 57 km2 or about 19% of the land area is forest. Scots pine is the domi-nant species, covering approx. 46.9 km2(i.e. 88% of the total forest area).According to the legislation described before, a pro-tection belt around Riga city, with a maximum size of 15,000 ha, could be designated. Moreover, any propos-al has to be agreed upon among 24 local municipalities. The Riga region is divided into 24 administrative units: 7 towns and 17 pagasts or ‘parishes’.Riga municipality currently owns more than 55,600 ha of forests. Most are situated in the vicinity of Riga. Four forest administrative districts lie completely with-in Riga region and close to Riga city (see Fig. 1). The total area of these districts is 44,158 ha out of which forest stands cover 36,064 ha (82%). Thus the Riga municipality forests of those 4 districts cover only 17% of the total forest area of the Region. The dominant tree species in the municipally owned forests are Scots32J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Table 1.Tree species composition in the Riga region Dominant tree Area covered, ha Average age, years species––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Total Municipa-Total Municipa-lity*lity* Scots pine95,27627,3718581 Norway spruce20,8493,0175139Birch30,5585,1246056 Other10,438552––Total157,12136,0647369*Data only for the 4 forest districts of the Riga city munici-pality that are entirely situated within the Riga region.pine, birch and Norway spruce. These cover 76%, re-spectively 14% and 8% of the forest area. Other species cover less than 2% of the area.Until the re-establishment of Latvian independence almost all forestland was owned by the state but since then many areas have been returned to their former owners and are now privately owned. Current regula-tions state that until the designation of new boundaries for protection belts has been agreed upon, all forests of the previously existing and protected green zone have to remain protected whatever their functional role or ownership status. Consequently almost all forests of the Riga municipality located in the Riga region have management restrictions placed on them, and the same can be said for forests of other owners within the previ-ously existing green zone. Currently, therefore, on the one hand significant recreation opportunities for urban dwellers are provided, while on the other hand forest owners’rights to obtain income from timber harvest in the suburban areas continue to be restricted. Suburban municipalities also lose income because of reduced land taxes from land with management restrictions.The board of Forests of the Municipality of Riga there-fore initiated the preparation of a proposal to designate a new protection belt.Study to support protection belt designation The main objective of the study presented here has been to obtain background information in preparation for further discussions with local municipalities. Stud-ies in Latvia as well as elsewhere have revealed that recreational values of forests depend mainly on forest characteristics, location and level of pollution (Emsis et al. 1979; Emsis 1989; Holgen et al. 2000; Lindhagen & Hörnsten 2000; Rieps ˇas 1994; Su ¯na 1973, 1979). A very important aspect is the distance to the forest from places where people live (e.g. Rieps ˇas 1994). The abil-ity of a forest stand to purify the air by filtering or ab-sorbing dust, micro-organisms, and noxious gases de-pends on tree and shrub species composition, age, tree size and stand density (Emsis 1989). Stands purify the air most effectively at the time of maximum current an-nual volume increment, usually between 30 to 60 years of age in Latvian conditions, depending on species.Recreational value, on the other hand, increases with age (and tree size) and reaches its maximum consider-ably later. Taking into account the peculiarities of the dispersal of pollution as described by Laivin ‚s ˇ et al.(1993) and Za ¯lı¯tis (1993), selective cutting is prefer-able in the vicinity of a pollution source, especially ifJ.Donis:Designating a greenbelt around the city of Riga,Latvia 33Urban For.Urban Green.2 (2003)Fig. 1.Location ofthe Riga municipali-ty forests in the Riga region.the forest consists of a narrow strip between the pollu-tion source and housing. If the distance between a pol-lution source and housing exceeds several kilometres, a patch clear-cut system with stands of different ages is sufficient to provide a reduction in the negative impact of urban areas. Taking into account the fact that closer to residential areas it is more important to consider the visual qualities of the forest (e.g. Tyrväinen et al. 2003), this purification ability can generally be ignored when planning protection belts.MethodsThis study to support the designating of the Riga pro-tection belt used the following data sources for analysis (see Fig. 2): forest inventory databases, digital forest maps of the Riga municipal forests which are situated outside the administrative borders of the city (55,600 ha of which 44,158 ha located in the Riga region) (see Fig. 1), and corresponding topographic maps.The study and its developed proposal are based on an application of a theoretical approach developed during the 1980s by the Latvian State Forestry Research Insti-tute ‘Silava’(Emsis 1989) and the Lithuanian Forestry Research Institute (Riepsˇas 1994). According to the methodology developed by Emsis (1989), the first step in the process is to evaluate the recreational potential of the forest stands. This is carried out by analysing the following factors:• The tolerance of the forest ecosystem to different lev-els of anthropogenic (recreation) loading;• the status of forest ecosystems in terms of the damage or degradation as a result of recreational use;•the suitability of the landscape for non-utilitarian recreation (recreational value); and• the existing and potential levels of recreational loads.The second step involves evaluating the existing andexpected functional roles of the forest.The tolerance of the forest ecosystem to different levels of anthropogenic impact or loading is evaluated using a framework based on a combination of forest type, dominant tree species, dominant age group, soil type and relief, according to the stability of ecosystem. All stands are classified into one of five tolerance classes. The highest score is given to mature deciduous forests on mesotrophic and mesic soils on flat topogra-phy, while the lowest score is given to young pine stands on oligotrophic soils on steep slopes (forests on dunes).In this study ecosystem tolerance could not be evalu-ated, as it was primarily a desk using existing databas-es, and topographic relief maps were not available in digital form. The status of the forest ecosystem in rela-tion to damage or degradation was evaluated in terms of the degree of change in vegetation cover, under-growth, tree root exposure of the and level of littering, classified into three classes.Assessment of the recreational value of the forest stands was calculated using a formula developed by Riepsˇas (1994):Recreational value VR= (VS*kW*kS+VA)*kPWhere VSis stand suitability based on key internal at-tributes of the stand, such as species, age, stand densityand forest type. VSvalues range from 0 for young, high-density grey alder (Alnus incana L.) on wet peat soils, to 100 for average density mature pine stands ondry mineral soils. kwis a coefficient depending on the distance of the stand from watercourses, ranging from0.1 for stands further than 2 km from watercourses to1.0 for stands up to 500 m from watercourses. kSis a coefficient depending on the distance of the stand from urban areas, ranging from 0.1 for stands further than34J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Fig. 2.Structure of data sources used in data ana-lysis.80 km from Riga to 1.0 for stands within 30 km ofRiga. VA is an additional value depending on the pres-ence of attractive features, for example, 25 for forest stands up to 500 m from settlements, including summer cottages, or for areas intensively used for recreation ac-cording to information of local foresters. kP is a coeffi-cient depending on the level of environmental pollu-tion. Its value is 0 if the actual pollution level exceeds limit values, 0.5 if the level of environment pollution is between 50% and 100% of limit values, and 1 if the level of actual pollution is less than 50% of the limit values. In this study a coefficient of 1.0 was used, be-cause SO2and O3concentrations measured by Rigabackground measuring stations did not exceed 50% of the limit values (Fammler et al. 2000).The division of stands into classes of stand suitabili-ty is based on studies of visitors’preferences. Coeffi-cients kw, ksand VAare based on visitors’spatial distri-bution and show the ratio of the number of visitors in different zones. The evaluation of existing and expect-ed recreational loads was carried out by local foresters. They marked existing and potential recreation places on forest maps, including:•Small areas or sites for activities such as swimming, barbecuing, and so forth.•Recreation territories, defined as areas of 20 ha or more where people stay longer periods for walking, jogging, skiing or other forms of both active and pas-sive recreation.•Traditionally popular places for the collection of berries and mushrooms.•Recreational routes, including routes from public transport stops to recreation sites or recreation terri-tories, and between recreation sites and territories. For each recreation site and recreation territory data on the main seasons of use, the periods of use (week-days, weekends), and the average number of people in ‘rush-hours’during good weather conditions was col-lected or estimated.Data processing was carried out using ArcView GIS3.2a, Visual Fox pro and Microsoft Excel. VS values foreach stand were calculated from information in the for-est database using Visual Fox pro. Information collect-ed at a later stage from local foresters was digitised using separate themes (layers) in ArcView GIS 3.2a. Buffer zones along watercourses and water bodies, as well as residential areas, recreation sites and territoriesand recreation routes were created to get kW ,kSand VAvalues for each stand. Then VR values were calculatedfor each stand.A selection of recreation sites and territories was vis-ited by members of the project team in order to evalu-ate the state of the ecosystem with respect to wear and tear arising from different levels of recreational use. An evaluation of the existing functional role of each forest stand was carried out using the existing categories offorest protection. The anticipated future functional role was evaluated by annalysing the recreational value of stands, known expectations in terms of territorial de-velopment, and existing legal restrictions in order to find a compromise between recreation possibilities and other services of the forest. Next, a first draft of the protection belt was drawn according to experts’judge-ment. This draft included forests with high recreational value adjacent to residential areas and summer cot-tages, and larger tracts intensively used for recreation with medium to high recreational value.ResultsAccording to the original forest classification 65% of the total forest land area was designated as a commer-cial greenbelt forest, for which the main management goals are timber production and environmental consid-erations. The remaining 35% were designated as pro-tected (see Table 2). With regards to protected areas in Latvia: the main management goals of nature parks are nature conservation and recreation, including some ed-ucation. The goal for nature reserves is nature conser-vation, while that of the protected greenbelt forests is recreation.While interviewing local foresters it was revealed that they find it difficult to evaluate dispersed recreation loads (for example collection of berries, mushrooms). The assessments of foresters varied greatly and were considered to be unreliable. It was therefore decided to map only the places important for recreation, but not to use the inaccurate estimates of visitor numbers.In Latvia, special investigations have to be carried out in order to develop management objectives and principles for protected forests as part of the preparation of management plans. Pilot studies and visits to some of the recreation areas have revealed that the evaluation of the state of the forest ecosystem is useful only when de-veloping the detailed management plan. Even then, this is only the case for places identified by local foresters as recreation sites or territories, because otherwise it is too time consuming to carry out fieldwork which provides little useful additional information.Calculated VSvalues show that on average the forests studied have a medium suitability value for recreation (average score 47) (see Table 2). There are considerable differences between districts, with aver-age value ranging from 32 points in Olaine to 66 points in the Garkalne district. This indicates that the average stands in the Garkalne district are more suitable for recreation than those in other districts. If other aspects are taken into account, such as distance from wherepeople live, and VRvalues are calculated it can be seenJ.Donis:Designating a greenbelt around the city of Riga,Latvia35Urban For.Urban Green.2 (2003)that the districts are still ranked as follows: Garkalne,Jugla, Tireli and Olaine.Only 10% of the forest owned by Riga municipality within the Riga region were evaluated as having a high or very high recreational value. 12% had medium recreational value, while large areas used for the col-lection of berries and mushrooms were evaluated as having low or very low recreational value (60% of the total forest area) (see Table 3).More than 16% of the area is covered by bogs, for which according to the used methodology, recreational value was not evaluated at all. Some areas were recorded by the local foresters as important places for the collec-tion of berries. However, more valuable from a recre-ational point of view were those forests situated east and north-east of the city (Garkalne and Jugla districts),while the forests to the south (Olaine and Tireli districts)were found to have a lower recreational value (V R ).36J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Table 2.Distribution of forest by forest categories according to the original functional role Forest districtDataFormer forest category Total–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Commercial Nature Nature Protected greenbelt forests parks reserves greenbelt forestsGarkalneArea, ha521.27,698.78,219.9Average of V S *61.966.566.2Average of V R **59.350.751.4JuglaArea, ha 8,376.74,098.812,475.4Average of V S 45.656.949.1Average of V R 22.034.025.7OlaineArea, ha 11,765.4707.512,473.0Average of V S 31.941.032.6Average of V R 8.527.410.0TireliArea, ha 8,689.5257.91,025.01,016.910,989.3Average of V S 40.666.710.059.342.3Average of V R 17.055.3 1.044.920.6TotalArea, ha 28,831.6779.11,025.013,522.044,157.6Average of V S 39.863.510.061.647.1Average of V R16.357.91.043.725.9* V S Suitability value – based on stand parameters (0–100 points).** V R Recreation value (0–125 points) based on stand parameters, distance to the residential areas, water and other attractive objects.Table 3.Distribution of forest areas by classes of attractiveness and by designated functional role Designated zoneDataClass of attractiveness Total –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––n.a.Very low Low Medium High Very high 0<2525,1–5051–7575–100100<Protection belt Area, ha76.7560.12,266.42,222.7850.5743.66719.9Average of V R *0.012.036.063.390.0125.053.4Visually sensitive Area, ha 447.64,150.54,157.7853.4847.1179.810636.1Average of V R 0.07.837.460.996.7125.028.5Non-restricted Area, ha 6,664.715,389.12,548.61,090.5874.8234.026801.7Average of V R 0.0 5.234.761.197.2125.015.8TotalArea, ha 7,189.020,099.88,972.74,166.52,572.31,157.344157.6Average of V R0.06.236.362.294.6125.025.9*V R Recreation value (0–125 points) based on stand parameters, distance to the residential areas, water and other attractive objects.Areas along main roads and railways are known to be visually sensitive, because of the large number of peo-ple who can see them during travel. The same is true for forest in the vicinity of small villages. Taking into ac-count the fact that legislation prohibits clear-cuts in pro-tection belts – which is not always necessary in order to maintain the visual quality of the landscape – it was proposed, as part of the zoning strategy, to create so called visually sensitive areas. In these areas the forest owner (Riga municipality) is recommended to use more detailed landscape-planning techniques and to pay more attention to visual aspects during management.As a result of the study, seen from a recreational point of view and taking into account legal restrictions and so forth, it has been proposed to create three zoning categories: (1) protection belts, (2) visually-sensitive areas, and (3) non-restricted areas (see Fig. 3). The protection belt should include:• Forest with high recreational value adjacent to residen-tial areas and summer cottages, to form a 200–500 m wide belt.• Larger tracts of forestland intensively used for recre-ation.The zone of visually-sensitive areas should include:• Forests within the administrative borders of Riga mu-nicipality and in the vicinity of villages (up to 200–500 m distance).• Forests along roads of national and regional impor-tance, railways, watercourses and streams as a protec-tion belt of 100–300 m wide.• Places used for mushroom and berry collection in the original restricted protection belt.• Places that could become important for recreation in the near future.J.Donis:Designating a greenbelt around the city of Riga,Latvia 37Urban For.Urban Green.2 (2003)Table 4.Proposed distribution of forest categories in designated zones (in hectares)Designated zoneFormer forest category Grand Total––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Commercial Nature Nature Protected greenbelt forests parks reserves greenbelt forests Protection belt355.2779.15,585.76,719.9Visually sensitive areas 3,503.97,132.110,636.1Non-restricted areas 24,972.51,025.0*804.226,801.7Total 28,831.6779.11,025.013,522.044,157.6*Forests within nature reserves are not intended for recreation; their primary management goal is nature conservation.Fig. 3.Proposal for zon-ing of the Riga municipalforests in Riga region.The remaining areas should consequently be classi-fied as non-restricted areas.A revision of the first draft plan was made taking into account the known prospective development plans of Riga and Riga region. As a result, for forests owned by Riga municipality and located in Riga region the pro-posal is to include 6,720 ha in the protection belt (see Table 3). Moreover, it has been suggested to designate 10,636 ha as visually-sensitive areas, but to omit the re-maining 26,802 ha from zoning, as these do not need special management from a recreation point of view. Average recreational values of stands in this area range from 53 (medium), through 28 (low) to 15 points (very low) respectively.As a result, the major part of the forest remains in the same functional category as in the original allocation (see Table 4). As was mentioned above, the classifica-tion described here is only based on recreational as-pects, thus forests in nature reserves are misleadingly shown as non-restricted forests. Only 5,586 ha out of the 13,500 thousand ha of the originally protected greenbelt forests are proposed to be included in the protection belt, while 355 ha of the previous commer-cial greenbelt forests are proposed to be placed under stronger protection.DiscussionForests owned by Riga municipality within the Riga re-gion are divided over 13 rural municipalities. Accord-ing to legislation, revised draft proposals for zoning Riga city forests have to be accepted by Riga munici-pality, while the final decision is up to Riga and the sur-rounding municipalities. The study presented here has provided a tentative estimate of the recreational value and suitability of the forests for recreation and can be used as a starting point for political discussions. At the very beginning the intention was to divide the forests in two categories: the protection belt and the remainder of the forest. During the study it was concluded, however, that a third category would be needed, that of visually sensitive areas. Within this category more attention would have to be paid to the amenity of the landscape, but there would be no need to drastically restrict com-mercial forest management. As nature parks are also designated for recreation, it has been proposed to in-clude all forests of nature parks in the protection belt. It has to be noted that all the forests within the adminis-trative borders of cities, and as such not included in this study, are designated as protected. As a consequence, the forest area available for recreation to the inhabi-tants of Riga would increase to 12,500 ha.Unlike many other European cities, where timber ex-traction is of small importance (Konijnendijk 1999),Riga municipal forests have a considerable economic role. It is estimated that the allowable annual cut in suburban forests amounts to 169,800 m3or 81% of the annual increment (Dubrovskis et al. 2002). It should be kept in mind that income from logging is used for for-est regeneration and tending, forest fire protection and maintenance of recreation facilities.The objective of this study was not to evaluate the precision of the method nor possible errors occurring when applying it. This study revealed, however, the in-completeness of the methodology used. Bogs, which are very sensitive to recreation loads, are ascribed quite a high level of attractiveness from a recreation point of view (for the collection of wild berries), but according to the methodology they are not evaluated at all. All watercourses were assumed to be attractive sites, while the preliminary evaluation of recreation loads showed this not to be true. The use of watercourses is very vari-able and obviously depends on water quality and vege-tation structure of the edges or banks. Another aspect which was not taken into account was that amenity of a forest is not simply the sum of the amenity values of forest stands (Pukkala et al. 1995).It seems that the evaluation based on dominant species is appropriate for screening areas, but for more detailed management plans, species mixture, the number of forest layers, and principles of landscape architecture also have to be taken into account (Bell 1999; Bell & Nikodemus 2000). Various studies have shown that people prefer uneven-aged forests (e.g. Melluma et al. 1982) and uneven-aged stands (e.g. Riepsˇas 1994). The impacts of the screening effect show that there are, even in the visually-sensitive and commercial zones, considerable areas with high and very high recreational value. This is mainly because delineation of zonal boundaries is carried out using easily distinguishable natural lines, and often it is not worth including single stands of high recreational value in the protection belt if, as a consequence, re-strictions on management would be placed over whole compartments of 50 ha.For the preparation of specific management guide-lines detailed field inventories have to be carried out. This has not been done in this study, where more re-liance was placed on the experience of local foresters and existing databases. Detailed economical calcula-tions have yet to be carried out in order to evaluate the direct and indirect value of the forest. These will also assist in obtaining more background information to be used as part of a holistic approach and for development of a decision support system to resolve contradictions between different interest groups.After acceptance of the draft plan by the municipali-ty of Riga, the process of negotiation between Riga and its surrounding municipalities is currently ongoing.38J.Donis:Designating a greenbelt around the city of Riga,Latvia Urban For.Urban Green.2 (2003)。
外文翻译及文献综述

2 无线射频系统(RFID)的原理及安全性分析
2.1 RFID系统概述 RFID系统一般由三部分组成[3]: 标签(Tag):它是RFID的核心部件,主要包括用于收 发信息的藕合元件和一块微控制芯片组成,芯片内存 有唯一的电子编码; 阅读器(Reader):用来对标签进行读写操作的设备; 天线(Antenna):传递射频信号必需的收发装置。
毕业设计过程中阅读的和课题注意是 “和课题相关的”。不要选择 和课题无关的外文资料进行翻译。
3.1.3 外文翻译工具
谷歌翻译(/#) 有道翻译(/) 爱词霸翻译(http://fy.iciba. com/)
(3) Chien和Chen于2007年提出了一个符合EPC Class 1 Generation 2 的 RFID双向认证协议[18]
(4) Tassos Dimitriou等人提出的安全与效率兼得的协议
6 小结
虽然RFID技术在各行各业中有良好的应用前景,但如果不能很好 地解决隐私、追踪等安全问题,这种应用前景难以变成现实的产 业,因此,对RFID安全协议进行研究具有比较重要的意义。 本文首先对RFID系统进行了大致的描述,包括RFID系统的结构 及其原理,并针对在RFID系统上存在的一些隐私与安全隐患做了 细致分析,指出了在RFID系统上采用安全措施的必要性。同时从 多个角度阐述了一些RFID安全机制,重点介绍了基于密码技术的 RFID协议,文中又可分为基于杂凑的安全协议和其他密码学机制 的安全协议,并对文中提到的每一个协议给出了详细的通信流程, 分析了这些协议的缺陷。 随着RFID技术成本的降低和技术的成熟,人们将会越来越重视 RFID的安全性问题。我们相信,在不久的将来,RFID安全与隐私 问题一定能得到进一步完善的解决,同时RFID技术也一定会全面 普及。
英文翻译 附原文

本科毕业设计(论文) 外文翻译(附外文原文)系 ( 院 ):资源与环境工程系课题名称:英文翻译专业(方向):环境工程班级:2004-1班学生:3040106119指导教师:刘辉利副教授日期:2008年4月20使用褐煤(一种低成本吸附剂)从酸性矿物废水中去除和回收金属离子a. 美国, 大学公园, PA 16802, 宾夕法尼亚州立大学, 能源部和Geo 环境工程学.b. 印度第80号邮箱, Mahatma Gandhi ・Marg, Lucknow 226001, 工业毒素学研究中心, 环境化学分部,于2006 年5月6 日网上获得,2006 年4月24 日接受,2006 年3月19 日;校正,2006 年2月15 日接收。
摘要酸性矿物废水(AMD), 是一个长期的重大环境问题,起因于钢硫铁矿的微生物在水和空气氧化作用, 买得起包含毒性金属离子的一种酸性解答。
这项研究的主要宗旨是通过使用褐煤(一种低成本吸附剂)从酸性矿水(AMD)中去除和回收金属离子。
褐煤已被用于酸性矿水排水AMD 的处理。
经研究其能吸附亚铁, 铁, 锰、锌和钙在multi-component 含水系统中。
研究通过在不同的酸碱度里进行以找出最适宜的酸碱度。
模拟工业条件进行酸性矿物废水处理, 所有研究被进行通过单一的并且设定多专栏流动模式。
空的床接触时间(EBCT) 模型被使用为了使吸附剂用量减到最小。
金属离子的回收并且吸附剂的再生成功地达到了使用0.1 M 硝酸不用分解塔器。
关键词:吸附; 重金属; 吸附; 褐煤; 酸性矿物废水处理; 固体废料再利用; 亚铁; 铁; 锰。
文章概述1. 介绍2. 材料和方法2.1. 化学制品、材料和设备3. 吸附步骤3.1. 酸碱度最佳化3.2. 固定床研究3.2.1 单一栏3.2.2 多栏4. 结果和讨论4.1. ZPC 和渗析特征4.2 酸碱度的影响4.3. Multi-component 固定吸附床4.3.1 褐煤使用率4.4. 吸附机制4.5. 解吸附作用研究5. 结论1. 介绍酸性矿物废水(AMD) 是一个严重的环境问题起因于硫化物矿物风化, 譬如硫铁矿(FeS2) 和它的同素异形体矿物(α-FeS) 。
外文翻译

井冈山大学外文翻译题目施工组织设计与施工图预算学院建筑工程学院专业工程管理姓名谭智强学号90617008指导教师夏振华2012年11月20日开发一个评估施工现场安全管理系统有效性的模型Developing a model to measure the effectiveness of safety management systems of construction sites作者:Evelyn Ai Lin Teoa,_, Florence Yean Yng Linga起止页码:1584~1592出版日期(期刊号):2005年6月第005版出版单位:新加坡环境国立大学摘要:在新加坡,实施了建筑行业安全管理系统(SMS)和SMS审计大约有十年之久的现在,安全标准的提高并不显著。
为了回应需要改进的有效性(SMS)和安全管理体系审计的目的,本文提出了一种方法, 人员可以利用测试工具来评估审计建筑公司安全管理体系的有效性。
研究方法采用了15个步进行调查,安全专家被邀请通过面试或工作表达自己的意见。
层次分析法(AHP)及因子分析是用来协助识别影响最为关键的因素和属性的安全。
该模型开发利用多属性值模型(MAVT)的方法。
该方法可以通过网站得到验证审核,利用模型中施工安全指数(CSI)可以计算出来。
结果表明,该模型可以作为一个客观CSI衡量不同管理和评估。
关键词: 安全管理体系;安全审核;施工安全指数1 简介: 支撑这一工作的论据安全管理体系(SMS)作为建筑业一个正式制度的管理现场安全的体系。
承包商预期管理现场安全通过正常的安全管理体系。
如何有效地评价这些系统是很重要的,这样可以使不足之处得以更正。
该研究工作是在协作与职业安全部门监督下进行的,人力资源部门可根据当局评价审计协议来衡量一个建筑工地的有效性的安全管理体系。
新加坡建筑行业服务实施了安全管理体系审计大约有十年之久了,但是提高的安全效果并不显著。
这与影响船舶的修建行业一样,经历了一个稳定提高安全性能的阶段。
5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand

外文文献翻译(附原文)外文译文一:产业集群的竞争优势——以中国大连软件工业园为例Weilin Zhao,Chihiro Watanabe,Charla-Griffy-Brown[J]. Marketing Science,2009(2):123-125.摘要:本文本着为促进工业的发展的初衷探讨了中国软件公园的竞争优势。
产业集群深植于当地的制度系统,因此拥有特殊的竞争优势。
根据波特的“钻石”模型、SWOT模型的测试结果对中国大连软件园的案例进行了定性的分析。
产业集群是包括一系列在指定地理上集聚的公司,它扎根于当地政府、行业和学术的当地制度系统,以此获得大量的资源,从而获得产业经济发展的竞争优势。
为了成功驾驭中国经济范式从批量生产到开发新产品的转换,持续加强产业集群的竞争优势,促进工业和区域的经济发展是非常有必要的。
关键词:竞争优势;产业集群;当地制度系统;大连软件工业园;中国;科技园区;创新;区域发展产业集群产业集群是波特[1]也推而广之的一个经济发展的前沿概念。
作为一个在全球经济战略公认的专家,他指出了产业集群在促进区域经济发展中的作用。
他写道:集群的概念,“或出现在特定的地理位置与产业相关联的公司、供应商和机构,已成为了公司和政府思考和评估当地竞争优势和制定公共决策的一种新的要素。
但是,他至今也没有对产业集群做出准确的定义。
最近根据德瑞克、泰克拉[2]和李维[3]检查的关于产业集群和识别为“地理浓度的行业优势的文献取得了进展”。
“地理集中”定义了产业集群的一个关键而鲜明的基本性质。
产业由地区上特定的众多公司集聚而成,他们通常有共同市场、,有着共同的供应商,交易对象,教育机构和其它像知识及信息一样无形的东西,同样地,他们也面临相似的机会和威胁。
在全球产业集群有许多种发展模式。
比如美国加州的硅谷和马萨诸塞州的128鲁特都是知名的产业集群。
前者以微电子、生物技术、和风险资本市场而闻名,而后者则是以软件、计算机和通讯硬件享誉天下[4]。
外文翻译要求

外文翻译要求
一、外文翻译的目的:
通过外文文献查阅与翻译,熟悉本专业主要的外文书刊,了解毕业设计课题的国内外发展现状和发展趋势及其使用的技术手段和研究方法,进一步提高对外文的阅读应用能力。
二、外文翻译的内容:
阐述所选课题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。
可以是系统业务上的文档,也可以是系统涉及到的技术手段的文档。
三、外文翻译的要求:
1.需符合学校相关要求。
3.需认真研读和查阅术语完成翻译,保证翻译语句流畅。
4.翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业设计主题相关,并作为外文参考文献列入毕业设计的参考文献。
以下为学校的要求:
一、译文文本要求
1.外文译文不少于2000汉字;
2.外文译文本文格式参照论文正文规范(标题、字体、字号、图表、原文信息等);
3.外文原文资料信息列文末,对应于论文正文的参考文献部分,标题用“外文原文资料信息”,内容包括:
1)外文原文作者;
2)书名或论文题目;
3)外文原文来源:
□出版社或刊物名称、出版时间或刊号、译文部分所在页码
□网页地址
二、外文原文资料(电子文本或数字化后的图片):
1.外文原文不少于10000印刷字符(图表等除外);
2.外文原文若是纸质的请数字化(图片)后粘贴于译文后的原文资料处,但装订时请用纸质原文复印件附于译文后。
外文翻译--外文原文

外文翻译--外文原文MCU DescriptionSCM is also known as micro-controller (Microcontroller Unit), commonly used letters of the acronym MCU MCU that it was first used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. INTEL's Z80 is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors have parted ways.Are 8-bit microcontroller early or 4 bits. One of the most successful is the INTEL 8031, for a simple, reliable and good performance was a lot of praise. Then developed in 8031 out of MCS51 MCU Systems. SCM systems based on this system until now is still widely used. With the increased requirements of industrial control field, began a 16-bit microcontroller, because the cost is not satisfactory but have not been very widely used. After 90 years with the great development of consumer electronics, microcontroller technology has been a huge increase. With INTEL i960 series, especially the later series of widely used ARM, 32-bit microcontroller quickly replace high-end 16-bit MCU status and enter the mainstream market. The traditional 8-bit microcontroller performance have been the rapid increase capacity increase compared to 80 the number of times. Currently, high-end 32-bit microcontroller clocked over 300MHz, the performance catching the mid-90's dedicated processor, while the average model prices fall to one U.S. dollars, the most high-end [1] model only 10 dollars. Modern SCM systems are no longer only in the development and use of bare metal environment, a large number of proprietary embedded operating system is widely used in the full range of SCM. The handheld computers and cell phones as the core processing of high-end microcontroller can even use a dedicated Windows and Linux operating systems.SCM is more suitable than the specific processor used in embedded systems, so it was up to the application. In fact the number of SCM is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will be integrated single chip. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse with a 1-2 in both the Department of SCM. Personal computer will have a large number ofSCM in the work. General car with more than 40 SCM, complex industrial control systems may even have hundreds of SCM in the same time work! SCM is not only far exceeds the number of PC and other computing the sum, or even more than the number of human beingsSingle chip, also known as single-chip microcontroller, it is not complete a certain logic chips, but to a computer system integrated into a chip. Equivalent to a micro-computer, and computer than just the lack of a microcontroller I / O devices. General talk: a chip becomes a computer. Its small size, light weight, cheap, for the study, application and development of facilities provided. At the same time, learning to use the MCU is to understand the principle and structure of the computer the best choice.SCM and the computer functions internally with similar modules, such as CPU, memory, parallel bus, the same effect as well, and hard disk memory devices, and different is its performance of these components were relatively weak many of our home computer, but the price is low , usually not more than 10 yuan you can do with it ...... some control for a class is not very complicated electrical work is enough of. We are using automatic drum washing machine, smoke hood, VCD and so on appliances which could see its shadow! ...... It is primarily as a control section of the core componentsIt is an online real-time control computer, control-line is that the scene is needed is a stronger anti-jamming ability, low cost, and this is, and off-line computer (such as home PC), the main difference.Single chipMCU is through running, and can be modified. Through different procedures to achieve different functions, in particular special unique features, this is another device much effort needs to be done, some great efforts are very difficult to do. A not very complex functions if the 50's with the United States developed 74 series, or the 60's CD4000 series of these pure hardware buttoned, then the circuit must be a large PCB board! But if the United States if the 70's with a series of successful SCM market, the result will be a drastic change! Just because you are prepared by microcomputer programs can achieve high intelligence, high efficiency and high reliability!As the microcontroller on the cost-sensitive, so now the dominant software or the lowest level assembly language, which is the lowest level in addition to more than binary machine code language, and as so low why is the use? Many high-levellanguage has reached the level of visual programming Why is not it? The reason is simply that there is no home computer as a single chip CPU, not as hard as a mass storage device. A visualization of small high-level language program which even if only one button, will reach tens of K of size! For the home PC's hard drive in terms of nothing, but in terms of the MCU is not acceptable. SCM in the utilization of hardware resources to be very high for the job so although the original is still in the compilation of a lot of use. The same token, if the giant computer operating system and applications run up to get home PC, home PC, also can not afford to.Can be said that the twentieth century across the three "power" era, that is, the age of electricity, the electronic age and has entered into the computer age. However, this computer, usually refers to the personal computer, referred to as PC. It consists of the host, keyboard, monitor and other components. Another type of computer, most people do not know how. This computer is to give all kinds of intelligent machines single chip (also known as micro-controller). As the name suggests, this computer system took only a minimal integrated circuit, can be a simple operation and control. Because it is small, usually hidden in the charged mechanical "stomach" in. It is in the device, like the human brain plays a role, it goes wrong, the whole plant was paralyzed. Now, this microcontroller has a very broad field of use, such as smart meters, real-time industrial control, communications equipment, navigation systems, and household appliances. Once all kinds of products were using SCM, can serve to upgrade the effectiveness of products, often in the product name preceded by the adjective - "intelligent," such as intelligent washing machines. Now some technical personnel of factories or other amateur electronics developers to engage in out of certain products, not the circuit is too complicated, that function is too simple and can easily be copied. The reason may be stuck in the product did not use a microcontroller or other programmable logic device.SCM historySCM was born in the late 20th century, 70, experienced SCM, MCU, SoC three stages.First model1.SCM the single chip microcomputer (Single Chip Microcomputer) stage, mainly seeking the best of the best single form of embedded systems architecture. "Innovation model" success, laying the SCM and general computer completely different path of development. In the open road of independent development ofembedded systems, Intel Corporation contributed.2.MCU the micro-controller (Micro Controller Unit) stage, the main direction of technology development: expanding to meet the embedded applications, the target system requirements for the various peripheral circuits and interface circuits, highlight the object of intelligent control. It involves the areas associated with the object system, therefore, the development of MCU's responsibility inevitably falls on electrical, electronics manufacturers. From this point of view, Intel faded MCU development has its objective factors. In the development of MCU, the most famous manufacturers as the number of Philips Corporation.Philips company in embedded applications, its great advantage, the MCS-51 single-chip micro-computer from the rapid development of the micro-controller. Therefore, when we look back at the path of development of embedded systems, do not forget Intel and Philips in History.Embedded SystemsEmbedded system microcontroller is an independent development path, the MCU important factor in the development stage, is seeking applications to maximize the solution on the chip; Therefore, the development of dedicated single chip SoC trend of the natural form. As the microelectronics, IC design, EDA tools development, application system based on MCU SoC design have greater development. Therefore, the understanding of the microcontroller chip microcomputer can be, extended to the single-chip micro-controller applications.MCU applicationsSCM now permeate all areas of our lives, which is almost difficult to find traces of the field without SCM. Missile navigation equipment, aircraft, all types of instrument control, computer network communications and data transmission, industrial automation, real-time process control and data processing, extensive use of various smart IC card, civilian luxury car security system, video recorder, camera, fully automatic washing machine control, and program-controlled toys, electronic pet, etc., which are inseparable from the microcontroller. Not to mention the area of robot control, intelligent instruments, medical equipment was. Therefore, the MCU learning, development and application of the large number of computer applications and intelligent control of the scientists, engineers.SCM is widely used in instruments and meters, household appliances, medical equipment, aerospace, specialized equipment, intelligent management and processcontrol fields, roughly divided into the following several areas:1. In the application of Intelligent InstrumentsSCM has a small size, low power consumption, controlling function, expansion flexibility, the advantages of miniaturization and ease of use, widely used instrument, combining different types of sensors can be realized Zhuru voltage, power, frequency, humidity, temperature, flow, speed, thickness, angle, length, hardness, elemental, physical pressure measurement. SCM makes use of digital instruments, intelligence, miniaturization, and functionality than electronic or digital circuits more powerful. Such as precision measuring equipment (power meter, oscilloscope, various analytical instrument).2. In the industrial control applicationWith the MCU can constitute a variety of control systems, data acquisition system. Such as factory assembly line of intelligent control3. In Household AppliancesCan be said that the appliances are basically using SCM, praise from the electric rice, washing machines, refrigerators, air conditioners, color TV, and other audio video equipment, to the electronic weighing equipment, varied, and omnipresent.4. In the field of computer networks and communications applicationsMCU general with modern communication interface, can be easy with the computer data communication, networking and communications in computer applications between devices had excellent material conditions, are basically all communication equipment to achieve a controlled by MCU from mobile phone, telephone, mini-program-controlled switchboards, building automated communications call system, train radio communication, to the daily work can be seen everywhere in the mobile phones, trunked mobile radio, walkie-talkies, etc.5. Microcomputer in the field of medical device applicationsSCM in the use of medical devices is also quite extensive, such as medical respirator, the various analyzers, monitors, ultrasound diagnostic equipment and hospital beds, etc. call system.6. In a variety of major appliances in the modular applicationsDesigned to achieve some special single specific function to be modular in a variety of circuit applications, without requiring the use of personnel to understand its internal structure. If music integrated single chip, seemingly simple function, miniature electronic chip in the net (the principle is different from the tape machine),you need a computer similar to the principle of the complex. Such as: music signal to digital form stored in memory (like ROM), read by the microcontroller, analog music into electrical signals (similar to the sound card).In large circuits, modular applications that greatly reduce the volume, simplifies the circuit and reduce the damage, error rate, but also easy to replace.7. Microcontroller in the application field of automotive equipmentSCM in automotive electronics is widely used, such as a vehicle engine controller, CAN bus-based Intelligent Electronic Control Engine, GPS navigation system, abs anti-lock braking system, brake system, etc..In addition, the MCU in business, finance, research, education, national defense, aerospace and other fields has a very wide range of applications.Application of six important part of learningMCU learning an important part of the six applications1, Bus:We know that a circuit is always made by the devices connected by wires, in analog circuits, the connection does not become a problem because the device is a serial relationship between the general, the device is not much connection between the , but the computer is not the same circuit, it is a microprocessor core, the device must be connected with the microprocessor, the device must be coordination between, so they need to connect on a lot, as if still analog circuit like the microprocessor and devices in the connection between the individual, the number of lines will be a little more surprising, therefore the introduction of the microprocessor bus Zhong Each device Gongtong access connections, all devices 8 Shuju line all received eight public online, that is the equivalent of all devices together in parallel, but only this does not work, if there are two devices send data at the same time, a 0, a 1, then, whether the receiver received what is it? This situation is not allowed, so to be controlled by controlling the line, time-sharing the device to work at any time only one device to send data (which can have multiple devices to receive both). Device's data connection is known as the data bus, the device is called line of control all the control bus. Internal or external memory in the microcontroller and other devices have memory cells, the memory cell to be assigned addresses, you can use, distribution, of course, to address given in the form of electrical signals, and as more memory cells, so, for the address allocation The line is also more of these lines is called the address bus.Second, data, address, command:The reason why these three together because of the nature of these three are the same - the number, or are a string of '0 'and '1' form the sequence. In other words, addresses, instructions are also data. Instruction: from single chip designer provides a number of commonly used instructions with mnemonic we have a strict correspondence between the developer can not be changed by the MCU. Address: the search for MCU internal, external storage units, input and output port based on the address of the internal unit value provided by the chip designer is good, can not be changed, the external unit can be single chip developers to decide, but there are a number of address units is a must (see procedures for the implementation of the process).Third, P0 port, P2 and P3 of the second function I use:Beginners often on the P0 port, P2 and P3 port I use the second function puzzled that the second function and have a switch between the original function of the process, or have a directive, in fact, the port The second feature is automatic, do not need instructions to convert. Such as P3.6, P3.7 respectively WR, RD signal, when the microchip processing machines external RAM or external I / O port, they are used as a second function, not as a general-purpose I / O port used, so long as a A microprocessor implementation of the MOVX instruction, there will be a corresponding signal sent from the P3.6 or P3.7, no prior use of commands. In fact 'not as a general-purpose I / O port use' is also not a 'no' but (user) 'not' as a general-purpose I / O port to use. You can arrange the order of a SETB P3.7's instructions, and when the MCU execution to the instruction, the also make P3.7 into a high, but users will not do so because this is usually will cause the system to collapse.Fourth, the program's implementation:Reduction in power after the 8051 microcontroller within the program counter (PC) in the value of 0000 ', the process is always from the 0000' units started, that is: the system must exist in ROM 0000 'this unit , and in 0000 'unit must be stored in a single instruction.5, the stack:Stack is a region, is used to store data, there is no special about the region itself is a part of internal RAM, special access to its data storage and the way that the so-called 'advanced post out backward first out ', and the stack has a special data transmission instructions that' PUSH 'and' POP ', has a special expertise in its servicesunit, that is, the stack pointer SP, whenever a PUSH instruction execution, SP on (in the Based on the original value) automatically add 1, whenever the implementation of a POP instruction, SP will (on the basis of the original value) automatically by 1. As the SP values can be changed with the instructions, so long as the beginning of the process to change the value of the SP, you can set the stack memory unit required, such as the program begins, with an MOV SP, # 5FH instructions When set on the stack starting from the memory unit 60H unit. There is always the beginning of the general procedure with such a directive to set the stack pointer, because boot, SP initial value of 07H, 08H This unit from the beginning to stack next, and 08H to 1FH 8031 is the second in the region, three or four working register area, often used, this will lead to confusion of data. Different authors when writing programs, initialize the stack is not exactly the same directive, which is the author's habit. When set up the stack zone, does not mean that the region become a special memory, it can still use the same memory region as normal, but generally the programmer does not regard it as an ordinary memory used.From the world of radio in the world to a single chipModern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computer systems (referred to as embedded systems), while the microcontroller is the most typical and most extensive and most popular embedded systems.First, radio has created generations of excellence in the worldFifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. Early that these electronic technology led many young people into the wonderful digital world, radio show was a wonderful life, the prospects for science and technology. Electronics began to form a new discipline. Radio electronics, wireless communications began e-world journey. Radio technology not only as a representative of advanced science and technology at that time, but also from popular to professional fields of science, attracting the young people and enable them to find a lot of fun. Ore from the bedside to thesuperheterodyne radio radio; report issued from the radio amateur radio stations; from the telephone, electric bell to the radio control model. Became popular youth radio technology, science and technology education is the most popular and most extensive content. So far, many of the older generation of engineers, experts, Professor of the year are radio enthusiasts. Fun radio technology, radio technology, comprehensive training, from basic principles of electronics, electronic components to the radio-based remote control, telemetry, remote electronic systems, has trained several generations of technological excellence.Second, from the popularity of the radio era to era of electronic technologyThe early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronic technology. Semiconductor technology to realize the active device miniaturization and low cost, so more popular with radio technology and innovation, and to greatly broaden the number of non-radio-control areas.The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Electronic design engineers no longer use the discrete electronic components designed circuit modules, and direct selection of integrated circuit components constitute a single system. They freed the design of the circuit unit dedicated to system design, greatly liberating the productive forces of science and technology, promote the wider spread of electronic systems.Semiconductor integrated circuits in the basic digital logic circuits first breakthrough.A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digital control systems, testing in the field of information collection, movement of electrical mechanical servo drive control object.Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of.70 years into the 20th century, large scale integrated circuit appeared to promotethe conventional electronic circuit unit-specific electronic systems development. Many electronic systems unit into a dedicated integrated devices such as radios, electronic clocks, calculators, electronic engineers in these areas from the circuit, the system designed to debug into the device selection, peripheral device adapter work. Electronic technology, and electronic products enriched, electronic engineers to reduce the difficulty, but at the same time, radio technology, electronic technology has weakened the charm. The development of semiconductor integrated circuits classical electronic systems are maturing, remain in the large scale integrated circuit other than the shrinking of electronic technology, electronic technology is not the old days of radio fun times and comprehensive engineering training.Third, from the classic era of electronic technology to modern electronic technology of the times80 years into the 20th century, the century of economic change is the most important revolution in the computer. The computer revolution in the most important sign is the birth of the computer embedded applications. Modern computer numerical requirements should be born. A long period of time, is to develop the massive computer numerical duty. But the computer shows the logic operation, processing, control, attracting experts in the field of electronic control, they want development to meet the control object requirements of embedded applications, computer systems. If you meet the massive data-processing computer system known as general-purpose computer system, then the system can be the embedded object (such as ships, aircraft, motorcycles, etc.) in a computer system called the embedded computer. Clearly, both the direction of technology development are different. The former requires massive data storage, handling, processing and analysis of high-speed data transmission; while the latter requires reliable operation in the target environment, the external physical parameters on high-speed acquisition, analysis and processing logic and the rapid control of external objects. It will add an early general-purpose computer data acquisition unit, the output driver circuit reluctance to form a heat treatment furnace temperature control system. This general-purpose computer system is not possible for most of the electronic system used, and to make general-purpose computer system meets the requirements of embedded applications, will inevitably affect the development of high-speed numeric processing. In order to solve the contradiction between the development of computer technology, in the 20th century 70s, semiconductor experts another way, in full accordance with the electronic systemembedded computer application requirements, a micro-computer's basic system on a chip, the formation of the early SCM (Single Chip Microcomputer). After the advent of single chip in the computer industry began to appear in the general-purpose computer systems and embedded systems the two branches. Since then, both the embedded system, or general-purpose computer systems have been developed rapidly.Although the early general-purpose computer converted the embedded computer systems, and real embedded system began in the emergence of SCM. Because the microcontroller is designed specifically for embedded applications, the MCU can only achieve embedded applications. MCU embedded applications that best meet environmental requirements, for example, chip-level physical space, large-scale integrated circuits low-cost, good peripheral interface bus and outstanding control of instruction.A computer system microcontroller core, embedded electronic systems, intelligent electronic systems for the foundation. Therefore, the current single chip electronic system in widespread use of electronic systems to enable rapid transition to the classical modern intelligent electronic systems.4, single chip to create the modern era of electronic systemsA microcontroller and embedded systemsEmbedded computer systems from embedded applications, embedded systems for early general-purpose computer adapted to the object system embedded in a variety of electronic systems, such as the ship's autopilot, engine monitoring systems. Embedded system is primarily a computer system, followed by it being embedded into the object system, objects in the object system to achieve required data collection, processing, status display, the output control functions, as embedded in the object system, embedded system computer does not have an independent form and function of the computer. SCM is entirely in accordance with the requirements of embedded system design, so SCM is the most typical embedded systems. SCM is the early application of technical requirements in accordance with the design of embedded computer chip integration, hence the name single chip. Subsequently, the MCU embedded applications to meet the growing demands of its control functions and peripheral interface functions, in particular, highlight the control function, so has international name the single chip microcontroller (MCU, Microcontroller Unit).2 MCU modern electronic systems consisting of electronic systems will become mainstream。
5 中英文翻译

外文参考文献全文及译文英文原文4.1 DefinitionA durable lining is one that performs satisfactorily in the working environment during its anticipated service life. The material used should be such as to maintain its integrity and, if applicable, to protect other embedded materials.4.2 Design lifeSpecifying the required life of a lining (see Section 2.3.4) is signifi-cant in the design, not only in terms of the predicted loadings but also with respect to long-term durability. Currently there is no guide on how to design a material to meet a specified design life, although the new European Code for Concrete (British Standards Institution, 2003) addresses this problem. This code goes some way to recommending various mix proportions and reinforcement cover for design lives of 50 and 100 years. It can be argued that linings that receive annular grouting between the excavated bore and the extrados of the lining, or are protected by primary linings, for example sprayed concrete, may have increased resistance to any external aggressive agents. Normally, these elements of a lining system are considered to be redundant in terms of design life. This is because reliably assessing whether annulus grouting is complete or assessing the properties or the quality of fast set sprayed concrete with time is generally difficult.Other issues that need to be considered in relation to design life include the watertightness of a structure and fire-life safety. Both of these will influence the design of any permanent lining.4.3 Considerations of durability related to tunnel useLinings may be exposed to many and varied aggressive environments. Durability issues to be addressed will be very dependent not only on the site location and hence the geological environment but also on the use of the tunnel/shaft (see Fig. 4.1).The standards of material, design and detailing needed to satisfy durability requirements will differ and sometimes conflict. In these cases a compromise must be made to provide the best solution possible based on the available practical technology.4.4 Considerations of durability related to tunnel4.4.1 Steel/cast-iron liningsUnprotected steel will corrode at a rate that depends upon the temperature, presence of water with reactive ions (from salts and acids) and availability of oxygen. Typically corrosion rates can reach about 0.1 mm/year. If the availability of oxygen is limited, for example at the extrados of a segmental lining, pitting corrosion is likely to occur for which corrosion rates are more difficult to ascertain.Grey cast-iron segments have been employed as tunnel linings for over a hundred years, with little evidence as yet of serious corrosion. This is because this type of iron contains flakes of carbon that become bound together with the corrosion product to prevent water and, in ventilated tunnels, oxygen from reaching the mass of the metal. Corrosion is therefore stifled. This material is rarely if ever used in modern construction due to the higher strength capacities allowed with SGI linings.Spheroidal-Graphite cast iron (SGI) contains free carbon in nodules rather than flakes, and although some opinion has it that this will reduce the self-stifling action found in grey irons, one particular observation suggests that this is not necessarily so. A 250 m length of service tunnel was built in 1975 for the Channel Tunnel, and SGI segments were installed at the intersection with the tunnel constructed in 1880. The tunnel was mainly unventilated for the next ten years, by which time saline groundwater had caused corrosion and the intrados appeared dreadfully corroded. The application of some vigorous wire brushing revealed that the depth of corrosion was in reality minimal.4.4.2 Concrete liningsIn situ concrete was first used in the UK at the turn of the century. Precast concrete was introduced at a similar time but it was not used extensively until the 1930s. There is therefore only 70 to 100 years of knowledge of concrete behaviour on which to base the durability design of a concrete lining.The detailed design, concrete production and placing, applied curing and post curing exposure, and operating environment of the lining all impact upon its durability. Furthermore, concrete is an inherently variable material. In order to specify and design to satisfy durability requirements, assumptions have to be made about the severity of exposure in relation to deleterious agents, as well as the likely variability in performance of the lining material itself. The factors that generally influence the durability of the con-crete and those that should be considered in the design and detailing of a tunnel lining include:1.operational environment2.shape and bulk of the concrete3.cover to the embedded steel4.type of cement5.type of aggregate6.type and dosage of admixture7.cement content and free water/cement ratio8.workmanship, for example compaction’ finishing, curing9.permeability, porosity and dijfusivity of the final concrete.The geometric shape and bulk of the lining section is important because concrete linings generally have relatively thin walls and are possibly subject to a significant external hydraulic head. Both of these will increase the ingress of aggressive agents into the concrete.4.5 Design and specification for durabilityIt has to be accepted that all linings will be subject to some level of corrosion and attack by both the internal and external environment around a tunnel. They will also be affected by fire. Designing for durability is dependent not only on material specification but also on detailing and design of the lining.4.5.1 Metal liningsOccasionally segments are fabricated from steel, and these should be protected by the application of a protective system. Liner plates formed from pressing sheet steel usually act as a temporary support while an in situ concrete permanent lining is constructed. They are rarely protected from corrosion, but if they are to form a structural part of the lining system they should also be protected by the application of a protective system. Steel sections are often employed as frames for openings and to create small structures such as sumps. In these situations they should be encased in con-crete with suitable cover and anti-crack reinforcement. In addition, as the quality of the surrounding concrete might not be of a high order consideration should be given to the application of a protec-tive treatment to such steelwork.Spheroidal-Graphite cast iron segmental tunnel linings are usually coated internally and externally with a protective paint system. They require the radial joint mating surfaces, and the circumferential joint surfaces, to be machined to ensure good load transfer across thejoints and for the formation of caulking and sealing grooves. It is usual to apply a thin coat of protective paint to avoid corrosion between fabrication and erection, but long-term protective coatings are unnecessary as corrosion in such joints is likely to be stifled.It is suggested that for SGI segmental linings the minimum design thicknesses of the skin and outer flanges should be increased by one millimetre to allow for some corrosion (see Channel Tunnel case history in Chapter 10). If routine inspections give rise to a concern about corrosion it is possible to take action, by means of a cathodic protection system or otherwise, to restrain further deterioration. The chance of having to do this over the normal design lifetime is small.(1)Protective systemsCast iron segmental linings are easily protected with a coating of bitumen, but this material presents a fire hazard, which is now unacceptable on the interior of the tunnel. A thin layer, up to 200 um in thickness, of specially formulated paint is now employed; to get the paint to adhere it is necessary to specify the surface preparation. Grit blasting is now normally specified, however, care should be taken in the application of these coatings. The problem of coatings for cast iron is that grit blasting leavesbehind a surface layer of small carbon particles, which prevents the adhesion of materials, originally designed for steelwork, and which is difficult to remove. It is recommended that the designer take advice from specialist materials suppliers who have a proven track record.Whether steel or cast iron segments are being used, consideration of the ease with which pre-applied coatings can be damaged during handling, erection and subsequent construction activities in the tunnel is needed.(2) Fire resistanceExperiences of serious fires in modern tunnels suggest that temperatures at the lining normally average 600-700 °C, but can reach 1300 °C (see Section 4.5.3). It is arguable that fire protection is not needed except where there is a risk of a high-temperature (generally hydrocarbon) fire. It can be difficult to find an acceptable economic solution, but intumescent paint can be employed. This is not very effective in undersea applications. As an alternative an internal lining of polypropylene fibre reinforced concrete might be considered effective. 4.5.2 Concrete liningsAll aspects of a lining’s behaviour during its design life, both under load and within theenvironment, should be considered in order to achieve durability. The principle factors that should be considered in the design and detailing are:1.Material(s)2.production method3.application method (e.g. sprayed concrete)4.geological conditions5.design life6.required performance criteria.(1) CorrosionThe three main aspects of attack that affect the durability of concrete linings are:corrosion of metalschloride-induced corrosion of embedded metalscarbonation-induced corrosion of embedded metals.Corrosion of metalsUnprotected steel will corrode at a rate that depends upon temperature, presence of water and availability of oxygen. Exposed metal fittings, either cast in (i.e. a bolt- or grout-socket), or loose (e.g. a bolt), will corrode (see Section 4.5.4). It is impractical to provide a comprehensive protection system to these items and it is now standard practice to eliminate ferrous cast in fittings totally by the use of plastics. Loose fixings such as bolts should always be specified with a coating such as zinc.Chloride-induced corrosionCorrosion of reinforcement continues to represent the single largest cause of deterioration of reinforced concrete structures. Whenever there are chloride ions in concrete containing embedded metal there is a risk of corrosion. All constituents of concrete may contain some chlorides and the concrete may be contaminated by other external sources, for example de-icing salts and seawater.Damage to concrete due to reinforcement corrosion will only normally occur when chloride ions, water and oxygen are all present.Chlorides attack the reinforcement by breaking down the passive layer around the reinforcement. This layer is formed on the surface of the steel as a result of the highly alkaline environment formed by the hydrated cement. The result is the corrosion of the steel, whichcan take the form of pitting or general corrosion. Pitting corrosion reduces the size of the bar, while general corrosion will result in cracking and spalling of the concrete.Although chloride ions have no significant effect on the per-formance of the concrete material itself, certain types of concrete are more vulnerable to attack because the chloride ions then find it easier to penetrate the concrete. The removal of calcium alumi- nate in sulphate-resistant cement (the component that reacts with external sulphates), results in the final concrete being less resistant to the ingress of chlorides. To reduce the penetration of chloride ions, a dense impermeable concrete is required. The use of corrosion inhibitors does not slow down chloride migration but does enable the steel to tolerate high levels of chloride before corrosion starts.Current code and standard recommendations to reduce chloride attack are based on the combination of concrete grade (defined by cement content and type, water/cement ratio and strength, that is indirectly related to permeability) and cover to the reinforcement. The grade and cover selected is dependent on the exposure condition. There are also limits set on the total chlorides content of the concrete mix.Carbonation-induced corrosionIn practice, carbonation-induced corrosion is regarded as a minor problem compared with chloride- induced corrosion. Even if carbonation occurs it is chloride-induced corrosion that will generally determine the life of the lining. Carbonated concrete is of lower strength but as carbonation is lim-ited to the extreme outer layer the reduced strength of the concrete section is rarely significant.Damage to concrete will only normally occur when carbon dioxide, water, oxygen and hydroxides are all present. Carbonation is unlikely to occur on the external faces of tunnels that are constantly under water, whereas some carbonation will occur on the internal faces of tunnels that are generally dry. Carbonation-induced corrosion, how-ever, is unlikely in this situation due to lack of water. Linings that are cyclically wet and dry are the most vulnerable.When carbon dioxide from the atmosphere diffuses into the concrete, it combines with water forming carbonic acid. This then reacts with the alkali hydroxides forming carbonates. In the presence of free water, calcium carbonate is deposited in the pores. The pH of the pore fluid drops from a value of about 12.6 in the uncarbonated region to 8 in the carbonated region. If this reduction in alkalinity occurs close to the steel, it can cause depassivation. Inthe presence of water and oxygen corrosion of the reinforcement will then occur.To reduce the rate of carbonation a dense impermeable concrete is required.As with chloride-induced corrosion, current code and standard recommendations to reduce carbonation attack are based on the combination of concrete grade and reinforcement cover.Other chemical attackChemical attack is by direct attack either on the lining material or on any embedded materials, caused by aggressive agents being part of the contents within the tunnel or in the ground in the vicinity of the tunnel. Damage to the material will depend on a number of factors including the concentration and type of chemical in question, and the movement of the ground-water, that is the ease with which the chemicals can be replenished at the surface of the concrete. In this respect static water is generally defined as occurring in ground having a mass permeability of <10-6m/s and mobile water >10-6 m/s. The following types of exchange reactions may occur between aggressive fluids and components of the lining material:●sulphate attack●acid attack●alkali-silica reaction (ASR).Sulphates (conventional and thaumasite reaction)In soil and natural groundwater, sulphates of sodium, potassium, magnesium and calcium are common. Sulphates can also be formed by the oxi-dation of sulphides, such as pyrite,as a result of natural processes or with the aid of construction process activities. The geological strata most likely to have a substantial sulphate concentration are ancient sedimentary clays. In most other geological deposits only the weathered zone (generally 2m to 10m deep) is likely to have a significant quantity of sulphates present. By the same processes, sulphates can be present in contaminated ground. Internal corro-sion in concrete sewers will be, in large measure, due to the presence of sulphides and sulphates at certain horizons dependent on the level of sewer utilisation. Elevated temperatures will contribute to this corrosion.Ammonium sulphate is known to be one of the salts most aggressive to concrete. However, there is no evidence that harmful concentrations occur in natural soils.Sulphate ions primarily attack the concrete material and not the embedded metals. They are transported into the concrete in water or in unsaturated ground, by diffusion. The attackcan sometimes result in expansion and/or loss of strength. Two forms of sulphate attack are known; the conventional type leading to the formation of gypsum and ettringite, and a more recently identified type produ-cing thaumasite. Both may occur together.Constituents of concrete may contain some sulphates and the concrete may be contaminated by external sources present in the ground in the vicinity of the tunnel or within the tunnel.Damage to concrete from conventional sulphate reaction will only normally occur when water, sulphates or sulphides are all present. For a thaumasite-producing sulphate reaction, in addition to water and sulphate or sulphides, calcium silicate hydrate needs to be present in the cement matrix, together with calcium carbonate. In addition, the temperature has to be relatively low (generally less than 15 °C).Conventional sulphate attack occurs when sulphate ions react with calcium hydroxide to form gypsum (calcium sulphate), which in turn reacts with calcium aluminate to form ettringite. Sulphate resisting cements have a low level of calcium aluminate so reducing the extent of the reaction. The formation of gypsum and ettringite results in expansion and disruption of the concrete.Sulphate attack, which results in the mineral thaumasite, is a reaction between the calcium silicate hydrate, carbonate and sulphate ions. Calcium silicate hydrate forms the main binding agent in Portland cement, so this form of attack weakens the con-crete and, in advanced cases, the cement paste matrix is eventually reduced to a mushy, incohesive white mass. Sulphate resisting cements are still vulnerable to this type of attack.Current code and standard recommendations to reduce sulphate attack are based on the combination of concrete grade. Future code requirements will also consider aggregate type. There are also limits set on the total sulphate content of the concrete mix but, at present, not on aggregates, the recommendations of BRE Digest 363 1996 should be followed for any design.AcidsAcid attack can come from external sources, that are present in the ground in the vicinity of the tunnel, or from within the tunnel. Groundwater may be acidic due to the presence of humic acid (which results from the decay of organic matter), carbonic acid or sulphuric acid. The first two will not produce a pH below 3.5. Residual pockets of sulphuric (natural andpollution), hydrochloric or nitric acid may be found on some sites, particularly those used for industrial waste. All can produce pH values below 3.5. Carbonic acid will also be formed when carbon dioxide dissolves in water.Concrete subject to the action of highly mobile acidic water is vulnerable to rapid deterioration. Acidic ground waters that are not mobile appear to have little effect on buried concrete.Acid attack will affect both the lining material and other embedded metals. The action of acids on concrete is to dissolve the cement hydrates and, also in the case of aggregate with high calcium carbonate content, much of the aggregate. In the case of concrete with siliceous gravel, granite or basalt aggregate the sur-face attack will produce an exposed aggregate finish. Limestone aggregates give a smoother finish. The rate of attack depends more on the rate of movement of the water over the surface and the quality of the concrete, than on the type of cement or aggregate.Only a very high density, relatively impermeable concrete will be resistant for any period of time without surface protection. Damage to concrete will only normally occur when mobile water conditions are present.Current code and standard recommendations to reduce acid attack are based on the concrete grade (defined by cement content and type, water/cement ratio and strength). As cement type is not significant in resisting acid attack, future code requirements will put no restrictions on the type used.(2) Alkali Silica Reaction (ASR)Some aggregates contain particular forms of silica that may be susceptible to attack by alkalis originat-ing from the cement or other sources.There are limits to the reactive alkali content of the concrete mix, and also to using a combination of aggregates likely to be unreactive. Damage to concrete will only normally occur when there is a high moisture level within the concrete, there is a high reactivity alkali concrete content or another source of reactive alkali, and the aggregate contains an alkali-reactive constituent. Current code and standard recommendations to reduce ASR are based on limiting the reactive alkali content of the concrete mix, the recommendations of BRE 330 1999 should be followed for any design.(3) Physical processesVarious mechanical processes including freeze-thaw action, impact, abrasion and cracking can cause concrete damage.Freeze-thawConcretes that receive the most severe exposure to freezing and thawing are those which are saturated during freezing weather, such as tunnel portals and shafts.Deterioration may occur due to ice formation in saturated con-crete. In order for internal stresses to be induced by ice formation, about 90% or more by volume of pores must be filled with water. This is because the increase in volume when water turns to ice is about 8% by volume.Air entrainment in concrete can enable concrete to adequately resist certain types of freezing and thawing deterioration, provided that a high quality paste matrix and a frost-resistant aggregate are used.Current code and standard recommendations to reduce freeze- thaw attack are based on introducing an air entrainment agent when the concrete is below a certain grade. It should be noted that the inclusion of air will reduce the compressive strength of the concrete.ImpactAdequate behaviour under impact load can generally be achieved by specifying concrete cube compressive strengths together with section size, reinforcement and/or fibre content. Tensile capacity may also be important, particularly for concrete without reinforcement.AbrasionThe effects of abrasion depend on the exact cause of the wear. When specifying concrete for hydraulic abrasion in hydraulic applications, the cube compressive strength of the concrete is the principal controlling factor.CrackingThe control of cracks is a function of the strength of concrete, the cover, the spacing, size and position of reinforce-ment, and the type and frequency of the induced stress. When specifying concrete cover there is a trade-off between additional protection from external chloride attack to the reinforcement, and reduction in overall strength of the lining.4.5.3 Protective systemsAdequate behaviour within the environment is achieved by specify-ing concrete to thebest of current practice in workmanship and materials. Protection of concrete surfaces is recommended in codes and standards when the level of aggression from chemicals exceeds a maximum specified limit. Various types of surface protection include coatings, waterproof barriers and a sacrificial layer.(1) CoatingsCoatings have changed over the years, with tar and cut-back bitumens being less popular, and replaced by rubberised bitumen emulsions and epoxy resins. The fire hazard associated with bituminous coatings has limited their use to the extrados of the lining in recent times. The risk of damage to coat-ings during construction operations should be considered.(2) Waterproof barriersThe requirements for waterproof barriers are similar to those of coatings. Sheet materials are commonly used, including plastic and bituminous membranes. Again, the use of bituminous materials should be limited to the extrados.(3) Sacrificial layerThis involves increasing the thickness of the concrete to absorb all the aggressive chemicals in the sacrificial outer layer. However, use of this measure may not be appropriate in circumstances where the surface of the concrete must remain sound, for example joint surfaces in segmental linings.(4) Detailing of precast concrete segmentsThe detailing of the ring plays an important role in the success of the design and performance of the lining throughout its design life. The ring details should be designed with consideration given to casting methods and behaviour in place. Some of the more important considerations are as follows.4.5.5 Codes and standardsBuilding Research Establishment (BRE) Digest 330: 1999 (Building Research Establishment, 1999), Building Research Establishment (BRE) Digest 363: 1996 (Building Research Establishment, 1996),BRE Special Digest 1 (Building Research Establishment, 2003) and British Standard BSEN 206-1: 2000 (British Standards Institution, 2003) are the definitive reference points for designing concrete mixes which are supplemented by BS8110 (British Standards Institution, 1997) and BS 8007 (British Standards Institution, 1987). BSEN 206-1 also references Eurocode 2: Design of Concrete Structures (European Commission,1992).(1) European standardsEN206 Concrete - Performance, Production and Conformity, and DD ENV 1992-1-1 {Eurocode 2: Design of Concrete Structures Part 1) (British Standards Institution, 2003 and European Commission,1992).Within the new European standard EN 206 Concrete - Perfor-mance, Production and Conformity,durability of concrete will rely on prescriptive specification of minimum grade, minimum binder content and maximum water/binder ratio for a series of defined environmental classes. This standard includes indicative values of specification parameters as it is necessary to cover the wide range of environments and cements used in the EU member states.Cover to reinforcement is specified in DD ENV 1992-1 -1 (Eurocode 2: Design of Concrete Structures Part 1 - European Commission, 1992).(2) BRE 330:1999This UK Building Research Establishment code (Building Research Establishment, 1999) gives the back-ground to ASR as well as detailed guidance for minimising the risks of ASR and examples of the methods to be used in new construction.(3) Reinforcement BRE 363: 1996This UK Building Research Establishment code (Building Research Establishment, 1996) discusses the factors responsible for sulphate and acid attack on concrete below ground level and recommends the type of cement and quality of concrete to provide resistance to attack. (4) BRE Special Digest 1This special digest (Building Research Establishment, 2003) was published following the recent research into the effects of thaumasite on concrete. It replaces BRE Digest 363: 2001. Part 4 is of specific reference to precast concrete tunnel linings.(5) BS 8110/BS 8007Guidance is given on minimum grade, minimum cement and maximum w/c ratio for different conditions of exposure. Exposure classes are mild, moderate, severe, very severe, most severe and abrasive related to chloride attack, carbonation and freeze-thaw. The relationship between cover of the reinforcement and concrete quality is also given together with crack width (British Standards Institution, 1987a and 1997a).(6) OthersChemically aggressive environments are classified in specialist standards. For information on industrial acids and made up ground, reference may be made to a specialist producer of acid resistant finishes or BS 8204-2 (British Standards Institu-tion, 1999). For silage attack, reference should be made to the UK Ministry of Agriculture, Fisheries and Food.中文翻译4.1 定义耐用的衬砌指的是在衬砌的预期服务寿命内提供令人满意的工作环境。
外文翻译

Abs t ract : Ubiquitous comp uti ng s ys tems t ypically have lots of securit y p roblems i n t he a rea of i dentit y a ut hentication by mea ns of classical P KI met hods . The li mited comp uti ng resources , t he disconnection network , t he classification requirements of i dentit y a ut hentication , t he requirement of t rust t ra nsfer a nd cross i dentit y a ut hentication , t he bi2 di rectional i dentit y a ut hentication , t he securit y delegation a nd t he si mple p rivacy p rotection etc a re all t hese uns olved p roblems . In t his p aper , a new novel ubiquitous comp uti ng i dentit y a ut hentication mecha nis m , na med U CIAMdess , is p resented. It is based on D2S Evi dence Theory a nd extended S P KI/ SDSI. D2S Evi dence Theory is used i n UCIAMdess to comp ute t he t rus t val ue f rom t he ubiquitous comp uti ng environment to t he p ri ncip al or between t he different ubiquitous comp uti ng envi ronments . S P KI2based a ut horization is exp a nded by a ddi ng t he t rus t certificate i n U CIAMdess to s olve above p roblems i n t he ubiquit ous comp uti ng environments . The i dentit y a ut hentication mecha nis m a nd t he algorit hm of certificate reduction a re given i n t he p ap er to s olve t he multi2levels t rus t2correlative i dentit y a ut hentication p roblems . The perf orma nce a nalyses s how t hat U CIAMdess is a s uit able securit y mecha nis m i n s olvi ng t he complex ubi quitous comp uti ng p roblems . Key words : ubiquitous com puting ; i dentit y authentication mechanism ; D2S Evi dence T heory ; S P K I/ S D S I ; secu rit y
4.外文翻译

毕业论文(设计)外文翻译
题目:(翻译文献的中文题目)
系部名称:专业班级:
学生姓名:学号:
指导教师:教师职称:
201 年月日
中原工学院信息商务学院外文翻译
外文翻译写作要求:
1、中英文内容必须一致,不得出现此多彼少现象。
2、英文必须有出处,在中文的结尾处注上英文出处,标注“本文摘译自”。
3、字数要求:汉字3000字左右。
4、排版要求:
一级标题:四号(宋体),1.5倍行距,加粗,段前、段后各0.5行
二级标题:小四号(宋体),1.5倍行距,加粗,段前、段后各0.5行
正文:小四号(宋体),1.5倍行距,英文为:Times New Roman
5、其他:
汉语翻译在前,英文原文附在汉语翻译之后(如英文文献来源为书籍类印刷品,需用A4纸复印)。
教师评语
教师评语:教师评语应围绕选题是否符合专业要求、语言是否通顺、逻辑是否合理、有无明显翻译错误等内容来写,必须手写,不准打印。
教师签名:
20 年月日。
4P营销策略和营销渠道外文文献翻译2014年译文3000多字

4P营销策略和营销渠道外文文献翻译2014年译文3000多字XXX market。
In this article。
we will discuss the importance of a well-XXX channels that can be used to reach out to potential customers.Marketing StrategyA marketing strategy is a plan of n that a business uses to promote its products or services to its target audience。
It involves identifying the target market。
understanding their needs and preferences。
XXX should be based on the company's strengths and weaknesses。
as well as the XXX present in the market.The first step in XXX n about the target audience。
their preferences。
and their r。
The research XXX needs.Once the product or service is developed。
the next step is to create a marketing plan。
This plan should include the different marketing channels that will be used to reach out to potentialcustomers。
The marketing channels can include advertising。
4P营销策略和营销渠道外文文献翻译2014年译文3000多字

4P营销策略和营销渠道外文文献翻译2014年译文3000多字XXX of any business that aims to reach its target market and achieve XXX market a product or service。
businesses must XXX audience.Marketing StrategyA XXX It involves identifying the target market。
analyzing the n。
XXX businesses increase brand awareness。
generate leads。
and XXX.XXX nXXX audience。
These channels can include XXX advertising。
n commercials。
and direct mail。
as well as digital methods such as social media。
email marketing。
and search engine XXX.nal Marketing Channelsnal marketing channels have been used for XXX and magazines。
and n commercials。
and direct mail campaigns are all examples of nal marketing channels。
These channels can be effective for reaching a wide audience。
but they can also be XXX.Digital Marketing ChannelsXXX years due to the rise of the。
and social media。
全新版大学英语综合教程2课后练习答案u1u4translation

1)背离传统需要极大的勇气。
(departure,enormous)It takes an enormous amount of courage to make a departure from the tradition.。
(performance,bold)Tom used to be very shy, but this time he was bold enough to give a performance in front of a large audience.(creative,desirable)Many educators think it desirable to foster the creative spirit in the child at an early age.设(assume)那幅画确实是名作(masterpiece),你觉得值得购买吗?(worthwhile)Assuming (that) this painting really is a masterpiece, do you think it’s worthwhile to buy/purchase it?(throw light on,investigate,valid)If the data is statistically valid, it will throw light on the problem we are investigating.Unit 21)该公司否认其捐款有商业目的。
(deny,commercial)The company denied that its donations had a commercial purpose.Whenever he was angry, he would begin to stammer slightly.饭,却送我去最好的私立学校上学。
(cherish)Education is the most cherished tradition in our family. That’s why my parents never took me to dinner at expensive restaurants, but sent me to the best private school.他失业了,因此经历了人生的又一困难阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)译文及原稿译文题目:酒店行业中的服务质量管理:餐饮部门的管理体系原稿题目Service Quality Management in Hotel Industry: A Conceptual Framework for Food and Beverage Departments原稿出处:International Journal of Business and Manegement; V ol. 7, No. 14; 2012酒店行业中的服务质量管理:餐饮部门的管理体系摘要服务质量一直是一个重要的课题,涉及酒店餐饮部门的研究。
尽管有大量的服务质量的研究,为什么客人再次访问酒店的原因需要有一个高质量的服务,从餐饮部是需要的,仍然没有答案。
本文旨在回顾饭店餐饮服务质量管理中的现有文献及有效性服务质量管理框架。
本文讨论了著名的模型,并解释了所提出的餐饮服务质量管理的空间框架及在酒店中的应用。
本文提出的应用程序的三维模型旨在帮助和鼓励酒店改善其管理,以更好地满足客人。
关键词:服务质量,饭店业,三维模型,餐饮部门简介1994;张林和,1998;Parasuraman。
舒莱克等人,1988;& 亨斯利,2010;Zeithaml和比特纳,2003)。
研究人员已经确定了服务质量的概念,基于客户的角度,消费者感知质量。
这样一种看法是建立在一个组织供应货物的地方并且服务于客户,以满足他们在他们所研究的服务质量(babajide,2011,48页;卡曼,1990;菜与楚1998;克里斯蒂2002;克罗宁等人,2000;古纳里斯et al.,2003;梅等人,1999;轧机,2002;奥尼尔2001;Oberoi和Hales,1990;presbury et al.,2005;曲与曾荫权,1998;锈和Zahorik,1993;萨利赫和赖安,1991;Zeithaml et al,1996)。
在酒店业,满足客户的服务并提高质量是鼓励他们重新回归酒店并赢得他们的忠诚的重要手段(carev,2008;卡曼,普天同庆,1990;2001;Parasuraman。
等人,1988;Zeithaml和Bitner,2003)和满意度(babajide,2011,p. 48;克里斯蒂2002;赫什,2010,p. 209;ladhari,2009,页311;奥利弗,1999)。
Parasuraman等人。
(1985;1988b),他与曾荫权(1998)和 Zeithaml 等。
(1996)在全球质量评价中,客户在优秀学校或处于优势的服务里定义“感知的服务”。
定义是类似的概念的意思,根据定义,服务质量具有的感知性,你的客户,带着期望的顾客通过服务感知期望和他的实际服务所带来的差距。
最近大部分研究服务质量的Parasuraman等人正在进行服务质量模型开发的广泛研究。
(1990年,1985年),他曾与 Zeithaml等人一起,在1996年,服务质量已经通过各种文学讨论,其中一个最主要用于检测服务质量的就是SERVQUAL量表模型。
根据Parasuraman等人的研究。
(1995,1998),这项研究表明,服务质量和它的尺寸是影响客人满意度的重要因素。
考虑到服务质量的维度,因此,这个维度是集中在酒店管理员收到支持实施服务质量提升计划(alrousan,2011;该,2011;Parasuraman et al.,1985)几个研究中的很有必要的。
一个良好的服务质量,提供酒店业的好处,包括更大的客户满意度和员工绩效的提高(克罗宁等人,2000;邓肯和埃利奥特,2002;约翰逊等人,1995;康和杰姆斯,2004;盖,2003;妮科尔,2006;Soutar et al.,2001;苏,2004)。
Zeithaml和Bitner (2003)提到,感知服务质量成为根据服务的主要根据点,服务质量是一个多维概念的思想得到大家的普遍接受。
根据安东尼和Ghosh(2004)和Harvey(1998),服务质量包括满足和超越顾客期望。
这种描述在70年代末开始就开始流行起来了。
服务质量源于市场营销,这对一个业务及客户的关系至关重要。
服务质量是无形的,要是对其计量是不可能的。
评价服务质量很大程度上取决于外观和知觉的管理(第380页)。
本文回顾了现有的文献,并提出了一个理论框架为餐饮部,用以说明饭店业服务质量评价。
它使用的五个维度开发的Parasuraman等人。
(1985)和Zeithaml 等人的成果。
(1996)。
这五个维度分别是:(1)有形资产–是指体育设施、设备、个人、等现象;(2)可靠性–能力,踏实准确履行承诺的服务;(3)响应能力,愿意帮助客户,并提供及时服务;(4)保证-知识和礼貌的员工,和他们传递信任和信心的能力;(5)同理心-照顾和个性化的关注客人。
2.服务质量理论与模型服务质量的五个维度,即有形性(克罗宁和泰勒,1992年;康和杰姆斯,2004;萨利赫和Ryan,1991;Zeithaml和Bitner,2003)、可靠性(alrousan,2011;科特勒&绽放,1984;ladhari,2009,311页;Parasuraman,1988)、反应性(安东尼戈什,2004;张与法,1998;knuston,1991年upal);2008年,保证性(Al khattab,2011年;克罗宁和泰勒,1992年;皮特和jeantrout,powapaka,1994年;1996年),和执着力Harvey,1998;2011年;Parasuraman,1988年;曲和尼尔森,1998年;曼尔,1993)。
根据已经确定了SERVQUAL量表的一些研究得出。
Parasuraman等人(1985)是第一个指出的营销服务的方向是客户管理的一个考虑因素。
服务质量,如在酒店业,是很难理解的,因为前者是无形的,与产品质量相比。
一些研究报道,SERVQUAL量表不是万能的,因为服务质量维度显然取决于服务的类型检查(ladhari,2009, 311)。
有了SERVQUAL模型,对于酒店服务业的有效变量是有帮助的(ladhari,2009,311页;威尔金斯等,2007)。
在探讨SERVQUAL模型的适用性中,对于土耳其的酒店业,并确定了七个方面的模型:(1)礼貌和能力,(2)通信和交易,(3)有形资产,(4)知识和对客户的了解,(5)服务的准确性和速度,对酒店业的研究,(6)解决问题的能力;(7)酒店的准确性保留等。
对于这个模型,(1999)确定了澳洲酒店业服务质量的尺寸及在酒店业发展的一个新的服务质量量表,称为“holserv,”这个量表有三个方面:(1)员工,(2)有形资产,(3)有形性、可靠性。
萨利赫和瑞安(1991)报告的五个维度的服务质量不同于那些在SERVQUAL模型:它包括(1)亲和力;(2)有形资产;(3)保证;(4)避免讽刺挖苦;(5)移情。
Oberoi和黑尔(1990)提出建议,认为服务质量起着重要的作用,根据英国的会议酒店和服务质量感知的报告,提出有两个维度:(1)无形资产;(2)有形资产。
盖蒂图片社(1994年)和汤普森描述的在服务质量方面的有效性饭店业和报告中指出(唯一的二维和可靠性有形)是通用的。
结果导致(大力强调证券下面酒店的质量规模在美国农业里发展的很愉快,我们称之为规模质量指标和服务质量五)有形尺寸:(1)准确性,(2)反应性、可靠性,(3)同情心,(4)信心(5)沟通。
(2011年)Parasuraman等人以附近的酒店服务质量模型与顾客忠诚度作为检查,以约旦酒店using the酒店连锁为例。
研究讨论在服务质量五个模型的背景下,服务质量体验的差距并适用于酒店这一模型链测试。
这一要素的好处是不同模型的框架应用对于一个酒店及旅游业管理是有作用的。
“产品和服务的质量已成为一个关键问题,在1980年,对有形商品的质量描述和衡量的营销人员,对于服务质量在很大程度上是不确定的研究。
作者试图通过报告通过一个广泛的洞察来纠正这种情况,在服务业务质量的探索与服务质量模型的建的基础上。
3.服务质量维度第一个定义,可靠性被定义为一个服务供应商的能力,及时提供良好的服务质量。
观察服务的交付合同,定价和投诉处理方式都非常重要的一个业务。
(alrousan,2011;Parasuraman et al.,1985;TAT和raymound,1999)。
二是概念,反应是当收到请求帮助客人的通过提供即时服务的一种反射。
提供客人快速的服务,及时注意他们所有的客人所提出来的要求、问题和建议(Al rousan,2011;Knutson et al.,1990;Parasuraman et al,1985)。
第三个概念,保证是对服务质量的考虑的能力,能够激活信任和信心的产品或服务。
第四维度的移情是以顾客为本,接触的客人对其服务质量方式的个性化。
这一步结束,有形的是服务维度,使产品或服务的实践可用于客户(alrousan,2011;Parasuramanet al.,1985)。
1、顾客满意度客人的满意程度是一个客人的评价是否符合服务质量的要求。
业绩低于预期,使客人满意度下降(科特勒,2006)。
在酒店行业,客人的满意度是在他们与餐饮部的服务和酒店员工发展客户关系的满意度(Al rousan,2011;Parasuraman et al.,1985)在市场化的公司中,顾客满意认为是市场营销活动中最重要的结果之一。
显而易见满足客户的目标是扩大业务,获得更高的市场份额,并获得重复和转介业务,所有这一切都能导致改善盈利能力。
然而,客人在这个模型中的满意度概念是指判断,其取决于良好的服务质量和对客人的需求服务(TSE和威尔顿,1988)。
根据Parasuraman的理论,客人满意度水平是一个客人的期望是或超过期望。
carev(2008)定义了一个服务的优势基于服务质量的满意度,考虑到客户的看法,考虑到什么是服务的整体考虑保留什么(Parasuraman等。
1988)。
服务供应商应该能够理解客人的行为和需求并能够知道如何满足他们。
翔与法(1998)开发了新酒店员工在平方米的酒店员工绩效的测量模型。
这个新的平方的顾客满意度模型,反过来,可以直接集成到酒店TQ,因为平方是TQ的一个基本组成部分。
这种新模式在传统的平方模型中普遍存在若干领域,同时新模式更全面。
此外,新的模型更好地反映实际的平方情况适合TQ ,TQ和员工绩效的概念是针对性的持续改进性。
前者是对每个过程的持续改进的指导,后者是针对连续的性能改进。
Service Quality Management in Hotel Industry: A Conceptual Framework for Food and Beverage DepartmentsAbstractService quality has been an important subject of research involving food and beverage (F&B) departments of hotels. Despite a substantial number of studies on service quality, the reasons why guests revisit a hotel and why a high-quality service from the F&B department is needed have remained unanswered. This paper aims to review existing literature on service quality management in the F&B departments of hotels, its process, and the effective service quality management framework. This paper discusses famous models, and explains Parasuraman’s dimensional framework of service quality management in the area of F&B and its application to the hotel industry. The conceptual paper suggests application of the dimensional model in the F&B department and encourages hotels to improve its management to better satisfy their guests.Keywords:service quality, hotel industry, parasuraman dimensional model, food and beverage department1. IntroductionHotel management scholars consider service quality a precedent to guest satisfaction. Some experiential studies show that getting a good quality of service from the food and beverage (F&B) department of a hotel is important for many guests (Armstrong et al., 1997; Crick & Spencer, 2011; Cronin & Taylor, 1992a; Getty & Thompson, 1994; Lam & Zhang, 1998; Parasuraman. et al., 1988a; Sulek & Hensley, 2010; Zeithaml & Bitner, 2003). Researchers have defined service quality in relation to the concept of consumer-perceived quality, which is based solely on the perspective of customers. Such a perception is built in a place where an organization supplies goods and services to customers in a manner that satisfies them and where they examine service quality (Babajide, 2011, p. 48; Carman, 1990; Choi & Chu 1998;Christie 2002; Cronin et al., 2000; Gounaris et al., 2003; Mei et al., 1999; Mill, 2002; O’Neill, 2001; Oberoi & Hales, 1990; Presbury et al., 2005; Qu & Tsang, 1998; Rust & Zahorik, 1993;Saleh & Ryan, 1991; Zeithaml et al., 1996). In the hotel industry, service quality that satisfies customers is important to encourage them to revisit and to earn their loyalty (Carev, 2008; Carman, 1990; Jabulani, 2001;Parasuraman. et al., 1988a; Zeithaml & Bitner, 2003) and satisfaction (Babajide, 2011, p. 48; Christie 2002; Hersh, 2010, p. 209; Ladhari, 2009, p. 311; Oliver, 1999).Parasuraman et al. (1985; 1988b), Qu and Tsang (1998), and Zeithaml et al. (1996) define “perceived service quality” as the global evaluation by customers of the overall excellence or superiority of a service. The definition is similar to the concept of attitude. Based on the exploratory definition of service quality as perceived by customers, it is the gap (discrepancy) between a customer’s expectation of a servic e and his perceptions of the actual service received (p. 254 – 255). Much of the recent research on service quality has been carried out within the framework of the SQ (service quality) model developed from the extensive research of Parasuraman et al. (1990, 1985, and 1988b), Qu & Tsang (1998), and Zeithaml et al. (1996). Service quality has been discussed in various literatures, and one of the most largely used models measuring service quality is the SERVQUAL. Taking on views from the study by Parasuraman et al. (1995, 1998), this study suggests that service quality and its dimensions are among the important factors influencing guest satisfaction. Considering the dimensions of service quality is, therefore, necessary as well. This dimension was focused on several studies on which hotel administrators received the support to implement the plan for improving service quality (AlRousan, 2011; Mohsin, 2011; Parasuraman et al., 1985). The benefits of a good service quality as far as the hotel industry is concerned include greater guest satisfaction and enhancement of employee performance (Cronin et al., 2000; Duncan & Elliott, 2002; Johnson et al., 1995; Kang & James, 2004; Lidén, 2003; Peter & Nicole, 2006; Rust et al., 1995 Soutar et al., 2001; Su, 2004). Zeithaml and Bitner (2003) mentioned that perception of service quality becomes global depending on the prevalence of the service. The idea that service quality is a multidimensional concept is commonly accepted.According to Antony and Ghosh (2004) and Harvey (1998), service quality covers meeting and exceeding customer expectations. This description has become popular since its inception in the late 1970s. The concept of service quality stemmed from the area of marketing, which puts importance to the relationship between a business and its customers. Service quality is intangible, making its measurement impossible. Evaluation of service quality largely depends on management of appearances and perceptions (p. 380).This paper reviews existing literature and suggests a theoretical framework for F&B department that illustrates the evaluation of service quality in the hotel industry in Jordan. It uses the five dimensions developed by Parasuraman et al. (1985) and Zeithaml et al. (1996). These five dimensions are the followings: (1) tangibles –refer to physical facilities, equipment, appearance of personal, etc.; (2) reliability –ability to dependably and accurately perform the promised service; (3) responsiveness–willingness to help customers and provide prompt service; (4) assurance –knowledge and courtesy of employees, and their ability to convey trust and confidence; and (5) empathy – care for and individualized attention to guests.2. Theories and Models in Service Quality There are five dimensions of service quality, namely, tangibility (Cronin & Taylor, 1992b; Kang & James, 2004; Saleh & Ryan, 1991; Zeithaml & Bitner, 2003), reliability (AlRousan, 2011; Kotler & Bloom, 1984; Ladhari, 2009, p. 311; Parasuraman. et al., 1988a), responsiveness (Antony & Ghosh, 2004; Cheung & Law, 1998; Knuston et al., 1991; Upal, 2008), assurance (Al Khattab, 2011; Cronin & Taylor, 1992a; Pitt & Jeantrout, 1994; Powapaka, 1996), and empathy (Harvey, 1998; Mohsin, 2011; Parasuraman. et al., 1988a; Qu & Nelson, 1998; Zeithaml et al., 1993). Several studies have identified SERVQUAL, but Parasuraman et al. (1985) were the first to point out that the direction of marketing services is one of the considerations in guest administration. Service quality, such as in the hotel industry, is difficult to understand compared with product quality because the former is intangible. Several studies reported that the SERVQUAL scale is not universal because the dimensionality of service quality apparently depends on the type of service examined (Ladhari, 2009, p. 311).There has been variable help for the validity of the SERVQUAL model in the hotel service industry (Ladhari, 2009, p. 311; Wilkins et al., 2007). Akan (1995) explores the applicability of the SERVQUAL model in theTurkish hospitality industry and identifies seven dimensions in the model: (1) courtesy and competence of the person, (2) communication and transactions, (3) tangibles, (4) knowledge and understanding of the customer, (5)accuracy and speed of service, study of the hotel industry, (6) solutions to problems; and (7) accuracy of hotel reservations. Mei et al. (1999) determine the dimensions of service quality in the Australian hotel industry and develop a new scale of service quality in the hospitality industry, called “H OLSER V,” with three dimensions: (1) employees, (2) tangibles, and (3) reliability. Saleh and Ryan (1991) report five dimensions of service quality that differ from those in the SERVQUAL model: (1) conviviality; (2) tangibles; (3) reassurance; (4) avoidance of sarcasm; and (5) empathy. Oberoi and Hales (1990) suggest that service quality plays an important role in conference hotels in the United Kingdom and report that service-quality perception has two dimensions: (1) tangibles; and (2) intangiblesGetty and Thompson (1994) describe the validity of the SERVQUAL dimensions in the hotel sector and report that only two of the dimensions (tangibles and reliability) are generic. Getty and Getty (2003) test the dimensions of service quality in the hotel industry in the United States and develo p a new scale (called “lodging quality index”) with five service-quality dimensions: (1) tangibility, (2) reliability, (3) responsiveness, (4) confidence, and (5) communication. Al Roussan (2011) examines Parasuraman model for hotel service quality and customer loyalty in Jordanian hotels using the Marriott hotel chain as a case study. The study discusses thefive gaps in service quality in the context of Jordan and applies this model to theMarriott hotel chain to test its quality of service. The benefit of this framework is applying the elements of “various models” into a clarified hotel and tourism industry management as Parasuraman (1995, p. 1) says:“Attainment of quality in products and services has become a pivotal concern in 1980 while the quality in tangible goods has been described and measured by marketers, quality of service is largely undefined and unresearched. The authors attempt to rectify this situation by reporting the insight obtained in an extensive exploration of quality in four service businesses and developing a model of service quality”3. Service Quality DimensionsThe first definition, reliability is defined as the ability of a service supplier to promptly deliver a good quality of. service. Observing service delivery contracts, pricing, and complaints handling are all important for a business. (AlRousan, 2011; Parasuraman et al., 1985; Tat & Raymound, 1999). The second concept, responsiveness is the agreeableness to help guest by providing immediate service as soon as a request is received. The service guests will provide soon and prompt attention to all their guest requests, question and suggestion (Al Rousan, 2011; Knutson et al., 1990; Parasuraman et al., 1985). The third concept, assurance is with consideration to the service quality detention which considerates on the capability to activate trust and confidence of the product or service provided. The fourth dimension empathy is the service quality manner that stresses on the contacting of gu est’s as personalized. The end of this step, tangibility is the service dimension that makes a product or service practical and usable for customers (AlRousan, 2011; Parasuraman et al., 1985).3.1 Guest SatisfactionGuest satisfaction is the evaluation of a guest whether or not the quality of a service meets his expectations. Performance that falls below expectations makes guests dissatisfied (Kottler & Killer, 2006). In the hotel industry, satisfaction of guests is in terms of their satisfaction with the service of the F&B department and the customer relations developed by hotel staff (Al Rousan, 2011; Parasuraman et al., 1985). Customer satisfaction is considered one of the most important outcomes of all marketing activities in a market-oriented firm. The obvious objective of satisfying a customer is to expand a business, to gain higher market share, and to acquire repeat and referral business, all of which lead to improved profitability (Barsky, 1992; Carev, 2008). However, the guest satisfaction concept in this model refers to judgement that depends on both good service quality and fitness of service to the needs of guests (Tse and Wilton, 1988). According to Parasuraman, guest satisfaction is the level in which expectation of a guest is met or exceeded. Carev (2008) defines service quality satisfaction based on overall consideration by a guest of the advantages of a service taking into account perceptions of what is reserved and what is given (Parasuraman. et al. 1988b). Service providers should be able to understand the behavior and needs of guests to be able to know how to satisfy them. Cheung and Law (1998) develop a newmodel for the measurement of hospitality SQ that incorporates performance of hotel employees in the SQ level. This new SQ for the customer satisfaction model, in turn, can be directly integrated into the hospitality TQ operation because SQ is a basic component of TQ. This new model prevails over the traditional SQ models in several areas. The new model is more comprehensive. Moreover, the new model better reflects the actual SQ situation that fits the TQ concept as both TQ and staff performance aim at sustained improvement. The former steers towards continual improvement of each process, whereas the latter is directed towards continua improvement in performance. (p. 402).This study is one of the studies on the quality of the F&B department in Jordanian hotels and its relationship with guest satisfaction and service quality. This study suggests a model that may be successfully applied to service quality. Furthermore, this study suggests the application of a guest satisfaction model that hotel managers may find useful. Finally there was an absence of competent data to design and develop hotel service quality and guest satisfaction. To benefit from this study, F&B department and hotel management will develop and improvetheir service and guest satisfaction. Nevertheless, this study is expected to help F&B departments and management of hotels to develop and improve their service and thus better satisfy their guests.。