实变函数论新编第一章答案 魏勇
实变函数第一章答案
第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。
证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。
我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。
实变函数论课后答案第一章2
实变函数论课后答案第一章2(p20-21)第一章第二节1. 证明平面上坐标为有理数的点构成一可数集合。
证明:将全体有理数排成一列 12,nr r r ,则平面上的有理点)({}1,;,j j Q Q r s r Q s Q A ∞=⨯=∈∈=,其中)({},;1,2,j ijA r r i n==为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯=为可数集。
(第20页定理5)。
2. 以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素. 证明:设这里Λ为某指标集。
则我们可在任意I α∈A 这一开区间中选定一个有理数r α,与之对应,从而给出一个对应,A Q I r αα→→由于I α互不相交,当αβαβ∈Λ≠,,时,显然r r αβ≠,故上述对应是11-的. 故A 与有理数集的一个子集对等,所以A 的势最多与Q 的势相同,不会超过Q 的势, 故A 要么为有限,要么为可数集.3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ. 事实上,∀ n 阶有理数()()12,,,,ni n i i n i X x a x a Q a a a ==∈∑令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设kkQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ,将kQ 中的点排成一列12,,ml l l ,则11k kj j QQ Q A ∞+==⨯=,其中(){},,,1,2,3,j i j A l i j γ==显然为可数集,故11k j j QA ∞+==也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞=全体阶有理多项式作为可数集的并也是可数集.4. 如果()f x 是(),-∞∞上的单调函数,则()f x 的不连续点最多有可数多个.证明:我们在数学分析中知道(),-∞∞上的单调函数的不连续点,只能是跳跃间断点,其任取(),-∞∞上的单调函数()f x ,设其可能的间断点为{};,A x αα=∈ΛΛ 为某指标集,在x A α∀∈,令()()lim ,lim ,x xx xf x y f x y αααα+-+-→→==则,y y αα+-=故A α∀∈,有一1R 上的开区间(),y y αα-+与之对应.不妨设x x αβ>,设0δ∃>使x x αβδδ->+,()(),,,x x x y x x ααββδδ∀∈-∀∈+, 有()()f x f y ≥,故()()lim lim x xx xf x y y f x αααα-+-+→→=≥=,所以()(),,y y yy αααβ-+-+=∅..故()f x 的间断点的集合A 与1R 上的一族互不相交的开区间11-对应,而后者的势为0ℵ,故()f x 的间断点至多为可数多个.5.设A 是一无穷集合,证明必有A A *⊂,使~A A *,且A A *-可数. 证明:若A 为可数集,则不妨设{};1,2,i A a i n==,令{}2;1,2,i A a in*==,则~A A *,且{}21,1,2,,i A A a i n *+-==.显然仍为可数集,故此时结论成立.若A 为无穷集,且不是可数集,则由P19定理1,A 中包含一个可数子集B ,令A A B *=-,则由于A 是无穷集,且不是可数集,A B -是无穷集. 由P21定理7和B 为可数集知:.A ABA **= 证毕6. 若A 为一可数集合,则A 的所有有限子集构成的集合也是可数集.证明:由第一,第三题的证明已知,m mm N Q Q Q Q ∀∈⨯⨯⨯=(Q 为有理数集).由于A是可数集,故m 个由全体A 中的一个元素组成的集合{}{}1;A a a A N =∈,1A 是可数集.由全体A 中的两个元素组成的集合{}{}221212,;,A a a a aA N =∈,2A 是可数集若{}{}12,,,;,1,2,m m i A a a a a A i n =∈=,记A 中的m 个元素组成的子集全体,则mm m A N N N N ⨯⨯⨯=故是可数集.显然A 的所有有限子集构成的集合可表示为1m m A ∞=,m A 为可数集,故1m m A ∞=作为可数个可数集的并也是可数集.注意:A 的全体子集构成的集合不是可数集.7. 若A 是有非蜕化的(即左,右端点不相等的)开区间组成的不可数无穷集合,则有0δ>,使A 中无穷多个区间的长度大于δ.证明:设Λ为一指标集,{};,A I I ααα=∈Λ为非蜕化的开区间, 记I α的长度为I α.若本题的结论不成立,则n N ∀∈,只有有限个12,,n m I I I ∈Λ,使1,I nα>{}12,,n n m A I I I =记,由于A 中的区间都是非蜕化的,,0I A I αα∀∈>,{}1;0n n A A I I αα∞===>由于n A 是有限集,故作为可数个可数集的并,A 也是可数集,这与A 是不可数无穷集矛盾. 故0,δ∃>,使A 中有无穷多个区间的长度大于0δ>. 事实上,A 中有不可数无穷多个区间的长度大于δ.8. 如果空间中的长方形(){}121212,,;,,I x y z a x a b y b c z c =<<<<<<,中的121212,,,,,a a b b c c ()121212,,a a b b c c <<<都是有理数,则称I 为有理长方形,证明全体有理长方形构成一可数集合.证明:由前面题3,6中已知mmQ Q Q Q =⨯⨯⨯是可数集(Q 为有理数组成的集合)设{};A I I =为有理长方形,任取(){}121212,,;,,I x y z a x a b y b cz c A =<<<<<<∈,记之为()1212126,,,,,121212,,,,,,a a b b c c I a a b b c c Q ∈. 与之对应,由于两有理长方形121212121212,,,,,,,,,,,a ab bc c a a b b c c I I 相等112211221122,,,,,a a a a b b b b c c c c ⇔======,故上述对应是单射,故A 与6Q 这一可数集的一个子集Q 11-对应.反过来,01111,,r I r Q ∈与Q 显然11-对应,故6Q 与01111,,r I r Q ⎧⎫∈⎨⎬⎩⎭11-对应所以6Q 与A 的一个子集对等. 由Berrstein 定理 6A Q 对等所以A 是可数集.。
第一章,第一节
1 ] k
1 ] k
<=>
k ,x∈
N 1
n N
E[|f
n
( x )-f( x )|≥
<=> x ∈
k 1
N 1
n N
E[|f
n
( x )-f( x )|≥
1 ] k
例1.1.12
单调集列的极限
1)若{ An }单调增加(渐张)即A1 A2 ... An An1 ... , 则
An
nm n
nm
A
2n
( , )
1 An A2 n1 (1 ,1] 2m 1 nm n m limAn (1
n m 1
lim An (, )
1 ,1] (1,1] 2m 1
3.上、下极限集的关系
A
n 1
n
lim An lim An An
n n n 1
补例:设A2n=[0,1], A2n+1=[1,2]; 则下极限集为{1} 上极限集为[0,2]
4.集列收敛概念----------极限集
如果集列 { An } 的上极限集与下极限集相等,即
n
n
N N n
n
{x : N , n N , 使x An } An
N 1 n N
BN 当An为单调减小集列时
AN
且BN BN 1
BN An An B1 2 N 1,,...,
n N n 1
8.包含关系的性质:反身、对称受限性、传递性 9.特殊集合:空集、全集
实变函数(程其襄版)第一至四章课后习题答案
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是
这证明了
在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
实变函数论建立在实数理论和集合论的基础上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。
§1 集合的表示
集合是数学中所谓原始概念之一,不能用别的概念加以定义,就目前来说,我们只要求掌握一下朴素的说法:
在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称作一个集合,其中每一个个体事物叫做该集合的元素。
定理2【伯恩施坦(Bernstein)定理】
设A,B是两个非空集合。如果A对等与B的一个子集,B又对等与A的一个子集,那么A对等于B.
注利用基数的说法是:设 .
证明有假设,存在A到B得子集 上的一一映射 及B到A得子集 上的一一映射 。因为 ,记 .显然 是 到 上的一一映射,即
并且 .作映射 和 的复合映射 如下:当 时, 。那么 实现了A到 上的一一对应。因为 是A的子集, 是 的子集,所以
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
绪论
因δ = max | yi − yi−1 |→ 0保证lim[S (T , D) − s(T , D)] → 0
i
δ →0
改造积分定义的步骤及课程内容体系
中 i (L)∫ f (x)dx = lim∑ξimEi 其 yi−1 ≤ξi <yi,E ={x: yi−1 ≤ f (x)<yi} 1. 规定 [a,b] δ →0
Rieman积分缺陷产生的根源: Rieman积分缺陷产生的根源: 分化呆板、苛刻:必须将定义域分成区间, 无论区间多么小D(x)的最大值都是1,最小值都 无论区间多么小D(x)的最大值都是1,最小值都 是0导致D(x)的大小和之差恒为1,无法任意小。 是0导致D(x)的大小和之差恒为1,无法任意小。
四川省省级精品课程
《实变函数论 》
绪 论 主讲人:魏勇
1.实变函数论的内容(一)
顾名思义: 《实变函数论》即讨论以实数为变量的函数 实变函数论》 中学学的函数概念都是以实数为变量的函数 大学的数学分析,常微分方程也是研究的以实数 为变量的函数 《实变函数论》还有哪些内容可学呢? 实变函数论》 任务: 简单地说:《实变函数论》 简单地说:《实变函数论》只做一件事,那就 是恰当的改造积分定义使得更多的函数可积,使得 操作更加灵活。
3.学习《实变函数论》的方法(七)
注重顾名思义,忌讳望文生义。
顾名思义有利于理解记忆,有利于已有知识梳理和融会 贯通。通过顾名只能思义,不能断言是义。数学是一门非常 严谨的科学,所有概念都有严格的逻辑界定,不能凭主观臆 测,如“几乎”在日常语言中是“差不多”的意思,那么数 学中的“几乎处处”成立通过顾名思义顾名思义理解成“差 不多”每处都成立,既然是“差不多”就应允许有例外点不 成立,例外点允许有多少才算“差不多”呢?是1个?2个? 有限个?可数个?不能望文生义,必须钻研严格的数学定义, 数学没有从例外点的个数(即势)的角度来界定“差不多”, 而是从例外点全体的测度角度界定了“差不多”,即“例外 点全体的测度为0时”就是严格数学意义下的“差不多”。从 而不排除例外点多到c势个。一旦有了严格定义就限制了自由 发挥余地,就不能说“例外点全体测度非常非常小时也是几 乎处处成立”。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
(完整版)实变函数论课后答案第一章3
实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。
实变函数第一章答案
习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc ==== )()()()\(的充要条 是:.A B ⊂(2) cc c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n nA x 存在N 使得,NA x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x ,故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Zk , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max{21N N N =, 则有k c x f n 1)(0->与kx f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n nn n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n nm cm cmn nm mn n A E AE A E A Ec n nm m n c nm m n nm cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n n m cm m n n A E A E A E A Ec n nm m n cnm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为:;11();(1,2,)210;2x x D x x n nn x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义::[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈---可以验证::[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证::(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y bb b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知:A A A ≤⨯. 最后, 根据Bernstein 定理知:(0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为:(0,1)~R , 则由对等的传递性知:2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义::A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证::A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→与)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:cP b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E E F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E EF EF F ==.(2) 因为()\()()()(\)(\),c c c c E F G EF G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n nn n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集nQ 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q nN ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==WORD11 / 11 又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.。
实变函数第一章习题解答(罗绍辉)
3
∞
n =1
Q × Q = xUQ ({x} × Q ) 是可数个有理数集的并,故可数, ∈
又因为 并且 Q × Q × Q = U ({x} × Q × Q ) x∈ ∀x ∈ Q, } × Q × Q ~ Q × QQ,所以 {x}× Q × Q 可数 {x 故 Q × Q × Q 可数. 14.证明:可数集的有限子集的全体仍是可数 证明: 证明: 设 Q 为可数集,不妨记为: Q = {r1 , r2 , r3 , L , rn , L}
A − B ⊂ A − ( B − C ) . 故, ( A − B ) ∪ C ⊂ A − ( B − C ) .
最后证, A − ( B − C ) ⊂ ( A − B) ∪ C 事实上, ∀x ∈ A − ( B − C ) , 则 x ∈ A 且 x ∉ B − C 。若 x ∈ C ,
x ∈ ( A − B) ∪ C ;若 x ∉ C ,则 x ∉ B ,故 x ∈ A − B ⊂ ( A − B) ∪ C 、
第一章习题参考解答
3.等式 ( A − B) ∪ C = A − ( B − C ) 成立的的充要条件是什么? 解:若 ( A − B) ∪ C = A − ( B − C ) 则
C ⊂ ( A − B) ∪ C = A − ( B − C ) ⊂ A .即, C ⊂ A .
实变函数答案(魏勇版)
11.证明:若f ( x)在[a, b]上单增,则 f ( x)在[a, b]上 可测. 证明:由于 f ( x)在[a, b]上单增,所以 f ( x)在[a, b]上 的间断点至多可数 .设E是f ( x)在[a, b]上的间断点集, . 从而f ( x)在[a, b] E上可测; 又f ( x)在E上可测, 故 f ( x)在[a, b]上可测.
x, x (0,1] E0 f ( x) , x, x E0
则对a R1, (0,1]( f a)或为或为单元素集 {a}, 即 (0,1]( f a)恒可测.但(0,1]( f 0) E0不可测, 从而f ( x)
在(0,1]上不可测 .
(2). 由(3)知对r Q, E( f r )可测,更推不出 f ( x)在 E上可测.
N 1 n N n N
m* En 0( N ),
n N
于是m* ( lim En ) 0, 故 lim En可测,且m( lim En ) 0.
n n n
10.证明: (1). f ( x)在E上可测 r Q, E( f r )可测. (2).若对r Q, E( f r )可测,f ( x)是否在E上可测? (3).若对a R1, E( f a)可测,f ( x)是否在E上可测? 证明: (1“ ). ”显然成立 . ( [
记c max{ K1, K2 ,, KN ,1 K}, 则对n,x E0, 有 fn ( x) c.
么? 解:由于对 a 0,
[0,1 ( ] f a) [0,1 ( ] f 0 ) E 不可测,所以 f ( x)在[0,1]不可测. 但 f ( x) 1 ,x [0,1] ;所以 f ( x) 在[0,1]可测.
实变函数(程其襄版)第一至四章课后习题答案
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。
实变函数论课后答案
λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x
∈
(
A λ
'
∪
Bλ'
)
⊂
(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .
∞
∞
An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=
∪
n=1
An
(相应地)
lim
n→∞
=
∩
n=1
An
.
∞
证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞
∞
lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=
∪
m=1
Am
∞
另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯
∈
A,
B
的任何子集
F
(
第一章,第四节
n
i
,其中 I i =<a i ,b i >,称
|I|=
∏
i =1
n
(b i -a i )为区间 I 的“体积” ,即|I|=
∏
i =1
n
|I i |。
当然,这里须约定 0×∞=∞×0=0, 当 a≠0 时,a×∞=∞×a=∞。
d 2 (x, y) =
∑
i =1
| xi − yi |
d 3 ( x , y ) = m ax | xi − yi |
1≤ i ≤ n
⑵离散空间(X , d),其中 离散空间(X d),其中
d ( x, y ) = {
1 x≠ y 0 x= y
⑶ C[a,b]空间(C[a,b]表示闭区间[a,b]上实值连续 函数全体), 其中
定义1.4.3: {P | d ( p, p0 ) < δ }是以p0为中心, 称
δ 为半径的邻域
Pn P0 δ
4. 集与集,集与点之间的距离
定义1.4.4 称d( A, B) = inf{d ( p, q): p ∈ A, q ∈ B}
特别地,当B={x}时,称d ( A, x) = d ( A, B) 为x到A的距离.
定义1.4.5:
δ ( A) = sup{d ( x, y ) : x, y ∈ A}
请问直径为0的非 空集有哪些?
称为集合A的直径,规定 δ (φ ) = 0 若 δ ( A) < +∞ 则称为有界集
E有界<=>存在K>0, d(x,0) ≤K <=>存在K>0, | xi |≤ K (i = 1, 2,..., n)
d(x, y) = max| x(t) − y(t) | ≤≤
《实变函数论》课后答案
Xn c, (0, 0, · · · , 0, x∗ , 0 , · · · ) ∈ / Pn (Dn ), n
∞
Dn < c, Pn (Dn ) ≤ Dn < c, ∀n, ∃x∗ n, ∗ ∗ ∗ (x1 , x2 , · · · , xn , · · ·) ∈ / Dn , (x1 , x2 , · · · , x∗ / n , · · ·) ∈ Dn0 = c, An0 = c.
(ii) Ex 5: {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 ≤ 1} [0, 1) [0, 1]
r ∈[0,1]
f (x) = x2 , X = [−1, 1], Y = [0, 1], A = [0, 1]. {(x, y ) : x2 + y 2 ≤ 1}
n=1
An ∼ [0, 1]∞ .
An
E
ቤተ መጻሕፍቲ ባይዱ
∞
ww ¿À ' · T S Á¿À C õ d WÃX ÃÄ T WX à « Å Æ ÇÈ ' WXÉÊ UV Å« ! "#ËÌ"Í$%')({|12 t vw # 8 u#2v
n→∞
F
lim En = [a, b] \ E .
HGI T P
n→∞
lim fn (x) = χ[a,b]\E (x) =
Ex 4: f : X → Y, A ⊂ X, B ⊂ Y , (i)f −1 (Y \ B ) = f −1 (Y ) \ f −1 (B ); (ii)f (X \ A) = f (X ) \ f (A). (i)
第一章,第六节(精简)
: i ∈ I}
覆盖F
则 {U i : i ∈ I } 中存在有限个开集 U1 ,U2, … ,Un,它同样覆盖F,即
F ⊂ UU i
i=1 n
注: Heine-Borel有限覆盖定理的 Heine-Borel有限覆盖定理的逆命题 也成立
定理1.6.3之 (距离可达性定理) 定理1.6 U{O(x, δx ) ⊃ F 1
x∈F 1
1 2
则G1,G2 满足条件 定理1.6.4) (隔离性定理的 定理1.6.4) (隔离性定理的 一般形式) 一般形式)
__
A、B 是可隔离的<=> A ∩B=ф, A∩ B =ф
∩
F1, G2
F2,且G1∩G2 = Φ
1 G2=U {O(y, δy ) ⊃ F 2 y∈F 2 2
可能不收敛,但有界,由直线上
k i1 2
、及 x
的子列 x
k i1i 2 2
→ x 0 ,则 M k 满足 2
l 1i 2 .
第一、第二坐标都收敛。
此过程继续作下去,第 n次找到的子列 M k 便满足所有坐标都
l1i2...in
收敛,即 M k →M 0。其中 M 0=( x 10, x 0 ,..., x 0 ),即 M 0为 E 中的聚点。 n 2
四川省省级精品课程
《实变函数论 》
第一章 集合论基础与点集初步 §1.6 有界集的几个重要定理 主讲人:魏勇
Bolzano-Weierstrass聚点原理: 定理1.6.1:若E有界的无限集,则E至少有一个聚点.
证明 取互异点列 M k =( x
k 1
,x
k 2
,..., x
k n
)∈E,由于 E 有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则f ({xni })为(0,1]中的二进制小数,且
11 f : A (0,1],
于是 A (0,1] c.
20.证明A为无限集的充分必要条 件是它可与其 本身的某一真子集对等 .
所以
n N
An (0, ), An ,
n N
n
lim An An (0, ) (0, ).
N 1 n N N 1
n
lim An An .
N 1 n N N 1
n 2m 1 ( 2 ) . lim An ( { 0,y) 0 y } ( { x, 0 ) 0 x }.
1 8.证明:若 A2 m [0,2m] [0, ], 2m 1 1 ) . lim An ( { 0, 0 ) }. A2 m 1 [0, ] [0,2m 1], 则 (
n
证明:( 1 ) n,有( 0, 0 ) An N 1, n N , 有( 0, 0 ) An 即( { 0, 0 ) } lim An . ( 0, 0 ) lim An
9.作(1,1)和(,)的1 1对应,并写出这一对应 的 解析表达式 . 解.令f : (1,1) (,) x f ( x) tan( x) 2 则f是(1,1)到(,)的1 1对应. 11.证明:所有有理系数多 项式组成一可数集 . 证明:对n: An {a0 a1 x a2 x 2 an x n a0,a1, ,an Q}
故B中元素是由互不相交的 开区间构成,由 10题知, B至多可数,从而 A至多可数.
14.设f ( x)在[a, b]单增,且f ([a, b])在[ f (a), f (b)] 中稠密,证明 f ( x)在[a, b]上连续.
证明: 若f ( x)在[a, b]间断,由于 f ( x)在[a, b]单增,
1 0,x 2 1 1 x f ( x) , x (n 3,4, ) n n 2 x, x (0,1) A
则f是(0,1)到[0,1]的1 1对应.
16. A a A A, 满足 A ~ A,且 A A 可数 .
即总有 Ai Bi .
i 1 i 1 n n
i0 n
i 1
i 1
故 Bi Ai .
i 1 i 1
n
n
1 7.设A2 n 1 (0, ),A2 n (0, n),求集列的上、下极限 . n
解:由于对 n : A2n 1 A2n 1 A1 A2 A2n A2n 2
6.设{ An }是一集列,作 B1 A1 , Bn An Ai ( n 1), 则{Bn }是一列互不相交的集, 且 Bi Ai (n 1)
n n i 1
n 1
证明:设m n 1, 则当n 1时,
m 1 i 1 m 1 i 1 m 1 i 1
上的间断点集为 A, B {( f ( x 0), f ( x 0)) x A}, 令g : A B x g ( x) ( f ( x 0), f ( x 0)) 则g是A到B的一一对应 . x1,x2 A,不妨设x1 x2 ,由f在[a, b]单增,对 x1 x2 x1 x2 x ( x1 , ), y ( , x2 ),im An .
(2).( x, y ) 左 lim An N , n N , 使( x, y) An
n
存在无穷多个 n, 使( x, y) An 1 存在无穷多个 n, 使( x, y ) A2 n [0,2n] [0, ] 2n 或存在无穷个n, 使( x, y ) A [0, 1 ] [0,2n 1] 2 n 1 2n 1
x [0,), y 0或x 0, y [0,)
( x, y) ( { 0,y) 0 y } ( { x, 0 ) 0 x } 右.
故左 右.
( x, y) 右 ( { 0,y) 0 y } ( { x, 0 ) 0 x } x [0,), y 0或x 0, y [0,) y 0, N , 使得0 x N 或x 0, N , 使得0 y N y 0, N ,当2n N , 有0 x 2n 或x 0, , N ,当2n 1 N , 有0 y 2n 1 1 N ,当2n N , 有( x, y ) A2 n [0,2n] [0, ], 或 2n N ,当2n 1 N , 有( x, y ) A [0, 1 ] [0,2n 1] 2 n 1 2n 1 存在无穷多个 n, 使( x, y) An ( x, y ) lim An 左 n 故右 左. 即左 右.
的元素由n 1个变量a0,a1, ,an所确定,且每一个
变量各自跑遍一个可数 集Q, 故An可数.从而所有有
理系数多项式组成之集 An可数 .
n 1
13.证明:单调函数的间断 点至多可数 .
证明:设f ( x)在[a, b]单增,x0 [a, b], 若f ( x)在x0连续,则f ( x0 0) f ( x0 0) f ( x0 );
若f ( x)在x0间断,则f ( x0 0) f ( x0 0).记f在[a, b]
x1 x2 f ( x1 ) f ( x) f ( ) f ( y ) f ( x2 ), 2 分别令x x1 0, y x2 0,由上式得
x1 x2 f ( x1 ) f ( x1 0) f ( ) f ( x2 0) f ( x2 ) 2 于是 (f ( x1 0),f ( x1 0) ) (f ( x2 0),f ( x2 0) ) .
* * *
证明: .1 .若 A a,设 A {a1 , a2 , , an , },
o
取A* {a2 , a4 ,, a2n , } A, 则A* ~ A,且 A - A {a1, a3 ,, a2n1, }可数.
*
2 .若 A a,则 可数 A0 A, 且A - A0为无限集 .
n n
(x, y) lim An N , n N , 有(x, y) An
N , n N , 有(x, y) A2n且(x, y) A2n1,
(x, y) ( 0, 0 )
即( { 0, 0 ) } lim An .
n
n
n
n i 1
Bi Ai .
i 1 n i 1
n
i 1 n
i 1
又对 x Ai , 若x A1,则 x B1 Bi ;
i 1
若x A1,则i0 (i0 2,3,, n), 使得x Ai0,
但x Ai (1 i i0 ), 从而x Ai0 Ai Bi0 Bi .
则x0 [a, b], 使得 f ( x0 0) f ( x0 0), 且 ( f ( x0 0), f ( x0 0)) [ f (a), f (b)], 由于f的函数值在 ( f ( x0 0), f ( x0 0))内只能取到一
点f ( x0 ), 所以这与 f ([a, b])在[ f (a), f (b)]中稠密矛
o
(A A0 ) 否则,若A A0为至多可数集,则A A0
1.2.10知A A0 ~ A. 可数,与 A a矛盾 . 故由定理
记A* A A0 , 则A* A, A* ~ A, 且A A* A0可数.
17 .证明: [0,1] Q c, 并建立 1 1对应.
即Ai为A中i个元素所成之集,则 Ai可数,从而 A的所有
有限子集作成的集合 Ai可数 .
i 0
19.设{xn}为一序列 , 其中元素彼此互异,证 明它 的子序列全体组成势 c为的集.
证明:设 A {{xni }{xni }是{xn }的子序列 } ,对
{xni } A, 令f ({xni }) 0.a1a2 ai , 其中
则f是[0,1] Q到[0,1]的1 1对应.故[0,1] Q c. 18.设 A a, 证明 A的所有有限子集作成的 集合可数 .
证明: .由于 A a,所以设 A {a1 , a2 , , an , }. 记. Ai {(an1 , an2 , , ani ) an1 , an2 , , ani A}(i 0,1,2, ),
i 1
i 1
Bm B1 ( Am Ai ) B1 [ Am C ( Ai )] B1
i 1
m 1
[ Am ( CAi )] A1 Am [( CAi ) A1 ] .
当n 1时, m 1 n 1 Bm Bn ( Am Ai ) ( An Ai )
2 2 2 证明:记A { , , , , }, 2 3 n [0,1] Q {r1, r2 ,, rn ,}, 则 [0,1] Q ([0,1] A Q) A,
[0,1] ([0,1] A Q) [ A {r1, r2 ,, rn ,}]. 令f : [0,1] Q [0,1] 2 2 ,x (n 1,2,3, ) 2n n 1 2 x f ( x) rn,x (n 1,2,3, ) 2n 1 x, x [0,1] A Q