初一七年级数学整式练习题精选含答案
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.下列计算中,正确的是A.3ab2·(-2a)=-6a2b2B.(-2x2y)3=-6x6y3C.a3·a4=a12D.(-5xy)2÷5x2y=5y2【答案】A.【解析】A、3ab2•(-2a)=-6a2b2,正确;B、(-2x2y)3=-8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(-5xy)2÷5x2y=5y,故此选项错误;故选A.【考点】1.单项式乘单项式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.整式的除法.2.若一多项式除以2x2-3,得到的商式为x+4,余式为3x+2,则此多项式为.【答案】2x3+8x2-10.【解析】根据“被除式=除式×商式+余式”进行计算即可求出结果.试题解析:A=(2x2-3)(x+4)+3x+2=2x3+8x2-3x-12+3x+2=2x3+8x2-10故此多项式为2x3+8x2-10.【考点】整式的除法.3.如图,从边长为a+1的正方形纸片中剪去一个边长为a-1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2B.2a C.4a D.a2-1【答案】C.【解析】矩形的面积是(a+1)2-(a-1)2=4a.故选C.【考点】平方差公式的几何背景.4.已知a(a-2)-(a2-2b)=-4.求代数式的值.【答案】2【解析】先把a(a-2)-(a2-2b)=-4进行整理,得出b-a=2,再把要求的式子进行通分,然后合并同类项,最后把b-a的值代入即可.试题解析:∵,∴即b-a=2,∴【考点】整式的混合运算5.若= .【答案】.【解析】:a2x﹣2y=a2x÷a2y=(a x)2÷(a y)2=8)2÷32=.故答案是.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.因式分解(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】按照提公因式的基本方法即可.试题解析:(1);(2);(3);(4).【考点】提公因式法与公式法的综合运用.7.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.8.图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。
人教版七年级上册数学《整式》练习题(含答案)
2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.因式分解(1)(2)【答案】(1)a(a+b)(a-b);(2)2m(m-3)2.【解析】(1)先提取公因式a后,再用平方差公式分解即可;(2)先提取公因式2m,再用完全平方公式分解即可.试题解析:(1)原式=a(a2-b2)="a(a+b)(a-b);"(2)原式=2m(m2-6mn+9m2)=2m(m-3)2.【考点】因式分解---提公因式法与公式法综合运用.2.要使(4x-a)(x+1)的积中不含有x的一次项,则a等于()A.-4B.2C.3D.4【答案】D.【解析】(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.∴常数a必须等于4故选D.【考点】多项式乘多项式.3.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。
【考点】有理指数幂运算.4.计算:a4·a4 =()A.a4B.a8C.a16D.2a4【答案】B.【解析】根据同底数幂的乘法底数不变指数相加,可得答案:a4•a4=a4+4=a8.故选B.【考点】同底数幂的乘法.5.已知8x=2,8y=5,则83x+2y = .【答案】200.【解析】根据幂的乘方,可化成要求的形式,根据同底数幂的乘法,可得答案:∵8x=2,8y=5,∴83x=(8x)3=23=8,82y=(8y)2=52=25.∴83x+2y=83x×82y=8×25=200.【考点】1.幂的乘方与积的乘方;2.同底数幂的乘法.6.计算:(1)x4÷x3·(-3x)2(2)2x(2y-x) + (x+y)(x-y)【答案】(1);(2).【解析】(1)先算乘方,再算乘除即可.(2)先算乘法,再合并同类项即可.试题解析:(1)原式=.(2)原式=.【考点】整式的混合运算.7.若多项式+16是完全平方式,则m的值是( )A.8 B.4 C.±8 D±4【答案】C.【解析】∵x2+mx+16=x2+mx+42,∴mx=±2x•4,∴m=±8.故选C.【考点】完全平方式.8.如图,两个正方形的边长分别为和,如果a+b=10,ab=20,那么阴影部分的面积是()A.B.C.D.【答案】B【解析】S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab﹣b2= [(a2+b2)﹣ab]= [(a+b)2﹣3ab],当a+b=10,ab=20时,S阴影部分= [102﹣3×20]=20.故选B.【考点】整式的混合运算.9.若,则A等于( )A.B.C.D.【答案】D.【解析】根据完全平方公式展开等式左右两边即可得到答案.等式左边,等式右边,即可以得到【考点】完全平方公式10..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.11.化简或计算(5×4=20)(1)、(2)、(3)、4x3÷(-2x)2(4)、(x-3)(x-2)-(x+1)2(5)、a(2a+3)-2(a +3)(a-3)【答案】(1)(2)(3)x (4) (5)【解析】根据整式运算法则即可计算(1)单项式与单项式相乘的顺序:(1)系数相乘,(2)相同字母相乘,(3)只在一个单项式中含有的字母连同它的指数一起写在积中..(2)多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加.注意:除式为负,多项式的每一项除以除式时都要变号..(3)、(4)、(5)注意整式的运算顺序,即先乘方,后乘除,最后算加减,有括号先算括号里面的.(3)(4)(x-3)(x-2)-(x+1)2(5)、【考点】整式运算.12.已知是两位数,是一位数,把接写在的后面,就成为一个三位数.这个三位数可表示成()A.B.C.D.【答案】C【解析】两位数的表示方法:十位数字×10个位数字;三位数的表示方法:百位数字×100十位数字×10个位数字.是两位数,是一位数,依据题意可得扩大了100倍,所以这个三位数可表示成.13.一个学生由于粗心,在计算的值时,误将“”看成“”,结果得,则的值应为____________.【答案】7【解析】由题意可知,故.所以.14.问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5) ①=2002-52②=39975(1)例题求解过程中,第②步变形是利用(填乘法公式的名称)(2)用简便方法计算:9×11×101问题2:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:(3)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”分解因式:.【答案】(1)平方差公式;(2)9999;(3)(a﹣2)(a﹣4)【解析】(1)根据平方差公式的构成分析即可;(2)先化9×11×101=(10﹣1)×(10+1)×(100+1),再依次运用平方差公式计算即可;(3)根据式子的特征先添上1,再减去1,即可根据完全平方公式和平方差公式分解因式.(1)故例题求解过程中,第②步变形是利用平方差公式;(2)9×11×101=(10﹣1)×(10+1)×(100+1)=(100﹣1)×(100+1)=10000﹣1=9999;(3)a2﹣6a+8=a2﹣6a+9﹣1=(a﹣3)2﹣1=(a﹣2)(a﹣4).【考点】分解因式点评:“配方法”是初中数学的重点,是中考中极为重要的知识点,一般难度不大,需熟练掌握.15.设4x2+mx+121是一个完全平方式,则m=___;若x2-3x+a是完全平方式,则a=___.【答案】,【解析】根据完全平方公式的构成依次分析即可求得结果.∵∴,解得∵∴.【考点】完全平方公式点评:解题的关键是熟练掌握完全平方公式:.16.若,则 .【答案】-1【解析】先根据有理数的乘方法则把底数统一为2,再根据幂的乘方法则求解即可.则,解得所以.【考点】幂的运算,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.17.若m =2125,n =375,则m、n的大小关系正确的是()A.m > n B.m < n C.m = n D.大小关系无法确定【答案】A【解析】m-n=2125-375=(25)25-(33)25=3225-2725>0.所以选A【考点】整式运算点评:本题难度中等,主要考查学生对同底数幂和幂的乘方知识点的掌握。
初一数学整式练习题精选含答案)
初一数学第三单元 整式练习题精选(含答案)一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题 1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y 2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3 D 一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式 5.下列代数式中,不是整式的是( )A 、23x - B 、745b a - C 、xa 523+ D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+x B 、23x C 、3xy -1 D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、ba s + C 、b s a s + D 、bs a s s+29.下列单项式次数为3的是( ) A.3abcB.2×3×4C.41x 3y D.52x 10.下列代数式中整式有( ) x 1, 2x +y , 31a 2b , πyx -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( ) A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1 B .x 2+y +1 C .x 2y -xy 2 D .x 3-x 2+x -113.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3 B .x 3,xy2 C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( ) A 、6- B 、5- C 、2- D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个 B .2个 C .3个 D .4个 20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2 三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ; 12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313mx y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 . 32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 . 四、列代数式 1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
初一上册整式计算题及答案
初一上册整式计算题及答案一、选择题(共8小题)1.如果整式xn﹣2﹣5x+2是关于x的三次三项式,那么n等于( )a.3b.4c.5d.6【考点】多项式.【专题】计算题.【分析】根据题意得到n﹣2=3,即可求出n的值.【答疑】求解:由题意得:n﹣2=3,解得:n=5.故挑选:c【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.2.﹣4a2b的次数就是( )a.3b.2c.4d.﹣4【考点】单项式.【分析】根据单项式次数的定义进行解答即可.【答疑】求解:∵单项式﹣4a2b中所有字母指数的和=2+1=3,∴此单项式的次数为3.故挑选a.【点评】本题考查的是单项式次数的定义,即一个单项式中所有字母的指数的和叫做单项式的次数.3.多项式1+2xy﹣3xy2的次数及最低次项的系数分别就是( )a.3,﹣3b.2,﹣3c.5,﹣3d.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【答疑】求解:多项式1+2xy﹣3xy2的次数就是3,最高次项是﹣3xy2,系数是﹣3;故挑选:a.【点评】此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.4.未知一个单项式的系数就是2,次数就是3,则这个单项式可以就是( )a.﹣2xy2b.3x2c.2xy3d.2x3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【答疑】求解:此题规定了单项式的系数和次数,但没有规定单项式中不含几个字母.a、﹣2xy2系数是﹣2,错误;b、3x2系数就是3,错误;c、2xy3次数是4,错误;d、2x3合乎系数就是2,次数就是3,恰当;故选d.【评测】此题考查单项式问题,答疑此题需有效率掌控单项式的系数和次数的定义.5.单项式2a的系数是( )a.2b.2ac.1d.a【考点】单项式.【分析】根据单项式系数的定义去挑选,单项式中数字因数叫作单项式的系数.【解答】解:根据单项式系数的定义,单项式的系数为2.故挑选:a.【点评】本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.6.以下观点中,恰当的就是( )a.﹣ x2的系数是b. πa2的系数是c.3ab2的系数就是3ad. xy2的系数就是【考点】单项式.【分析】根据单项式的概念解.【解答】解:a、﹣ x2的系数是﹣,故a错误;b、πa2的系数就是π,故b错误;c、3ab2的系数是3,故c错误;d、 xy2的系数,故d恰当.故选:d.【评测】本题考查了单项式的科学知识,单项式中的数字因数叫作单项式的系数,一个单项式中所有字母的指数的和叫作单项式的次数.7.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第个单项式是( )a.xb.xc.xd.x【考点】单项式.【专题】规律型.【分析】系数的规律:第n个对应的系数是2n﹣1.指数的规律:第n个对应的指数就是n.【解答】解:根据分析的规律,得第个单项式就是x.故选:c.【评测】此题考查单项式问题,分别找到单项式的系数和次数的规律就是化解此类问题的关键.8.多项式2a2b﹣ab2﹣ab的项数及次数分别是( )a.3,3b.3,2c.2,3d.2,2【考点】多项式.【分析】多项式中每个单项式叫作多项式的项,这些单项式中的最低次数,就是这个多项式的次数,根据这个定义即可认定.【解答】解:2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.故挑选:a.【点评】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.。
人教版数学七年级上册第二章《整式》练习题(含答案)
2.1整 式班级 学号 姓名 分数一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式C .-2不是整式D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ; 13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31t t +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
初一数学整式练习题精选(含答案)
初一数学整式练习题精选(含答案)初一数学整式练习题精选(含答案)练习一:填空题1. 3x + 5y - 4z + 2x - y - 3z = ________.2. (x - 3)(x + 2) = ________.3. (2a + 3b)(4a - 2b) = ________.4. 2(x - 1)(x + 3) - (x - 2)(x + 1) = ________.答案:1. 5x + 4y - 7z2. x^2 - x - 63. 8a^2 - 8b^24. x^2 + 2x练习二:展开和化简1. (m - 4)(m + 2)2. (2x + 1)(x - 3)3. (3a - 2)(3a + 2) - (2a - 1)(2a + 1)4. (5x - 2)(5x + 2) + (3x - 1)(3x + 1)答案:1. m^2 - 2m - 82. 2x^2 - 5x - 33. 5a^2 - 14. 34x^2 - 1练习三:因式分解1. x^2 - 92. 81m^2 - 163. 25x^2 - y^24. 16a^2 - 49b^2答案:1. (x + 3)(x - 3)2. (9m + 4)(9m - 4)3. (5x + y)(5x - y)4. (4a + 7b)(4a - 7b)练习四:扩展与合并同类项1. 2x + 3y - 4x + y2. 5a^2 - 3a - 2a^2 + a3. 4x - 2y + 3x + 5y4. 7x^2 - 5x - 3x^2 + 4x + 2x^2答案:1. -2x + 4y2. 3a^2 - 2a3. 7x + 3y4. 6x^2 - x练习五:乘法公式1. (x + y)^22. (3a - 2b)(3a + 2b)3. (4m + 5n)^24. (2x + 3y)(2x - 3y)答案:1. x^2 + 2xy + y^22. 9a^2 - 4b^23. 16m^2 + 40mn + 25n^24. 4x^2 - 9y^2练习六:因式分解与提取公因式1. 4x^2 + 8x2. 6a^2b - 12ab3. 9x^2 - 44. 10ab - 20b答案:1. 4x(x + 2)2. 6ab(a - 2)3. (3x + 2)(3x - 2)4. 10b(a - 2)练习七:应用题1. 若已知(x + 3)(x - 1) = x^2 + bx - 3,求b的值。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.下列运算正确的是()A.a2•a=a2B.(a-b)3=a3-b3C.a10÷a5=a2D.(a2)3=a6【答案】D.【解析】试题分析:A、a2•a=a3,故A选项错误;B、(a-b)3=a3-3a2b+3ab2+b3,故B选项错误;C、a10÷a5=a5,故C选项错误;D、(a2)3=a6,故D选项正确.故选D.【考点】1.完全平方公式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.同底数幂的除法.2.化简:(-m)2÷(-m)=.【答案】-m【解析】利用分式的乘法,把(-m)2展开再(-m)相除即可求解.【考点】分式的乘除法3.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是_______.【答案】2【解析】根据多项式相乘的法则展开,然后代入数据计算即可.【考点】整式的混合运算4.你能化简(x-1)(x99+x98+x97+……+x+1)吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:①(x-1)(x+1)=x2-1;②(x-1)(x2+x+1)=x3-1;;③(x-1)(x3+x2+1)=x4-1;;……由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=________________;请你利用上面的结论,完成下面两题的计算:(1) 299+298+297+……+2+1;(2)(-2)50+(-2)49+(-2)48+……+(-2)+1【答案】2100-1;(1)2100-1;(2).【解析】根据平方差公式,和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1,根据上述结论计算下列式子即可.试题解析:根据题意:(1)(x-1)(x+1)=x2-1;(2)(x-1)(x2+x+1)=x3-1;(3)(x-1)(x3+x2+x+1)=x4-1;故(x-1)(x99+x98+x97+…+x+1)=x100-1.根据以上分析:(1)299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=2100-1;(2)(-2)50+(-2)49+(-2)48+…(-2)+1=-(-2-1)[(-2)50+(-2)49+(-2)48+…(-2)+1]=-(-251-1)=.【考点】规律型:数字的变化类.5.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是()A.B.C.D.【答案】D.【解析】因为m个数的平均数x,则m个数的总和为mx;n个数的平均数y,则n个数的总和为ny;然后求出m+n个数的平均数为:.故选D.【考点】加权平均数.2.若,则若则【答案】-4,18【解析】由得,则;由,.【考点】有理指数幂运算.3.观察下列各式:32-12=4×2,102-82=4×9,172-152=4×16…你发现了什么规律?(1)试用你发现的规律填空:352-332=4×,642-622=4×.(2)请你用含一个字母n(n≥1)的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.【答案】(1)32,64;(2),说明见解析.【解析】(1)观察一系列等式,得到规律,填写即可.(2)归纳总结得到一般性规律,证明即可.试题解析:(1).(2)可以得出规律:,说明如下:∵左边=,右边=4n+4,∴.【考点】1.探索规律题(数字的变化类);2.平方差公式.4.如图,两个正方形的边长分别为和,如果a+b=10,ab=20,那么阴影部分的面积是()A.B.C.D.【答案】B【解析】S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab﹣b2= [(a2+b2)﹣ab]= [(a+b)2﹣3ab],= [102﹣3×20]=20.当a+b=10,ab=20时,S阴影部分故选B.【考点】整式的混合运算.5.多项式3ma2-6mab的公因式是.【答案】3ma.【解析】3ma2-6mab中,3与6的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2-6mab的公因式是:3ma.故答案是3ma.【考点】公因式.6.先化简,再求值:(2x+1)(x-2)-(2-x)2, 其中x=-2.【答案】-4.【解析】先化简原式,利用整式的乘法和加法,再代入x=-2求值即可.原式=2x2-3x-2-4+4x-x2=x2+x-6当x=-2时,原式=(-2)2+(-2)-6=-4.【考点】整式的混合运算—化简求值.7.若,,则____________;【答案】7【解析】根据完全平方公式以及整体代换的思想即可得出答案观察题目,联想到完全平方公式.∵,∴两边平方得:(1),又∵,∴整体代入(1)式得:【考点】1.完全平方公式;2.整体代换思想.8.已知则。
七年级数学(上)《整式》测试题含答案
七年级数学(上)《整式》测试题班级 学号 姓名 分数一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、xa 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、b a s + C 、b s a s + D 、bs a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 13.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3C .-23,2D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式 18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = .23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
人教版七年级数学上册整式练习题(含答案)
人教版七年级数学上册整式练习题(含答案)一.判断题1) x+1/3 是关于x的一次两项式.(×)2) -3不是单项式.(√)3) 单项式xy的系数是1.(×)4) x^3+y^3是6次多项式.(×)5) 多项式是整式.(√)二.选择题1.在下列代数式中:1/2ab,(a+b)^2/2,ab^2+b+1,32/2x+y,x^3+x-3中,多项式有(B.3个)2.多项式-23m^2-n^2是(A.二次二项式)3.下列说法正确的是(A.3x^2-2x+5的项是3x^2,-2x,5)4.下列说法正确的是(B.x^3-y^3与2x^2-2xy-5都是多项式)5.下列代数式中,不是整式的是(D.-20)6.下列多项式中,是二次多项式的是(B.3x^2)7.x减去y的平方的差,用代数式表示正确的是(B.x^2-y^2)8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b 米/分,则他的平均速度是(2ab/(a+b))米/分。
9.下列单项式次数为3的是(C.1/3xy^4)10.下列代数式中整式有(A.4个)。
11.下列整式中,单项式是(D.(x+1)/2)。
12.下列各项式中,次数不是3的是(B.x^2+y+1)。
13.下列说法正确的是(B.π不是整式,D.单项式-x^2y的系数是-1)。
14.在多项式x^3-xy^2+25中,最高次项是x^3.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
改写后的文章:给定一些代数式,其中包括多项式和分式。
需要计算这些代数式的值或者进行简化。
首先,对于一个分式,我们可以将分子和分母分别展开,然后进行化简。
例如,对于分式 $\frac{x+1}{x-1}$,我们可以将其展开为 $\frac{x}{x-1}+\frac{1}{x-1}$,然后进行化简得到$\frac{x}{x-1}+1+\frac{1}{x-1}$。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.计算:2xy2·(-3xy)2="___________" .【答案】18x3y4.【解析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.试题解析:2xy2•(-3xy)2=2xy2•(9x2y2)=18x3y4.【考点】单项式乘单项式.2.计算(x2+nx+3)(x2-3x)的结果不含的项,那么n= .【答案】3.【解析】把式子展开,找到所有x3项的所有系数,令其为0,可求出n的值.试题解析:∵(x2+nx+3)(x2-3x)=x4-3x3+nx3-3nx2+3x2-9x=x4+(n-3)x3+(3-3n)x2-9x.又∵结果中不含x3的项,∴n-3=0,解得n=3.【考点】多项式乘多项式.3.下列运算正确的是()A.B.C.D.【答案】D.【解析】A、a3•a2=a5,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,故本选项正确.故选D.【考点】1.平方差公式2.同底数幂的乘法3..同底数幂的除法4.完全平方公式.4.已知,,则等于( )A.B.C.D.【答案】D.【解析】根据幂的乘方运算法则以及同底数幂乘法法则即可得出答案∵,由幂的乘方法则可得:,同理∵,∴,∴由同底数幂相乘指数相加知:【考点】1.幂的乘方运算;2.同底数幂相乘.5.已知|a-b-1|与(b-2014)2互为相反数,求代数式a2-2ab+b2的值.【答案】1.【解析】因为|a-b-1|与(b-2014)2互为相反数,所以|a-b-1|+(b-2014)2=0,从而可求出a、b的值,代入代数式中去即可.试题解析:∵|a-b-1|+(b-2014)2=0∴a-b-1=0,b-2014=0∴a=2015,b=2014,当a=2015,b=2014时a2-2ab+b2=(a-b)2=(2015-2014)2=1.【考点】1.代数式求值;2.非负数的性质:偶次方.6.已知则。
【人教版】七年级数学:整式练习题及答案
第1页(共2页)整式 巩固练习一.选择题(共11小题)1.代数式32x −,4x y −,x y +,22x π+,98中是整式的有( )A .1个B .2个C .3个D .4个2.给出下列式子:2abc −,3x y +,c ,0,2231a b ++,23x y +,2ab ,6xy−,其中单项式有( ) A .3个B .4个C .5个D .6个3.下列说法中,正确的是( ) A .单项式xy 的系数是0 B .单项式2xy −的次数是12− C .多项式23x −是一次二项式 D .多项式23x x +是五次二项式4.下列说法中正确的是( ) A .2不是单项式 B .2abc −的系数是12− C .23r π的次数是3D .多项式25612a ab −+的次数是4 5.下列说法正确的是( ) A .单项式x 的系数是1,次数是0B .单项式22xy π−的系数是2−,次数是4C .单项式422ab c 的系数是2,次数是8D .单项式42235a b −的系数是435−,次数是46.下列说法正确的是( ) A .232x y π−的次数是6 B .2a是单项式 C .单项式32x y −的系数是1−D .2235x y xy −+是二次三项式7.下列代数式:①18xyz −;②23a ;③2x y −;④22b a ;⑤25a b +;⑥mn π,其中是三次单项式的有( ) A .2个B .3个C .4个D .5个第2页(共2页)8.下列判断中,正确的是( ) A .单项式23a b 的次数是2 B .25m n 不是整式C .单项式32x y −的系数是1−D .2235x y xy −+是二次三项式9.下列有关整式2231ab ab c −+−的说法中,正确的是( ) A .是单项式B .是三次四项式C .系数是1−D .没有常数项10.关于多项式322323a a b b −+−,下列说法错误的是( ) A .这个多项式是四次四项式 B .四次项的系数是2C .常数项是3−D .这个多项式属于整式11.如果多项式421(2)32b a x x x −−+−是关于x 的三次多项式,则( )A .0a =,3b =B .1a =,3b =C .2a =,2b =D .2a =,3b =二.填空题(共9小题)12.单项式abc −的系数是 ,次数是 . 13.整式32425mn m n −+是 次 项式. 14.多项式32231x x y xy −−−是 次 项式. 15.如果整式252n x x −+−是三次三项式,那么n 等于 .16.若关于x 、y 的多项式522523m x y x −+−+的次数是3,则式子23m m −的值为 . 17.将多项322313xy x y x y −−+按字母y 升幂排列,结果是 .18.若多项式2||2(2)3m x y m x y ++−+是一个关于x ,y 的四次四项式,则m 的值为 . 19.已知多项式||22(3)1k xy k x y +−−+是关于x ,y 的四次四项式,k 为常数,则k 的值为 .20.按一定规律排列的单项式:3x ,25x −,37x ,49x −,,则第8个单项式为 .整式 巩固练习 答案一.选择题(共11小题)1.代数式32x −,4x y −,x y +,22x π+,98中是整式的有( )A .1个B .2个C .3个D .4个【解答】解:代数式32x −,4x y −,x y +,22x π+,98中整式有32x −,x y +,22x π+,98中,共4个. 故选:D .2.给出下列式子:2abc −,3x y +,c ,0,2231a b ++,23x y +,2ab ,6xy−,其中单项式有( ) A .3个B .4个C .5个D .6个【解答】解:2abc −,c ,6xy−是数与字母的积,故是单项式; 0是单独的一个数,故是单项式. 故选:B .3.下列说法中,正确的是( ) A .单项式xy 的系数是0 B .单项式2xy −的次数是12− C .多项式23x −是一次二项式D .多项式23x x +是五次二项式【解答】解:A 、单项式xy 的系数是1,原说法错误,故此选项不符合题意; B 、单项式2xy−的次数是2,原说法错误,故此选项不符合题意; C 、多项式23x −是一次二项式,原说法正确,故此选项符合题意;D 、多项式23x x +是三次二项式,原说法错误,故此选项不符合题意;故选:C .4.下列说法中正确的是( ) A .2不是单项式 B .2abc −的系数是12− C .23r π的次数是3D .多项式25612a ab −+的次数是4【解答】解:A .2是单项式,故此选项不符合题意; B .2abc −的系数是12−,故此选项符合题意; C .23r π的次数是2,故此选项不符合题意;D .多项式25612a ab −+的次数是2,故此选项不符合题意.故选:B .5.下列说法正确的是( ) A .单项式x 的系数是1,次数是0B .单项式22xy π−的系数是2−,次数是4C .单项式422ab c 的系数是2,次数是8D .单项式42235a b −的系数是435−,次数是4【解答】解:A .单项式x 的系数是1,次数是1,故选项A 不符合题意; B .单项式22xy π−的系数是2π−,次数是3,故选项B 不符合题意; C .单项式422ab c 的系数是42,次数是4,故选项C 不符合题意;D .单项式42235a b −的系数是435−,次数是4,故选项D 符合题意; 故选:D .6.下列说法正确的是( )A .232x y π−的次数是6B .2a是单项式 C .单项式32x y −的系数是1−D .2235x y xy −+是二次三项式【解答】解:A 、232x y π−的次数是4,说法错误,不符合题意; B 、2a不是单项式,说法错误,不符合题意; C 、单项式32x y −的系数是1−,说法正确,符合题意;D 、2235x y xy −+是三次三项式,说法错误,不符合题意.故选:C .7.下列代数式:①18xyz −;②23a ;③2x y −;④22b a ;⑤25a b +;⑥mn π,其中是三次单项式的有( ) A .2个B .3个C .4个D .5个【解答】解:①18xyz −是三次单项式; ②23a 是一次单项式; ③2x y −是三次单项式; ④22b a不是单项式; ⑤25a b +不是单项式; ⑥mn π是二次单项式;其中是三次单项式的有①③,共两个; 故选:A .8.下列判断中,正确的是( ) A .单项式23a b 的次数是2 B .25m n 不是整式C .单项式32x y −的系数是1−D .2235x y xy −+是二次三项式【解答】解:A 、单项式23a b 的次数是3,故本选项错误,不符合题意; B 、25m n是整式,故本选项错误,不符合题意; C 、单项式32x y −的系数是1−,故本选项正确,符合题意;D 、2235x y xy −+是三次三项式,故本选项错误,不符合题意;故选:C .9.下列有关整式2231ab ab c −+−的说法中,正确的是( ) A .是单项式B .是三次四项式C .系数是1−D .没有常数项【解答】解:A .2231ab ab c −+−是多项式,选项A 不符合题意; B .2231ab ab c −+−是三次四项式,选项B 符合题意;C .2231ab ab c −+−中的系数是指某项的系数,二次项系数是2,三次项系数是1−,一次项系数是3,常数项是1−,选项C 不符合题意;D .2231ab ab c −+−中常数项是1−,选项D 不符合题意;故选:B .10.关于多项式322323a a b b −+−,下列说法错误的是( ) A .这个多项式是四次四项式 B .四次项的系数是2C .常数项是3−D .这个多项式属于整式【解答】解:A .多项式322323a a b b −+−是四次四项式,故本选项不符合题意; B .多项式322323a a b b −+−中四次项为222a b −,它的系数为2−,故本选项符合题意; C .多项式中常数项是3−,故本选项不符合题意;D .多项式322323a a b b −+−是整式,故本选项不符合题意;故选:B .11.如果多项式421(2)32b a x x x −−+−是关于x 的三次多项式,则( )A .0a =,3b =B .1a =,3b =C .2a =,2b =D .2a =,3b =【解答】解:由421(2)32ba x x x −−+−是关于x 的三次多项式,得 203a b −=⎧⎨=⎩, 解得23a b =⎧⎨=⎩,故选:D .二.填空题(共9小题)12.单项式abc −的系数是 1− ,次数是 . 【解答】解:单项式abc −的系数是:1−,次数是3. 故答案是:1−,3.13.整式32425mn m n −+是 六 次 项式. 【解答】解:整式32425mn m n −+是六次三项式. 故答案为:六,三.14.多项式32231x x y xy −−−是 三 次 项式. 【解答】解:32231x x y xy −−−是三次四项式. 故答案为:三;四.15.如果整式252n x x −+−是三次三项式,那么n 等于 5 . 【解答】解:252n x x −+−是三次三项式,23n ∴−=,解得:5n =. 故答案为:5.16.若关于x 、y 的多项式522523m x y x −+−+的次数是3,则式子23m m −的值为 2− . 【解答】解:由题意可知:53m −=, 2m ∴=,当2m =时, 原式432=−⨯ 46=−2=−,故答案为:2−.17.将多项322313xy x y x y −−+按字母y 升幂排列,结果是 322313x y x y xy −+−+ . 【解答】解:将多项322313xy x y x y −−+按字母y 升幂排列,结果是322313x y x y xy −+−+. 故答案为:322313x y x y xy −+−+.18.若多项式2||2(2)3m x y m x y ++−+是一个关于x ,y 的四次四项式,则m 的值为 2 . 【解答】解:多项式2||2(2)3m x y m x y ++−+是一个关于x ,y 的四次四项式, ∴2||420m m +=⎧⎨+≠⎩,∴22m m =±⎧⎨≠−⎩, 2m ∴=,故答案为:2.19.已知多项式||22(3)1k xy k x y +−−+是关于x ,y 的四次四项式,k 为常数,则k 的值为 3− .【解答】解:多项式||22(3)1k xy k x y +−−+是一个关于x ,y 的四次四项式,1||4k ∴+=,且30k −≠, 解得:3k =−. 故答案为:3−.20.按一定规律排列的单项式:3x ,25x −,37x ,49x −,,则第8个单项式为 817x − . 【解答】解:设单项式有n 个, 符号的规律为:1(1)n +−,系数的绝对值的规律为:21n +, 字母的规律为:n x ,那么第8个单项式为:8188(281)(1)17x x +⨯+−=−. 故答案为:817x −.。
人教版七年级数学上册第二章《整式》练习题(含答案)
整 式姓名一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( )A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( ) A .整式abc 没有系数 B .2x+3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a - C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+x B 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2ba + B 、ba s +C 、bs a s +D 、bs a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45,0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 13.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是3114.在多项式x 3-xy 2+25中,最高次项是( )A .x3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2D .-23,317.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ;3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等;19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m= .23.在x 2,21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1. x5·x=【答案】x6【解析】原式=x5+1=x6,故答案为:x6.【考点】同底数幂的乘法2. x·x2·x3=__________.【答案】x6.【解析】根据同底数的幂的乘法即可求解.x·x2·x3=x6.故答案是x6.【考点】同底数的幂的乘法.3.=____________。
【答案】【解析】原式=【考点】提取公因式法分解因式.4.如果代数式的值是6,求代数式的值是.【答案】-1.【解析】依据代数式的值是6,可得,整体代入即可.∵,∴,∴,故答案是:-1.【考点】代数式求值.5.若a m=8,a n=2,则a2m﹣3n=_________.【答案】8.【解析】因为a m=8,a n=2,所以a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3=82÷23=64÷8=8.故答案是8.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.化简或计算(1)、(2)、(3)、 4x3÷(-2x)2(4)、(x-3)(x-2)-(x+1)2(5)、a(2a+3)-2(a +3)(a-3)【答案】(1)(2)(3)x (4) (5)【解析】根据整式运算法则即可计算(1)单项式与单项式相乘的顺序:(1)系数相乘,(2)相同字母相乘,(3)只在一个单项式中含有的字母连同它的指数一起写在积中..(2)多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加.注意:除式为负,多项式的每一项除以除式时都要变号..(3)、(4)、(5)注意整式的运算顺序,即先乘方,后乘除,最后算加减,有括号先算括号里面的.(3)(4)(x-3)(x-2)-(x+1)2(5)、【考点】整式运算.7.下列运算中正确的()A.B.C.D.【答案】B.【解析】同底数幂相乘,底数不变指数相加,,错;,,错;,错;.【考点】幂运算.8.魔术师发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a-1)·(b-2),现将数对(m,1)放入其中得到数n+1,那么将数对(n-1,m)放入其中后,最后得到的结果是.(用含n的代数式表示)【答案】4﹣n2.【解析】根据数对(m,1)放入其中得到数n+1得:(m﹣1)×(1﹣2)=n+1,即m=﹣n,则将数对(n﹣1,m)放入其中后,结果为(n﹣1﹣1)(m﹣2)=(n﹣2)(﹣n﹣2)=4﹣n2.故答案是4﹣n2.【考点】整式的混合运算.9.计算:的结果正确的是()A.B.C.D.【答案】B【解析】根据同底数幂的乘法法则进行计算即可..故选B.【考点】同底数幂的乘法.10.利用平方差公式或完全平方公式进行简便计算:(1)203×197 (2)1022【答案】(1)39991;(2)10404.【解析】(1)把203写成200+3,197写成200-3,即可用平方差公式进行计算;(2)把102写成100+2即可用完全平方公式进行计算.(1)203×197=(200+3)×(200-3)=2002-32=39991(2)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404.【考点】1.平方差公式;2.完全平方公式.11.化简(-a)+(-a)的结果()A.-2a B.0C.a D.-2a【答案】B.【解析】(-a2)5+(-a5)2=-a10+a10=0.故选B.【考点】1.幂的乘方;2.合并同类项.12.一个正方形的边长增加了,面积相应增加了,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm【答案】D.【解析】设正方形的边长是xcm,根据题意得:(x+2)2-x2=32,解得:x=7.故选D.考点: 平方差公式.13.计算(1)·8÷(-15x2y2)(2)(3)(4)(3ab+4)2-(3ab-4)2【答案】(1);(2);(3);(4)48ab.【解析】(1)先计算积的乘方,再计算单项式乘以单项式,最后算除法;(2)利用平方差公式直接进行计算即可;(3)先把括号展开,再合并同类项即可;(4)同(3)或逆用平方差公式进行计算.试题解析:(1)·8÷(-15x2y2)=4x8y6z2×8÷(-15x2y2)=32x12y8z2÷(-15x2y2);(2)原式=;(3)原式===;(4)原式===48ab.考点: 1.积的乘方;2.整式的乘法;3.整式的除法.14.设,,那么与的大小关系是()A.B.C.<D.无法确定【答案】A【解析】要比较的大小,可将作差,所以15.先化简,再选取一个你喜欢的数代替x,并求原代数式的值.【答案】,当x=0时,原式=2【解析】先根据完全平方公式、平方差公式去括号,再合并同类项,最后代入求值.解:原式==当x=0时,原式=2.【考点】整式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.16.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达);(4)运用你所得到的公式,计算下列各题:①;②.【答案】(1);(2),,;(3)=;(4)①;②【解析】根据正方形、长方形的面积公式即可得到乘法公式=,再应用得到的公式解题即可.解:(1)由图可以求出阴影部分的面积是;(2)将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是;(3)比较左、右两图的阴影部分面积,可以得到乘法公式=;(4)①==;②==.【考点】平方差公式的几何背景点评:本题属于基础应用题,只需学生熟练掌握正方形、长方形的面积公式,即可完成.17.计算:.【答案】-【解析】【考点】整数运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
七年级初一上册数学人教版《整式》 练习试题 测试卷(含答案)(1)
《2.1 整式》课时练一、选择题1.下列代数式:,2x+y,,,,0.5,a,其中整式有()A.4个B.5个C.6个D.7个2.下列说法正确的是()A.﹣3mn的系数是3B.32m3n是6次单项式C.多项式a2b﹣3ab+5的项分别为a2b、3ab和5D.多项式m2+m﹣3的一次项系数是13.多项式4x2y﹣5x3y2+7xy3﹣6的次数是()A.4B.5C.3D.24.在六个代数式中,是单项式的个数()A.2个B.3个C.4个D.5个5.关于代数式,下列表述正确的是()A.单项式,次数为1B.单项式,次数为2C.多项式,次数为2D.多项式,次数为36.多项式﹣x|m|+(m﹣4)x+7是关于x的四次三项式,则m的值是()A.4B.﹣2C.﹣4D.4或﹣47.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个B.2个C.3个D.4个8.下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个9.下列说法正确的是()A.的系数是﹣5B.单项式x的系数为1,次数为0C.xy+x﹣1是二次三项式D.﹣22xyz2的次数是610.对于式子:①abc;②;③;④;⑤.下列判断正确的是()A.①③是单项式B.②是二次三项式C.②④是多项式D.①⑤是整式二、填空题11.﹣3a2b3+22b4+ab4是次多项式.12.单项式的次数是.13.多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=.14.如图,是某位同学数学笔记的一部分内容,若要补充笔记内容,你补充的内容是:.15.有规律地排列着这样一些单项式:﹣xy,x2y,﹣x3y,x4y,﹣x5y,…,则第n个单项式(n≥1正整数)可表示为.三、解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.18.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.19.已知多项式(2nab3+nab+ma2b)﹣(mab3+ab﹣2a2b)是关于a、b的四次二项式,且单项式2a5﹣m b3n与该多项式的次数相同,求m2+n2.参考答案一、选择题1.B 2.D 3.B 4.C 5.C 6.C 7.A 8.B 9.C 10.D 二.填空题(共5小题)11.512.313.﹣214.x3y(答案不唯一)15.(﹣x)n y三.解答题(共4小题)16.解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.故答案为:﹣3.18.解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b﹣m|﹣|a+m|=b﹣m+(a+m)=b+a=3+(﹣2)=1;19.解:原式=(2n﹣m)ab3+(n﹣1)ab+(m+2)a2b,∵多项式(2nab3+nab+ma2b)﹣(mab3+ab﹣2a2b)是关于a、b的四次二项式。
人教版数学七年级上册第二章《整式》练习题(含答案)
2.1整 式班级 学号 姓名 分数一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式C .-2不是整式D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ; 13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31t t +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.(1)计算:9x2+x-(3x+2)(3x-2);(2)因式分解:(x+y)2-4xy;(3)解不等式组,并把解集在数轴表示出来.【答案】(1) x+4;(2) (x-y)2;(3) x≤-5.【解析】(1)先算乘法,再合并同类项即可;(2)先根据完全平方公式进行计算,再合并,最后根据完全平方公式分解即可;(2)先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.试题解析:(1)9x2+x-(3x+2)(3x-2)=9x2+x-9x2+4=x+4;(2)(x+y)2-4xy=x2+2xy+y2-4xy=x2-2xy+y2=(x-y)2;(3)∵解不等式①得:x<1,解不等式②得:x≤-5,∴不等式组的解集是x≤-5,在数轴上表示不等式组的解集是:【考点】1.整式的混合运算;2.因式分解-运用公式法;3.在数轴上表示不等式的解集;4.解一元一次不等式组.2..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.3.下列算式能用平方差公式计算的是()A.(2a+b)(2b-a)B.C.(3x-y)(-3x+y)D.(-m + n)(- m - n)【答案】D.【解析】中不存在相同的相项故A不能用平方差公式;,B不能用平方差公式;,C不能用平方差公式;,D能用平方差公式.【考点】平方差公式.4.已知x+y=2,xy=-1,求下列代数式的值:(1)5x2+5y 2;(2)(x-y)2.【答案】(1)30;(2)8.【解析】利用完全平方公式进行解题.试题解析:(1)5x2+5y 2 ="5" (x2+y 2) ="5" [(x+y) 2-2xy] =5×[22-2×(-1)] =30;(2)(x-y)2="(x+y)" 2-4xy=22-4×(-1) =8.【考点】完全平方公式.5.已知a-b=3,ab=2,求(1)(a+b)2,(2)a2-6ab+b2的值.【答案】(1)17;(2)1.【解析】(1)先求出a+b的平方,从而得到a2+2ab+b2,再变形为a2+2ab+b2=(a-b)2+4ab,然后把a-b、ab的值代入即可解答.(2)把a2-6ab+b2变形为(a-b)2-4ab, 然后把a-b、ab的值代入即可解答.当a-b=3,ab=2时,(1)(a+b)2 =(a-b)2+4ab=32+4×2=17(2)a2-6ab+b2=(a-b)2-4ab=32-4×2=1【考点】完全平方公式.6.先化简,后求值:,其中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一七年级数学第三单元 整式练习题精选(含答案)
一.判断题 (1)3
1+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( )
(5)多项式是整式.( )
二、选择题
1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y
2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个
2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式
3.下列说法正确的是( )
A .3 x 2―2x+5的项是3x 2,2x ,5
B .
3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3 D 一个多项式的次数是6,则这个多项式中只有一项的次数是6
4.下列说法正确的是( )
A .整式abc 没有系数
B .
2x +3y +4
z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式 5.下列代数式中,不是整式的是( )A 、23x - B 、745b a - C 、x a 523+ D 、-2005 6.下列多项式中,是二次多项式的是( ) A 、132+x
B 、23x
C 、3xy -1
D 、253-x 7.x 减去y 的平方的差,用代数式表示正确的是( )
A 、2)(y x -
B 、22y x -
C 、y x -2
D 、2
y x - 8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、b a s + C 、b s a s + D 、b
s a s s +2 9.下列单项式次数为3的是( ) A.3abc B.2×3×4 C.
4
1x 3y D.52x 10.下列代数式中整式有( ) x 1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个
11.下列整式中,单项式是( ) A.3a +1 B.2x -y C.0.1 D.2
1+x 12.下列各项式中,次数不是3的是( )A .xyz +1 B .x 2+y +1
C .x 2y -xy 2
D .x 3-x 2+x -1 13.下列说法正确的是( )
A .x(x +a)是单项式
B .π1
2+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是3
1 14.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3 B .x 3,xy
2 C .x 3,-xy 2
D .25 15.在代数式y
y y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1 B .2 C .3 D .4 16.单项式-232
xy 的系数与次数分别是( )A .-3,3 B .-21,3 C .-23,2 D .-2
3,3
17.下列说法正确的是( )
A .x 的指数是0
B .x 的系数是0
C .-10是一次单项式
D .-10是单项式
18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( ) A 、6- B 、5- C 、2- D 、5
19.系数为-2
1且只含有x 、y 的二次单项式,可以写出( )A .1个 B .2个 C .3个 D .4个 20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2
三.填空题
1.当a =-1时,3
4a = ; 2.单项式: 323
4y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;
4.220053xy 是 次单项式;
5.y x 342
-的一次项系数是 ,常数项是 ;
6._____和_____统称整式. 7.单项式
2
1xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +2
1y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式.
11.比m 的一半还少4的数是 ;
12.b 的311倍的相反数是 ;
13.设某数为x ,10减去某数的2倍的差是 ;
14.n 是整数,用含n 的代数式表示两个连续奇数 ;
15.42234263y y x y x x --+-的次数是 ;
16.当x =2,y =-1时,代数式||||x xy -的值是 ;
17.当t = 时,3
1t t +-的值等于1; 18.当y = 时,代数式3y -2与
43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.
20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.
21.多项式x 3y 2-2xy 2-
43
xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 . 22.若2313
m x y z -
与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 . 24.单项式7
53
2c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.
26.当a=____________时,整式x 2+a -1是单项式.
27.多项式xy -1是____________次____________项式.
28.当x =-3时,多项式-x 3+x 2-1的值等于____________.
29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n
30.一个n 次多项式,它的任何一项的次数都____________.
31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .
32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .
四、列代数式
1. 5除以a 的商加上3
23的和;
2.m 与n 的平方和;
3.x 与y 的和的倒数;
4.x 与y 的差的平方除以a 与b 的和,商是多少。
五、求代数式的值
1.当x =-2时,求代数式132--x x 的值。
2.当2
1=
a ,3-=
b 时,求代数式||a b -的值。
3.当3
1=x 时,求代数式x x 122-的值。
4.当x =2,y =-3时,求223
1212y xy x --
的值。
5.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。
六、计算下列各多项式的值:
1.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;
2.x 3-x +1-x 2,其中x =-3;
3.5xy -8x 2+y 2-1,其中x =21,y =4;
七、解答题
1.若2
1|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.
2.已知ABCD 是长方形,以DC 为直径的圆弧与AB 只有一个交点,且AD=a 。
(1)用含a 的代数式表示阴影部分面积;
(2)当a =10cm 时,求阴影部分面积 (π取3.14,保留两个有效数字)
3. 有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算,结果得到2 x 2-x+3,正确的结果应该是多少?
参考答案
一.判断题: 1.(1)√ (2)× (3)× (4)× (5)√
二、选择题: BABD C CDDAB CBCCB DDBAB
三、填空题:
1.-4; 2、3
4- ,5 3、五,四 4、三 5、-3,0 6.单项式 多项式
2、(1)24a s π= (2)792cm F D C。