大学高等数学_19常数项级数_数项级数及审敛法_幂级数.解剖
常数项级数的审敛法
23
证明
假设级数
1
收敛,
n1 n
且
lim
n
Sn
S
1 n
则
lim
n
S2n
S
于是
lnim(S2n Sn ) S S 0
例1 证明调和级数 1 1 1 1 1
是发散的。
n1 n
23
n
另一方面
S2n
Sn
1 n 1
n
1
2
111 2n 2n 2n
1 1 2n 2
故
lnim(S2n Sn ) 0
一、正项级数的审敛法
如果级数
un u1 u2 un
n1
的每一项都是非负数,即un ≥0(n=1, 2, …) ,则称此级数为 正项级数。
1.比较审敛法
设级数
un
n1
和
n1
vn
都是正项级数,且un
≤vn
(n=1,
2,
…)。
(1)若级数 vn 收敛,则级数 un 收敛;
(2)若级数
例5 级数 (1)n sin 1 收敛吗?若收敛,是条件收敛还是绝
对收敛? n1
n
再考虑每项取绝对值,得级数 sin 1
n1 n
由比较审敛法的极限形式,可知级数 sin 1 发散。
n1 n
所以级数 sin 1 是条件收敛。
n1 n
高等数学
1
2n 2n
1
1 2
1
由比较审敛法知,该级数收敛。
例3 判断下列级数的敛散性:
2n 1
(1)
n1
2n
(2) nxn1
n1
(x 0)
高数数项级数及审敛法
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
n1
1 n
发散
,
由比较审敛法可知
p
级数
发散 .
2) 若p 1, p 级数收敛
2) 若p 1,因为当
1
np
n n1
1 np
d
x
时,
1 np
1 xp
,
故
第十一章
无穷级数
数项级数 无穷级数 幂级数
付氏级数 表示函数
无穷级数是研究函数的工具 研究性质 数值计算
第一节
第十一章
常数项级数的概念和性质
一、常数项级数的概念
给定一个数列 u1 , u2 , u3 , , un , 将各项依
次相加, 简记为 un , 即 n1
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
从而 lim Snna 1q从而lim
n
Sn
,
2). 若
则 级数成为
因此级数发散 ;
因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ; q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
则称无穷级数发散 . 当级数收敛时, 称差值
高数课件-常数项级数的审敛法
u1 (u2 u3 ) (u4 u5 ) (u2n2 u2n1 ) u2n
21
由前一式知{S2n}單調增加,由後一式知S2n <u1。 由數列判斂的單調有界準則知:
lim
n
S 2n 存 在 , 记 为S , 则S
收敛,
但
un1 un
2 (1)n1 2(2 (1)n )
an ,
1
lim
n
a
2n
, 6
3
lim
n
a
2n1
, 2
lim un1 n un
lim
n
an
不存在.
13
例4 判斷下列各級數的斂散性
n3
(1)
,
n1 2n
e n
(2)
,
n1 n!
n!
(3) n1 nn
ln n
(4)
,
n2
n2
解(1)
)~ 3 n2
而
1
3
收
敛,
所給級數收斂。
n n1 2
9
定理 10.2.4(比值審斂法,達朗貝爾D’Alember審斂法)
设 un
n1
是正项级数,如果lim un1 n un
(数或
)
则 1时级数收敛; 1时级数发散; 1 时失效.
證明 当为有限数时, 对 0,
N,
当n N时,
有 un1 ,
(1)n当P 0时收敛。
n2 n p
注意 un單調減少不是交錯級數 (1)n1un (un 0) n1 收斂的必要條件。
23
例8 判斷 sin n2 1的收敛性。
常数项级数的审敛法 ppt课件
(2) 当l = 0时, 利 u n ( l用 ) v n ( n N ) 由定,理2 知
若 v n 收敛 , 则un也收敛;
n 1
n1
(3) 当l = ∞时, 存在 NZ,当nN时, un 1 , 即
un vn
vn
由定理2可知, 若 v n 发散 , 则un 也发散.
n 1
n1
un,vn
是两个正项级数,
lim
n
un vn
l,
(1) 当0l 时, 两个级数同时收敛或发散 ;
(2) 当l 0且 vn收敛时, un 也收敛 ;
(3) 当l 且 vn 发散时, un也发散 .
特别取 vn
1 np
,
对正项级数 un, 可得如下结论
:
p1, 0l
limn p nnl
n
p1, 0l
un发散 un收敛
n 1
“
” un0,∴部分和数列 Sn单调递增,
又已知 Sn有界, 故Sn收敛 , 从而 u n 也收敛.
n 1
定理2 (比较审敛法) 设 u n , v n 是两个正项级数,
n1 n1
且存在 NZ , 对一切 nN,有unkvn(常数 k > 0 ),
则有
(1) 若强级数 v n 收敛 , 则弱级数 u n 也收敛 ;
n
1
un
un
u n 1 ()u n ()2un1
( )nNuN 1
()k收敛 , 由比较审敛法可知 un收敛 .
(2) 当1或 时 ,必N 存 Z ,u 在 N 0 ,当nN
时 u n 1 1, 从而
un
un1unun1 uN
因此 n l i m unuN0,所以级数发散.
高数知识点总结
fx
2 2
法线的方向余弦
ቤተ መጻሕፍቲ ባይዱ
cos
1 fx f y
, cos
fy 1 fx f y
2 2
,
cos
切平面方程
1 1 fx f y
2 2
z z0 f x ( x0 , y0 ) ( x x0 ) f y ( x0 , y0 ) ( y y0 )
u u x u y s x s y s u u x u y t x t y t
一、内容总结
1、隐函数的导数:
• 一个方程的情形
定 理 1
设 函 数
在
U (X0)
定 F(x,yz) 理 2 F (x , y z ) 0 '
4、函数的幂级数和傅里叶级数展开法 (1). 函数的幂级数展开法
• 直接展开法 — 利用泰勒公式 • 间接展开法 — 利用已知展式的函数及幂级数性质
高数第三节:常数项级数的审敛法
n =1
其中
un > 0 , n =1, 2, L
定理7(莱布尼兹定理) 定理 (莱布尼兹定理)如果交错级数
n =1
∑ (−1)
∞
n−1
= u1 − u2 + u3 − u4 +L+ (−1) n−1un +L un
满足条件: 满足条件:
n→∞
(1) un ≥ un +1 ( n = 1, 2 , L), ( 2 ) lim un = 0
∞ n=1
∑ un = u1 + u2 + L+ un + L
∞
一般项取绝对值后所得级数记为
n =1
∑ | un | = |u1| + | u2| + L+ |un| + L
∞
∞
收敛, 1) (1)若 ∑ | un | 收敛, 则称原级数 ∑ un 绝对收敛
n =1 ∞
n=1
收敛, 发散, (2)若 ∑ | un | 发散, 而 ∑ un 收敛, )
n −1 1 1 1 1 1 1 ( ) +( ) +L+ ( ) − − − 2 −1 2 +1 3 −1 3 +1 n −1 n +1
vn =
v2 = 2
∞
∞
v3 = 1
+L
∞ 2 2 ∑ vn = ∑ = ∑ 发散, 发散, 所以原级数发散 . n =2 n =2 n−1 n =1 n
(二)绝对收敛与条件收敛 考虑任意项级数 考虑任意项级数
∞
∞
(1)该结论的逆命题不成立。 )该结论的逆命题不成立。 (2)定理提供了检验一般级数 ∑ un 是否收敛的一种 ) 有效方法。 有效方法。
数项级数审敛法
(c
n 1
n
an ) 为正项级数,
且由正项级数的比较判 别法知其收敛 . 由 (cn an )及 an 的收敛性知原级数收敛 .
n 1 n 1
4.设 an
n 1
2
| an | 收敛, 证明 收敛 n n 1
| an | 1 2 1 1 2 (an 2 ), 而 an 及 2 均收敛, n 2 n n 1 n 1 n 故由正项级数的比较判 别法知原级数绝对收敛 .
n
lim S 2 n 1 lim( S 2 n u2 n 1 ) S
n n
则
lim S n S u1
n
交错级数
同理
例如 1
| rn | un1 un2 un1.
1 1 1 n 1 1 (1) 2 3 4 n
定理3(比较审敛法极限形式)
un l (0 l ) 设 u n 和 vn 都是正项级数, 如果 lim n v n 1 n 1 n
则 证
u
n 1
n
和
v
n 1
n
同时收敛或同时发散.
l 2
l un l l l 2 vn 2
un lim l n v n
(i).un un1; (n 3,4,...) (ii).lim un 0
n
f ( x)
ln x .( x 2) 单调减少 x
f ( x)
1 ln x 0.( x e) 2 x
思考
f ( x) 1.设 f ( x) 在 x 0 邻域内有连续二阶导数 , 且 lim 0, x0 x 1 证明 f ( )绝对收敛. n n 1 f ( x) lim 0 及 f ( x) 在 x 0 邻域内有连续二阶导数 x 0 x f (0) 0, f ' (0) 0 从而
第二讲正项级数收敛判别法(一)解剖
nn1
n1
n1 (n2 1) 2
(A)收敛
(B)发散
#2014021901
例4 判别敛散性
1
x
(2)
n1
n 0
1
x2
dx
(A)收敛
(B)发散
#2014021902
例4 判别敛散性
nn1
x 1
(1)
n1
n1 (n2 1) 2
(2)
n
0 1 n1
x2
dx
证:(1)0
u n
nn1
n1
(n2 1) 2
也发散 .
说明:
1. 比较判别法仅适用于正项级数 ;
2. 不等式条件可以从某一个N后都满足就行;
3.常用的参考级数
几
何
级
数
aq
n
n0
常用的不等式
a2 b2 2ab, a,b R
sin x x, x 0 ex 1 x, x 0
x ln(1 x) x, x 0 1 x
例2.
讨论
p
收敛。 发散。
例6.
判别级数 sin
n1
1 n
的敛散性
.
#2014021903
(A)收敛
(B)发散
例6.
判别级数 sin
n1
1 n
的敛散性
.
解: lim n sin 1 lim n 1 1
sin
1 n
~
1 n
n
n n n
根据比较审敛法的极限形式知
sin
n1
1 n
发散
.
例7.
判别级数 ln1
(n N)
(1) 当0 < l <∞时, 同时收敛或同时发散 ;
高数课件28无穷级数1常数项级数审敛法
营口地区成人高等教育 QQ群 54356621
x = e
检比法失效, 检比法失效,但
⇒
1 n e > (1 + ) n
即后项大于前项
un + 1 > un
故级数发散
7.根值审敛法 (柯西判别法): 7.根值审敛法 柯西判别法)
设
∑u
n =1
∞
是正项级数,如果lim n un = ρ n 是正项级数,
∑ un收敛. n =1
∞
( 2) 设 sn → ∞ ( n → ∞ ) 且 un ≤ v n ,
则 σ n ≥ sn → ∞
∴
不是有界数列 定理证毕. 定理证毕
∑ vn发散. n =1
∞
推论: 若 un 收敛(发散) 推论: 收敛(发散)
n=1
∑
∞
且vn ≤ kun (n ≥ N)(kun ≤ vn ), 则∑vn 收敛(发散).
1.当 时比值审敛法失效; 1.当ρ = 1时比值审敛法失效;
1 例 级数 ∑n 发散, n=1
∞
1 , 级数 2 收敛 ∑n n=1
∞
(ρ = 1)
营口地区成人高等教育 QQ群 54356621
2.条件是充分的,而非必要. 2.条件是充分的,而非必要. 条件是充分的
2 + ( −1) 3 例 ∵ un = ≤ n = vn , n 2 2
n dx 1 设 p > 1, 由图可知 p < ∫n−1 p n x 1 1 1 sn = 1 + p + p + ⋯ + p 2 3 n o 2 dx n dx ≤ 1 + ∫1 p + ⋯ + ∫n−1 p x x
高等数学课程内容及基本要求
高等数学课程内容及基本要求高等数学是高等学校理工科专业重要的基础理论课。
通过本课程的学习,使学生系统的获得一元函数微积分、向量与空间解析几何、多元函数微积分、常微分方程与无穷级数的基本概念、基本理论、基本运算和分析方法,为学习物理、电工、电子等课程和以后扩大数学知识面,打好基础.在课堂讲授的同时,辅以课堂练习与讨论,引导学生认真阅读教材,独立完成作业,逐步培养学生的抽象思维、逻辑推理、空间想象、分析解决实际问题的能力,掌握学习方法,培养自学能力。
高等数学是全校公共基础课,对于我校各工科专业,高等数学在大学本科教育阶段显得尤为重要,有着举足轻重的作用。
该课程不但是学习复变函数、概率统计、积分变换等课程的必修课,而且为学习工科专业课程奠定必要的数学基础。
课程内容及基本要求(一)函数、极限与连续(20学时)内容:函数概念、初等函数,数列极限、函数极限,无穷大与无穷小,极限存在准则、无穷小的比较,函数的连续性、闭区间上连续函数的性质。
基本要求1.深刻理解函数的定义,回球函数的定义域,会用函数对应法则求函数值与复合函数,了解初等函数的构成,会建立简单应用问题的函数关系,了解隐函数与反函数的概念,了解函数的有界性、单调性、奇偶性和周期性。
2.理解数列极限的定义和几何意义,知道收敛数列有界性和保号性,掌握极限的四则运算法则及复合运算法则,会用极限存在的两个准则:夹逼准则与单调有界准则。
3.理解函数极限、左右极限定义,掌握两个重要极限,知道函数极限存在与左右极限的关系,知道极限存在时函数的有界性、保号性,掌握极限运算法则,掌握利用两个重要极限求极限的方法。
4.理解无穷小、无穷大、高阶无穷小和等价无穷小的概念,会用等价无穷小求极限。
5.理解函数在一点连续和在一个区间上连续的概念,会辨别函数间断点的类型,了解闭区间上连续函数的性质(有界、最值、介值、零点)并会应用这些性质。
.重点:极限概念,极限的四则运算法则,利用两个重要极限求极限,函数的连续性.难点:极限的定义,极限存在准则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 g t 2知 2
t
2s g
设 tk 表示第 k 次小球落地的时间, 则小球运动的时间为
T t1 2t2 2t3
2 g
1
2
1 2
(
1 2)2
2 1 2 2 1 2.63 ( s )
g
机动 目录 上页 下页 返回 结束
定义:给定一个数列 u1 , u2 , u3 , , un , 将各项依
S un, vn
n1
n1
则级数 (un vn )也收敛, 其和为 S .
n1
n
n
证: 令 Sn uk , n vk , 则
k 1
k 1
n
n (uk vk )
S ( n )
k 1
这说明级数 (un vn ) 也收敛, 其和为 S .
n1
机动 目录 上页 下页 返回 结束
例1. 讨论等比级数 (又称几何级数)
( q 称为公比 ) 的敛散性.
解: 1) 若
则部分和
因此级数收敛
,
其和为
a 1q
;
因此级数发散 .
aa qn 1q
从而
lim Sn
n
a 1q
从而 lim Sn ,
n
机动 目录 上页 下页 返回 结束
2). 若
则 级数成为
因此级数发散 ;
因此
Sn
a, 0,
ln(n 1) ( n )
所以级数 (1) 发散 ;
技巧:
利用 “拆项相消” 求 和
机动 目录 上页 下页 返回 结束
(2)
Sn
1 1 2
1 23
1 34
1 n (n 1)
1
1 2
1 2
13
1 3
14
1 n
n
1
1
1 1 1 ( n ) n 1
所以级数 (2) 收敛, 其和为 1 .
第十一章 无穷级数
数项级数 无穷级数 幂级数
付氏级数
无穷级数是研究函数的工具
表示函数 研究性质 数值计算
第一节
第十一章
常数项级数的概念和性质
一、常数项级数的概念 二、无穷级数的基本性质 三、级数收敛的必要条件 *四、柯西审敛原理
机动 目录 上页 下页 返回 结束
一、常数项级数的概念
引例1. 用圆内接正多边形面积逼近圆面积.
的和.
证: 设收敛级数 S un , 若按某一规律加括弧, 例如
n1
则新级数的部分和序列
为原级数部分和
序列 Sn ( n 1 , 2 , )的一个子序列, 因此必有
S
用反证法可证
推论: 若加括弧后的级数发散, 则原级数必发散.
注意: 收敛级数去括弧后所成的级数不一定收敛.
例如,(11) (11) 0 , 但
例如,
其一般项为
不趋于0, 因此这个级数发散.
机动 目录 上页 下页 返回 结束
注意:
lim
n
un
0
并非级数收敛的充分条件.
例如, 调和级数
虽然
但此级数发散 .
事实上 , 假设调和级数收敛于 S , 则
但
S2n Sn
1 1 1 1
n1 n 2 n3
2n
n 2n
1 2
矛盾! 所以假设不真 .
技巧:
利用 “拆项相消” 求 和
机动 目录 上页 下页 返回 结束
例3. 判别级数 解:
的敛散性 .
ln(n 1) ln(n 1) 2ln n
ln(1 1n) ln 2
故原级数收敛 , 其和为
机动 目录 上页 下页 返回 结束
二、无穷级数的基本性质
性质1. 若级数
收敛于 S , 即 S un , 则各项
发散.
机动 目录 上页 下页 返回 结束
例4.判断级数的敛散性: 解: 考虑加括号后的级数
发散 , 从而原级数发散 .
机动 目录 上页 下页 返回 结束
三、级数收敛的必要条件
设收敛级数
则必有
证: un Sn Sn1
lim
n
un
lim
n
Hale Waihona Puke Snlimn
Sn1
S
S
0
可见: 若级数的一般项不趋于0 , 则级数必发散 .
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ; q 1 时, 等比级数发散 .
机动 目录 上页 下页 返回 结束
例2. 判别下列级数的敛散性:
解: (1)
Sn
ln 2 1
ln 3 2
ln 4 3
ln n 1 n
(ln 2 ln1) (ln3 ln 2) ln(n 1) ln n
n1
乘以常数 c 所得级数
也收敛 , 其和为 c S .
n
n
证: 令 Sn uk , 则 n c uk c Sn ,
k 1
k 1
lim n
n
cS
这说明 c un 收敛 , 其和为 c S .
n1
说明: 级数各项乘以非零常数后其敛散性不变 .
机动 目录 上页 下页 返回 结束
性质2. 设有两个收敛级数
依次作圆内接正 内接正三角形面积, ak 表示边数 增加时增加的面积, 则圆内接正
边形, 设 a0 表示
这个和逼近于圆的面积 A . 即
机动 目录 上页 下页 返回 结束
引例2. 小球从 1 米高处自由落下, 每次跳起的高度减
少一半, 问小球是否会在某时刻停止运动? 说明道理.
由自由落体运动方程
s
机动 目录 上页 下页 返回 结束
例5. 判断下列级数的敛散性, 若收敛求其和:
(2)
n1n3
1 3n2
2n
;
解: (1) 令
则
e n1 ( n 1) !
un1 un
(n1)n1 enn! nn
故
1 (n 1, 2, )
说明:
(1) 性质2 表明收敛级数可逐项相加或减 .
(2) 若两级数中一个收敛一个发散 , 则 ( un vn )
必发散 . (用反证法可证)
n1
但若二级数都发散 ,
不一定发散.
例如, 取 un (1)2n , vn (1)2n1,
机动 目录 上页 下页 返回 结束
性质3. 在级数前面加上或去掉有限项, 不会影响级数
次相加, 简记为 un , 即
n1
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
机动 目录 上页 下页 返回 结束
则称无穷级数发散 . 当级数收敛时, 称差值 为级数的余项. 显然
机动 目录 上页 下页 返回 结束
的敛散性.
证: 将级数 un 的前 k 项去掉, 所得新级数
n1
的部分和为
n
n uk l Skn Sk
l 1
极限状况相同, 故新旧两级
数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
机动 目录 上页 下页 返回 结束
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数