原子吸收光谱分析资料
原子吸收光谱分析
原子吸收光谱分析一、光谱基本原理原子吸收光谱是利用原子在特定波长的光照射下,原子从基态跃迁到激发态,吸收光能的原理。
根据波长的选择,原子吸收光谱可分为光电、可见、紫外和X射线等光谱。
其中,紫外-可见光谱(UV-Vis)是应用最广泛的分析方法。
原子吸收光谱依靠光源、样品和检测器共同完成分析。
在光源方面,通常使用中空阴极灯、氢、氩等气体放电灯作为发射源;在样品中,需要有吸收光线的元素,如金属、无机盐或有机物中的元素;检测器则根据不同光谱区域的吸收信号进行测量。
二、仪器构成原子吸收光谱分析仪器主要包括光源、光学系统、样品室和信号接收装置。
光源通常采用中空阴极灯,通过通电使高纯度金属蒸发产生原子,金属原子处于激发态时吸收特定波长的光,从而完成光谱分析。
光学系统包括一个反射镜和一个衍射光栅,用于选择特定波长的光进入样品池。
样品室通过控制进样量和流速将待测样品引入到光路中,使其与待测元素发生反应。
信号接收装置一般采用光电倍增管或CCD相机,将吸收的光信号转化为电信号,并通过放大和分析处理,最终得到光谱图谱。
三、应用原子吸收光谱分析在许多领域都有广泛应用。
在环境领域,可以用于测定水、土壤和空气中的重金属、汞、铅等元素的含量,以评估环境的污染程度。
在食品安全和农业领域,可以用来检测食品中的农药残留、微量元素含量等。
在药物和化学品的质量控制中,原子吸收光谱也被广泛应用,用于检测药品中的微量金属离子、无机盐等。
此外,原子吸收光谱还用于地质勘探、金属材料分析、放射性元素检测等领域。
四、未来发展随着科学技术的不断发展,原子吸收光谱分析也在不断完善。
一方面,研发更先进的光源和光学系统,提高光源的稳定性和精确性,加强光学系统的分辨率和选择性。
另一方面,开发更灵敏的检测器,提高信号接收装置的灵敏度和快速性。
此外,利用微纳米技术,制备新型材料,提高原子吸收光谱的灵敏度和选择性。
同时,结合化学计量学、机器学习等技术手段,用于光谱数据处理和解析,进一步提高分析的准确性和效率。
原子吸收光谱分析_图文_图文
③火焰温度取决于燃气与助燃气类 型及比例。 常用火焰包括:空气-乙炔(2300℃)、
氧化亚氮-乙炔(3000 ℃) 等。
火焰类型:
化学计量火焰:
温度高,干扰少,稳定,背景低,常用。
富燃火焰:
还原性火焰,燃烧不完全.适于 测定较易形成难熔氧化物的元素Mo 、Cr 、稀土等。
自然宽度
(2) 谱线变宽
无外界影响下谱线具有的宽度。
多普勒变宽(热变宽)Δ D
由原子热运动导致。 多普勒效应:一个运动着的原子发出的光,如果运动方向 离开观察者(接受器),则其频率较静止原子所发的频率低; 反之,则高。
因此,多普勒变宽与元素原子质量、温度和谱线频率有关。
谱线频率越大、原子质量越小、温度越高,Δ D越大。
8.4 定量分析方法
1. 标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度c作标准曲线:
A = lg(I0/I) = kcL 在相同条件下测定试样的吸光度A数据,在标准曲线上查出 对应的浓度值。
注意在高浓度时,标准曲线易 发生弯曲。向浓度轴弯曲(负偏离 )由自吸、压力变宽等影响所致; 光谱干扰(背景干扰)引起正偏离
A = logI0/It = log 1/T = kbc
A为吸光度; k是吸收系数,与入射光波长、物质的性质和溶液 的温度等因素有关;
It/I0称为透光率,用T表示。
朗伯-比耳定律的适用条件:入射光为单色光。
原子吸收与分子吸收
KMnO4溶液的吸收曲线 分子吸收光谱--带状光谱
原子结构较分子结构简单,理 论上应产生线状光谱吸收线。
2. 标准加入法
原子吸收光谱分析
原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。
第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。
二、原子吸收光谱分析的特点:(1 )灵敏度高:其检出限可达10 -9 g /ml (某些元素可更高);2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;(3 )具有较高的精密度和准确度:试样处理简单。
第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态( E 0 = 0 )当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。
处于激发态。
出于激发态的电子很不稳定,一般在极短的时间(10-8-10 -7s)便跃回基态(或能量较低的激发态),并以电磁波的形式放出能量:A E=En-EO=h=hc/ 入共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。
共振线:共振发射线和共振吸收线都简称为共振线。
各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。
二、谱线轮廓与谱线变宽(一)吸收线轮廓若将一束不同频率,强度为10的平行光透过厚度为1cm的原子蒸汽时,一部分光被吸收,透射光的强度lv仍服从朗伯-比尔定律:式中:Kn——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色I ),而是具有一定的宽度、轮廓,即透射光的强度表现为频率分布。
第03章 原子吸收光谱分析
7
• 各种元素的基态至第一激发态跃迁最易发生,吸收最强,最灵 敏线——主共振吸收线。 • 各种元素的原子结构和外层电子排布不同,由基态至第一激发 态跃迁吸收能量不同,共振线不同——具有特征性。
• 利用基态的原子蒸气对光源辐射的特征谱线(共振线)的吸收
可以进行定量分析。 • 光谱位于光谱的紫外区和可见区。
• 准确度高,分析速度快;
• 应用广泛。 • 局限:不能对多元素同时测定(需更换光源)、对难 熔元素测定灵敏度和精密度较低、对于成分复杂样品 干扰较严重、对多数非金属元素不能直接测定。
5
元素周期表中可用原子吸收光谱法分析的元素
6
3.2 原子吸收光谱法的基本原理
3.2.1 原子吸收光谱的产生
• 基态原子吸收其共振辐射,外层电子由基态跃迁至激发态 而产生原子吸收光谱。
收定律,有:
I I 0e
Kvl
• 或
I0 A lg 0.434 K v l I
21
• 采用锐线光源进行测量,则Δv发< < Δv
吸
,在辐射线宽度范围内,Kν可近似
发射线
认为不变,并近似等于峰值时的吸收 系数K0,则:
I0 A lg 0.434 K 0l I
22
• 峰值吸收系数K0与谱线的宽度有关,在通常原子吸收测定条
• 由于原子在空间作无规则热运动所导致的,故也称为热变宽。
2v0 vD c
2(ln 2) RT T 7 7.1610 v0 Ar Ar
• Doppler 变宽随温度升高、谱线频率升高和相对原子质量减小而 变宽。
11
3.压力变宽( 10-3nm)
• 当原子吸收区气体压力变大时,相互碰撞引起的变宽是 不可忽略的。原子之间的相互碰撞导致能级变化,激发 态原子平均寿命缩短,引起谱线变宽。 • 劳伦兹(Lorentz)变宽:待测元素原子和其他粒子碰撞。
第六章原子吸收光谱分析法
例题 计算2000K和3000K时, Na589.0nm的激发态 与基态原子数之比各为多少?已知gi/g0=2
解:
Ei
hc
4.136 1015eV s 3 1010cm s1 589.0nm 107 cm nm1
AAS的基本原理
赫鲁兹马克(Holtzmark)变宽(R或R): 同种原子碰撞,又称为共振变宽, R随着待测
元素原子密度升高而增大,在原子吸收法中,测定 元素的浓度较低,R一般可以忽略不计 。
自吸变宽:
光源辐射共振线被光源周围较冷的同种原子所吸 收的现象叫做自吸,自吸现象使谱线强度降低,同 时导致谱线变宽。
AAS的基本原理
表征吸收线轮廓(峰)的参数: 中心频率O(峰值频率) :最大吸收系数对应的频率 中心波长λ(nm) :最大吸收系数对应的波长
半宽度ΔO(吸收线宽度):峰值吸收值一半处的频率
原子吸收线的宽度约为10-3-10-2nm(折合成波长)。
AAS的基本原理
3.吸收峰变宽原因
自然变宽(N或N): 在无外界条件影响时,谱线的固有宽度称为自
AAS的基本原理
一、共振线
1.原子的能级与跃迁 基态第一激发态,吸收一定频率的辐射能量。产生的吸收
线叫共振吸收线(简称共振线) —— 吸收光谱 激发态基态,发射出一定频率的辐射。所释放的光线叫共
振发射线(也简称共振线) ——发射光谱 2.元素的特征谱线 1)各种元素的原子结构和外层电子排布不同 跃迁吸收能量不同——具有特征性 2)各种元素的基态第一激发态 最易发生、吸收最强、最灵敏线,特征谱线 3)利用特征谱线(共振线)可以进行定量分析。
原子吸收光谱分析-
谱线宽度得表示
吸收线在中心频率0 两侧具有一定得宽度 用半宽度Δ表征
I0为入射光强 I为透射光强 ν0为中心频率
I为透射光强 ν0为中心频率 Kν为吸收系数
吸收线Δ: 10-3~10-2nm 发射线Δ: 5×10-4~2×10-3nm
大家学习辛苦了, 还是要坚持 继续保持安静
吸收系数Kν将随光源得辐射频率ν而改变,这就是由
§8-2 原子吸收光谱法基本原理
一、原子吸收光谱得产生
正常情况下,原子处于基态。
当有辐射通过自由原子蒸气时,若辐射得频率等于 原子中得电子从基态跃迁到激发态所需要得能量频率 时,原子将从辐射场吸收能量,产生共振吸收,电子由基 态跃迁到激发态,同时使辐射减弱产生原子吸收光谱。
各种元素得原子结构不同,不同元素得原子从基态 激发至第一激发态时,吸收得能量也不同,所以各元素 得共振线都不相同,而具有自身得特征性。
提高原子化温度,减小化学干扰、使用高温火焰或提 高石墨炉原子化温度,可使难离解得化合物分解。
2)在同一温度下,电子跃迁得能级Ej越小,共振线波长 越长, Nj/N0值也愈大
常用得火焰温度一般低于3000K,元素激发能
一般低于10ev,大多数共振线得波长小于600nm,因
此对大多数元素来说, Nj/N0得数值均很小(<1%), 即火焰中得激发态原子数远小于基态原子数,也就
就是说火焰中99%以上得原子处于基态。
k
cxVx Vx
csVs Vs
0.670
k
cx
50 103 50 300 106 50.3103
cx 0.279mg / L
§8-5 干扰及其抑制
原子吸收光谱法得主要干扰有物理干扰、化学干 扰与光谱干扰三种类型。
(完整word版)原子吸收光谱分析解读
原子吸收光谱分析4。
2.1 概述4。
2。
1。
1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。
本章重点介绍应用广泛的原子吸收光谱法。
2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。
2.1。
2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。
用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。
4。
2。
1。
3 方法特点灵敏度高,10—9g/ml-10—12g/ml。
选择性好,准确度高。
单一元素特征谱线测定,多数情况无干扰。
测量范围广.测定70多种元素。
操作简便,分析速度快。
4。
2.2 原子吸收法基本原理 4。
2。
2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。
对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。
➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。
2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。
吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。
原子吸收光谱分析培训资料
单色器
将光源发出的光分离成单色光 ,常用光栅单色器。
检测器
检测透过样品的光强度,常用 光电倍增管。
原子吸收光谱法应用领域
环境监测
用于大气、水体、土壤等环境中痕量元素的检测 ,如铅、镉、汞等。
生物医药
用于药物成分分析、生物样品中痕量元素的检测 等。
食品分析
检测食品中的营养成分和有害元素,如钙、铁、 锌、砷等。
高灵敏度
原子吸收光谱法(AAS)能够检测极低浓度的元素,对于痕量分析具 有极高的灵敏度。
选择性好
AAS通过测量特定元素的原子吸收特定波长的光来进行分析,因此具 有优异的选择性,能够准确测定复杂样品中的目标元素。
宽测量范围
AAS适用于多种元素的分析,包括金属元素和非金属元素,测量范围 广泛。
准确度高
AAS的测量结果准确可靠,能够满足高精度分析的要求。
废弃物分类
对实验产生的废弃物进行分类收集,如废液、废渣、废气等。
废弃物处理
按照环保要求对废弃物进行处理,如中和、沉淀、过滤等,确保 达标排放。
环保法规与标准
遵守国家和地方环保法规与标准,积极推行绿色实验和环保理念。
个人防护措施建议
实验服与护目镜
穿着实验服进行实验,佩戴合适的护目镜以保护眼睛。
手套与口罩
较技术
研究和发展更有效的基体消除技术, 以减少基体成分对AAS测量的干扰。
多元素同时测定技术
探索和开发能够同时测定多个元素的 AAS技术,提高分析效率。
非线性校正方法
研究更先进的非线性校正方法,以改 善AAS在非线性响应方面的性能。
自动化和智能化技术
将自动化和智能化技术应用于AAS, 降低对操作人员的专业要求,提高分 析的准确性和效率。
化学反应的原子吸收光谱分析
化学反应的原子吸收光谱分析原子吸收光谱分析,是一种利用原子对特定波长的光发生吸收的现象进行分析的方法。
通过测量样品溶液或气体中吸收光的强度,可准确测定其中的化学元素含量。
在化学反应中,原子吸收光谱分析是一项重要的技术,能够提供关于反应过程中元素浓度和化学物种变化的信息。
本文将详细介绍化学反应的原子吸收光谱分析的原理、应用和优势。
一、原理原子吸收光谱分析基于原子对特定波长光的吸收现象,其原理可以分为两个基本过程:光源激发和吸收现象。
1. 光源激发在原子吸收光谱分析中,常用的光源是空心阴极放电灯或恒流电源。
光源中的电极通电后,电极中的金属元素被激发形成原子或原子离子,并释放出特定波长的光。
2. 吸收现象样品溶液或气体中的化学元素原子或原子离子与光源发出的特定波长的光相互作用,产生吸收现象。
当光经过样品时,如果样品中存在与光源波长相对应的原子或原子离子,这些原子会吸收部分光的能量,使得吸收光的强度减小。
通过测量光的强度变化,可以推断样品中所含的元素及其浓度。
二、应用原子吸收光谱分析在化学反应中的应用广泛,以下是几个常见的应用领域:1. 反应动力学研究原子吸收光谱分析可用于研究化学反应的动力学过程。
通过监测反应物中某种元素的浓度随时间的变化,可以推断反应的速率常数、反应机理等信息。
2. 反应过程监测通过原子吸收光谱分析,可以实时监测反应过程中各种元素的浓度变化。
这对于了解化学反应过程中元素的转化情况、判断反应的进行程度等方面具有重要意义。
3. 催化剂研究原子吸收光谱分析可用于研究催化剂在反应过程中的作用机制。
通过测定反应物中的催化剂元素浓度变化,可以揭示催化剂对反应速率、选择性等方面的影响。
4. 有机合成原子吸收光谱分析在有机合成中的应用越来越广泛。
通过测定反应物和产物中有机元素的浓度,可评估有机合成反应的转化率和产物纯度。
三、优势原子吸收光谱分析具有以下优势:1. 灵敏度高原子吸收光谱分析的灵敏度通常为微克/升量级,可以准确测定样品中微量甚至痕量元素的含量。
原子吸收光谱分析
三、原子吸收线
(一)原子吸收线的产生 当通过基态原子的光辐射具有的能量 h 恰好等
于原子由基态 → 激发态所含有的能量ΔE时,基态 原子吸收光辐射产生原子吸收光谱(线)
ΔE=h=hc/ 不同种类的原子有不同的原子结构,由基态 → 激发态所需的能量差不同,吸收的光辐射的频率或 波长不同。 Na(基态)吸收波长为589.0 nm Mg(基态)吸收波长为285.2 nm
❖ 光谱项(spectral term)是描述这些量子能级 的形式。
❖ n2S+1LJ ❖ n:主量子数
表示核外电子分布的层数
❖ S:总自旋量子数 表示价电子自旋量子数的矢量和
❖ L:总角量子数 表示电子轨道形状
❖ J :内量子数
表示价电子组合得到的L与S的矢量和
❖ 2S+1:光谱项的多重性(*****)
+
Kvdv
π e2 mc
N0
f
如果将公式左边求出,即谱线下所围面积测量出(积分吸
收)。即可得到单位体积原子蒸气中吸收辐射的基态原子数
N0。
这是一种绝对测量方法,现在的分光装置无法实现。 △=10-3nm,若取600nm,单色器分辨率R=/△=6×105 钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸 收线半宽度:10-3nm。如图:
4.火焰原子化装置
❖ 全消耗型原子化器,将试样 直接喷入火焰
6-原子吸收光谱
二、原子化器:
作用:
原子化器的功能是提供能量,使试样干燥、蒸发并原 子化,产生原子蒸气。 要求: ●原子化效率要高。 ●稳定性要好。雾化后的液滴要均匀、粒细; ●低的干扰水平。背景小,噪声低; ●安全、耐用,操作方便。
火焰原子化系统 原子化系统类型 非火焰原子化系统
1、火焰原子化系统:
火焰原子化系统是由化学火焰热能提供能量。
★ 分析速度快,仪器比较简单,操作方便,应用比较广。
缺点:
1. ★除了一些现成、先进的仪器可以进行多元素的测定外,
目前大多数仪器都不能同时进行多元素的测定; 2. ★由于原子化温度比较低,对于一些易形成稳定化合物的 元素,如W、Ni、Ta等稀土等以及非金属元素,原子化效 率低,检出能力差; 3. ★非火焰的石墨炉原子化器虽然原子化效率高,检测限低 ,但是重现性和准确性较差; 4. 对复杂样品分析干扰也较严重。
宽度(mm)。
四、检测系统
定量分析方法
1.标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值;
应注意的问题:
1. 所配置的标准溶液的浓度,应在吸光度和浓度呈直 线关系的范围内。 2. 由于雾化效率和火焰状态经常变动,标准曲线的斜 率也随之变动,每次测定前应用标准溶液对吸光度 进行检测。 3. 在整个分析过程中操作条件应保持不变。 4. 标准样品与待测试样的组成应保持一致。
(3)压力变宽(劳伦兹变宽,赫鲁兹马克变宽)ΔVL
由于原子相互碰撞使能量发生稍微变化。 劳伦兹(Lorentz)变宽: 待测原子和其他原子碰撞。 赫鲁兹马克(Holtsmark)变宽(共振变宽): 同种原子碰撞。浓度高时起作用,在原子吸收中可忽略 (4)场致变宽 外界电场、带电粒子、离子形成的电场及磁场的作用使 谱线变宽的现象;影响较小; 在一般分析条件下温度变宽和劳伦兹为主
原子吸收光谱分析法
对于物理干扰,最好的消除方法 就是配制与试样溶液组成相似的 标准溶液。也可用标准参加法来 进行测定。
三,测定条件的选择: 1.分析线的选择:一般选用共
振线作分析线。 2.灯电流:保正稳定和适当光
强度输出的条件下,尽量选 用较低的工作电流。
5.狭缝宽度:由于原子吸收光谱法谱 线的重叠较少,一般可用较宽的狭 缝,以增强光的强度。但当存在谱 线干扰和背景吸收较大时,那么宜 选用较小的狭缝宽度。
SCV0.0044(g/1% 吸 收 ) A
式中:S为绝对灵敏度;C为试液 中 待 测 元 素 的 浓 度 〔g能检 出的元素的最低浓度或最小质 量。
定义为:能给出信号强度 等于3倍噪声信号强度标准偏差 时所对应的元素浓度或质量。
当在正负电极上施加适当电 压〔一般为200~500伏〕时,在 正负电极之间便开始放电,这时, 电子从阴极内壁射出,经电场加 速后向阳极运动。
电子在由阴极射向阳极的过程中, 与载气〔惰性气体〕原子碰撞使其 电离成为阳离子。带正电荷的惰性 气体离子在电场加速下,以很快的 速度轰击阴极外表,使阴极内壁的 待测元素的原子溅射出来,在阴极 腔内形成待测元素的原子蒸气云。
三.光学系统: 分光系统一般用光栅来进行分光。
光谱通带: W=D×S×10-3
其中:W为光谱通带〔单位nm〕;D为 光 栅 的 倒 线 色 散 率 〔 单 位 nm/mm-1〕 ; S为狭缝宽度〔单位μm〕。
四.检测系统: 检测系统包括检测器、放大器、
对数转换器、显示器几局部。
原子吸收光谱法的分析过程:
计算式为:D c 3 ( g / m L )
A
或 D g 3 ( g )
A
式 中 D 为 检 出 极 限 〔μg/mL 或 g〕 ; σ 为 对 空 白 溶 液 进 行 不 少 于 10 次 测 量时的标准偏差;A为吸光度;g为 质量〔g〕。
(完整版)原子吸收光谱的定量分析
(完整版)原子吸收光谱的定量分析
介绍
原子吸收光谱是一种常用的定量分析方法,用于测量样品中特定元素的浓度。
本文档旨在介绍原子吸收光谱的基本原理和定量分析的步骤。
原理
原子吸收光谱利用原子吸收特定波长的光来测量样品中特定元素的浓度。
当光通过样品中的原子气体时,原子会吸收与其原子结构相关的特定波长的光线。
通过测量吸收光的强度,可以确定样品中特定元素的浓度。
步骤
以下是进行原子吸收光谱定量分析的基本步骤:
1. 样品制备:将待分析的样品转化为原子气态。
常用的方法包括火焰法、电感耦合等离子体法等。
2. 选择波长:根据待分析元素的吸收峰进行波长选择。
可以通过参考相关文献或经验来确定。
3. 校准曲线:准备一系列浓度已知的标准溶液,测量它们的吸光度,并绘制校准曲线。
4. 测量样品:将样品引入原子吸收光谱仪器,测量其吸光度。
5. 数据分析:利用校准曲线,计算出样品中特定元素的浓度。
6. 重复测量:进行重复测量,确保结果的准确性和可靠性。
7. 结果报告:将测得的浓度结果整理并报告。
结论
原子吸收光谱是一种可靠的定量分析方法,能够有效测量样品中特定元素的浓度。
正确的样品制备、波长选择和数据分析步骤对于获得准确结果至关重要。
通过遵循上述步骤,可以进行原子吸收光谱的定量分析。
*注意:本文档仅为介绍原子吸收光谱的基本原理和步骤,具体实验细节和参数设置需要根据实际情况进行调整。
*。
原子吸收光谱分析及其应用
原子吸收光谱分析及其应用原子吸收光谱分析(Atomic Absorption Spectroscopy,简称AAS)是一种常用的分析技术,通过测量原子吸收电子能级跃迁所产生的特定波长的吸收光线,用于定性和定量分析样品中的金属和非金属元素。
本文将介绍原子吸收光谱分析的原理、仪器设备、分析过程以及其在环境、医药、冶金等领域中的应用。
1.原理:原子吸收光谱分析基于原子的量子力学原理,通过外加能量(通常是热能或电磁辐射)使原子中的电子跃迁到高能级并被激发,随后电子又会自发跃迁至低能级,释放出与跃迁能级差相等的光子,产生特定波长的吸收光谱。
这些特定的波长受到吸收样品中的金属或非金属元素的存在与否、其浓度以及样品基质的影响。
2.仪器设备:原子吸收光谱仪主要由光源、样品池、单色仪、检测器和数据记录仪组成。
光源通常是用于产生特定波长的光,如空心阴极灯或电感耦合等离子体透明源。
样品池包括气体燃烧炉和液体样品池,用于将样品中的元素原子化。
单色仪可以选择性地分离特定波长的光线,以避免干扰。
检测器通常是光电倍增管或光电二极管,用于测量样品中的特定波长的光强。
数据记录仪用于记录并分析测量结果。
3.分析过程:首先,将待分析的样品制备成合适的形式,如溶液、颗粒或气态样品。
然后,使用合适的方法将样品原子化,例如通过灰化加热、火焰燃烧或化学分析转化。
原子化的样品进入样品池并与光源产生的特定波长的光进行相互作用。
通过单色仪选择特定波长的光线,并使用检测器测量光强。
测量结果经过校准和计算后,可以得到样品中金属或非金属元素的浓度。
4.应用:原子吸收光谱分析广泛应用于环境、医药、冶金等领域。
在环境领域,它被用于监测水、土壤和空气中的重金属和有害元素,如铅、汞和砷的含量。
在医药领域,原子吸收光谱分析用于药物的质量控制和金属微量元素的测定。
在冶金领域,它可以分析矿石中的金属含量,以及合金中的成分和纯度。
总之,原子吸收光谱分析是一种准确、灵敏且广泛应用的分析技术。
(物理化学分析)原子吸收光谱分析
0.02~0.5
Mn 279.5 空气—乙炔 0.002
0.05
0.1~3
Ni 232.0 N2O—乙炔 Zn 213.9 空气—乙炔
0.002 0.001
0.1 0.015
0.2~5 0.03~1
***吸光度A为0.1~0.5时测量的准确度较高。
由特征浓度计算公式可以导出: 0A/0.0044
原子吸收测定的适宜质量浓度范围: 约为灵敏度的25倍~120倍。
三、原子吸收光谱分析
AAS是基于物质产生的原子蒸气对特定的谱线(通常是待测元素的 特征谱线)的吸收作用来进行定量分析的一种方法。
(一)原子吸收光谱仪(分光光度计)
1.原子吸收分光光度计的基本构造 ☆光源 ☆原子化系统 ☆分光系统 ☆检测系统
属电子光谱
吸收光谱法
发射光谱法
原子光谱的产生机理
由光源发射出锐线光源(共振线)→原子化器→基态原子吸收 →单色光器→分离出所需要的谱线→被检测器接收→电信号
需几毫克,液体仅用几微升;相对灵敏度
比火焰法高2个~3个数量级。(灵敏度 高,但重现性差)
③光学系统
分为外光路系统和分光系统(单色器)两部分。外光路系统使光 源发出的复合光依照一定的途径到达单色光器,分光系统则使 复合光色散成单色光。
☆☆☆ 外 光 路 系 统 : 使 光
源发出的共振线能够正确地通 过原子化区,并投射到单色器 上。
空气
1925
空气
2050
空气
2300
氧
2700
50%氧+50%氮
2815
氧
3060
氧
4640
氧化亚氮
2955
氧化氮
3095
原子吸收光谱分析法知识详解
原子吸收光谱分析法知识详解原子吸收光谱分析法是实验室元素分析最常用的方法之一。
原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。
一、原子吸收光谱的理论基础1、原子吸收光谱的产生在原子中,电子按一定的轨道环绕原子核旋转,各个电子的运动状态是由4个量子数来描述。
不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。
原子处于完全游离状态时,具有最低的能量,称为基态。
在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。
激发态原于很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。
其辐射能量大小,用下列公式示:ΔE=Eq-E0=hv=hc/λ式中:H:普朗克常数,其数值为:6.626*10-23J·S;C:光速(3*105km/s);V、入:分别为发射光的频率和波长;E0、E q:分别代表基态和激发态原子的能量,它们与原子的结构有关。
由于不同元素的原子结构不同,所以一种元素的原子只能发射由其已与Eq决定的特定频率的光。
这样,每一种元素都有其特征的光谱线。
即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。
原子吸收光谱是源于发射光谱的逆过程。
基态原子只能吸收频率为:υ=(Eq-E0)/h的光,跃迁到高能态Eq。
因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。
当电子从共振激发态跃迁回基态时,称为共振跃迁。
这种振跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。
元素的共振吸收线一般有好多条,其测定灵敏度也不同。
在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线(有些元素有好几条线,有的只有一条,次灵敏线能量太低不能使用)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
3. 压力变宽(碰撞变宽) 原子与等离子体中的其他粒子(原子、离子、电子)相互碰撞
而使谱线变宽,等离子体蒸气压力愈大,谱线愈宽。 ❖ 同种粒子碰撞——称赫尔兹马克(Holtzmank)变宽.. ❖ 异种粒子碰撞——称罗论兹(Lorentz)变宽。
压力变宽(碰撞变宽) 为10-2 Å,也
k
c
2. 多普勤宽度Δ D (Doppler Broadening)
这是由原子在空间作无规热运动所引致的。故又称热变宽。
νD = 7.16 ×10-7 ν0 T M
式中:M ---- 原子量; T ---- 绝对温度;
0 ---- 谱线中心频率
即使在较低的温度,也比自然宽度ΔN来得严重,是谱线变
c
2.2 原子光谱线的轮廓
原子光谱线(吸收线)的宽度 Kv
K0
2 最大吸收系数
3. 谱线半宽度(10-2 Å) 1. 谱线中心频率
K0 /2
原子吸收光谱线轮廓图
吸收线能量与波长关系
λ= hc/ΔE
c
0
2.3 吸收谱线变宽的因素
1. 自然宽度ΔN
与原子外层电子发生能级间跃迁时激发态原子的寿命有关,是 客观存在。一般情况下约相当于10-4Å ,通常可以忽略。
❖ 2.1 基态原子与总原子的关系 待测元素在进行原子化时,其中必有一部分原子吸收 了较多的能量而处于激发态,据热力学原理,当在一定 温度下处于热力学平衡时,激发态原子数与基态原子数 之比服从 Boltzmann 分配定律:
Ni gi eEi / kT N0 g0
实际工作中,T 通常小于3000K、波长小于 600nm,故对大多数元素 来说Ni /N0 均小于1%,Ni 与N0 相比可勿略不计,N0 可认为就是原 子总数。
c
二.积分吸收的限制
但积分吸收的测定非常困难。因为原子吸收线的半峰宽度很小, 只有0.001-0.005Å。要分辨如此宽度的谱线,对波长为5000Å的谱 线来说 ,其分辨率应为:
R 5000 5106 0.001
目前,光栅无法达到此要求!!!
c
❖ 通过计算可知:当采 用具有宽 通带的连续光源 a(通带宽度约 0.2nm)来对窄的吸收线b(半宽 度约10-3nm)进行测量时,由待 测原子吸收线 引起的吸收值, 仅仅相当于总入射光强的0.5%, 测定灵敏度极差
• 光强度的变化符合朗伯-比耳定律,进行定量分析。
它是基于物质所产生的原子蒸气对特征谱线的 吸收作用来进行定量分析的一种方法。
c
原子吸收与发射光谱的关系
原子发射光谱(共振线发射)
基态
电,热能
hi
基态
第一激发态
hi
hj
hi
第一激发态
原
子
hi
荧
光 光
基态
谱
基态
原子吸收光谱 (共振线吸收)
c
2.基本理论
宽(碰撞变宽)是谱线变宽的主要因素。
c
原子吸收光谱的测量
Kv
一.积分吸收
K0
∫ 积
分
K d
e2
mc
f
N
K0 /2
公
f-----振子强度
式
e----为电子电荷
N----单位积内的自由原子数
m---电子的质量
0
此式说明,在一定条件下,“积分吸收”只与基态原子数成
正比而与频率及产生吸收线的轮廓无关。只要测得积分吸收值 ,即可求出基态原子数或浓度。
2
D
ln 2 • e2 • N • f mc
2 峰值吸收成立的条件
K0∝N
以锐线光源作为激发光源,满足以下两个条件:
发射《 吸收 0-发射= 0-吸收
c
四.光吸收定律
光吸收定律---定量分析的依据:
It = I0·exp(-KνL )
I0
A = - logT= -log It/ I0
= -log [exp(-KνL)]= 0.43KνL
第三章 原子吸收光谱分析 (Atomic absorption spectrometry, AAS)
c
内容
❖ 概述 ❖ 基本理论 ❖ 仪器及其组成 ❖ 干扰及其消除方法 ❖ 定量方法及评价 ❖ 原子荧光光谱分析简介
c
1.概述
❖ 1814年,弗朗荷费发现太阳光谱中的黑线,多达500 多条
❖ 1955年,Australia 物理学家Walsh A建立将该现 象应用于分析;
(0.001/0.2 x 100%=0.5%
灵敏度极差,也是原子吸收现现象在1955年前都没得到应用的原因
c
三.峰值吸收
1. 积分吸收与峰值吸收的关系: 1955年澳大利亚学者沃尔森(Walsh)
提出,在温度不太高的稳定火焰条件下,峰值吸收系数与火焰 中被测元素的原子浓度也正比。
峰值吸收系数:
K0
《原子吸收分光光度法在分析化学中的应用》
❖ 60年代中期发展最快。
Alan Walsh
❖ 可应用于70多种元素的测定
c
原子吸收光谱法?
• 溶液中的金属离子化合物在高温下能够解离成原子蒸气,
两种形态间存在定量关系。
• 当光源发射出的特征波长光辐射通过原子蒸气时,原子中
的外层电子吸收能量,特征谱线的光强度减弱。
c
5. 场致变宽 斯塔克变宽(Stark Broadening): 由于外部的电场或等离子体 中
离子、电子所形成的电场引起。 齐曼变宽(Zeeman Broadening): 由于外部的磁场影响,导致谱线
的分裂,在单色器分辨率无法 分辨时,也产生谱线变宽。
在1000~3000K、0.101MPa状态,多普勤宽度ΔD和压力变
当用锐线光源时将K0 代替 Kν ,吸光度简化为:
A = 0.43 K0 L
因为:
N∝C
所以:
A = KC
c
L It
定 量 分 析 的 依 据
4 原子吸收分光光度计
仪器结构图
火焰原子化器
单色器
空心阴极灯
空 心 阴 极 灯
原 子 化 器
雾化器和雾化室 光电倍增管
处 单 检理 色 测与 器 器控
制
c
数据处理和仪器控制
入被测元素 阳 极: 钨棒装有钛、锆, 钽金属
作成的阳极 管内充气:氩或氖 133.3~266.6Pa 工作电压:150~300伏 启动电压:300~500伏 要求稳流电
光源
作用:辐射待测元素的特征光谱;或者 说提供原子吸收所需的共振辐射。
对AAS光源的要求: a)发射稳定的共振线,且为锐线; b)强度大,没有或只有很小的连续背景; c)操作方便,寿命长。
满足以上要求的灯有: 1)蒸气放电灯 2)无极放电灯 3)空心阴极灯
c
光源(空心阴极灯)
1.构造 空心阴极: 钨棒作成圆筒形筒内熔