人教版九年级数学上册因式分解法解一元二次方程练习题
人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析
![人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析](https://img.taocdn.com/s3/m/7232ef2851e79b89680226f0.png)
21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。
九年级数学上册《解一元二次方程(因式分解法)》练习题
![九年级数学上册《解一元二次方程(因式分解法)》练习题](https://img.taocdn.com/s3/m/a1221fe7db38376baf1ffc4ffe4733687e21fc3f.png)
九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
九年级数学: 因式分解法解一元二次方程典型例题
![九年级数学: 因式分解法解一元二次方程典型例题](https://img.taocdn.com/s3/m/4e4ef050a300a6c30c229f76.png)
例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。
例 用因式分解法解下列方程。
1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。
人教版九年级数学上册 第21章一元二次方程基础练习
![人教版九年级数学上册 第21章一元二次方程基础练习](https://img.taocdn.com/s3/m/6ea72cbde45c3b3566ec8bc5.png)
一元二次方程及其解法(一)直接开平方法1. 若0322=-+-p p x px 是关于x 的一元二次方程,则( )A .p ≠1B .p ≠0且p ≠1C .p ≠0D .p ≠0且p ≠12.若1是方程20ax bx c ++=的根,则a b c ++的值为( )A .3B .2C .0D .-13.已知m 是方程210x x --=的一个根,则代数式222m m -的值等于( )A .-1B .0C .1D .24.若1x ,2x 是方程24x =的两根,则12x x +的值是( )A .8B . 4C .2D .05.若a 为方程式2(17)100x -=的一根,b 为方程式2(4)17y -=的一根,且a 、b 都是正数,则a b -之值为何?( )A .5B .6C 83D .1017-6.已知方程20x bx a ++=有一个根是-a (a ≠0),则下列代数式的值恒为常数的是( )A .abB .a bC .a +bD .a -b 7. 方程(2x +1)(x -3)=x 2+1化成一般形式为 ,二次项系数是 ,一次项系数是________,常数项是________.8.关于x 的方程01)2()4(22=----x m x m 是一元二次方程,则m ;9.下列关于x 的方程中是一元二次方程的是 (只填序号).(1)x 2+1=0; (2)21112x x +=+; (3)210x y ++=; (4)3210x x x --+=; (5)22(35)64x x x -=+ ; (6)(x -2)(x -3)=5.10.下列哪些数是方程2680x x -+=的根?答案: .0,1,2,3,4,5,6,7,8,9,10.11.已知关于x 的方程x 2-4x -p 2+2p +2=0的一个根为p ,则p =________.12.方程2(12)16x -=的解为 .13.方程2(2)(1)310m m x m x m --+++-=.(1)如果是关于x 的一元二次方程,试确定m 的值,并指出二次项系数、一次项系数及常数项;(2)如果是关于x 的一元一次方程,试确定m 的值.14. 用直接开平方法解下列方程.(1)2160x -=; (2)2(2)9x -=. 15.教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项 系数、一次项系数和常数项. 现把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) .(2)方程2122x x -=化为一元二次方程的一般形式后,它的二次项系数,一次项系数,常数项之间具有什么关系?一元二次方程的解法(二)配方法 1.用配方法解方程2250x x --=时,原方程变形为( )A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -=2.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x +m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a +5变形,结果是( )A .(a -2)2+1B .(a +2)2-1C .(a +2)2+1D .(a -2)2-15.把方程x 2+3=4x 配方,得( )A .(x -2)2=7B .(x +2)2=21C .(x -2)2=1D .(x +2)2=26.用配方法解方程x 2+4x =10的根为( )A .2±10B .-2±14C .-10D .2107.(1)x 2+4x + =(x + )2;(2)x 2-6x + =(x - )2;(3)x 2+8x + =(x + )2.8.若223(2)1x mx x ++=--,那么m =________.9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x +2的最小值为 .11.求代数式-3x 2+5x +1的最大值为 .12.已知a 2+b 2-10a -6b +34=0,则b a b a -+的值为 . 13. 用配方法解方程(1)0142=++-x x (2)221233x x += 14. 若2226100y x x y +-++=,求x ,y 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.一元二次方程的解法(三)--公式法,因式分解法1.方程230x -=的根是( )A .3x =B .13x =,23x =-C .3x =D .13x 23x =-2.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( )A .11x =;24x =-B .11x =-;24x =C .11x =-;24x =-D .11x =;24x =4.方程x 2-5x -6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和35.方程(x -5)(x -6)=x -5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =76.已知210x x --=,则3222012x x -++的值为 ( )A . 2021B .2021C . 2021D .20217.方程x 2-4x =0的解是___ _____;8.方程(x -1)(x +2)(x -3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是 .(只填符合条件的一个即可)11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x -5)(x +2).(1)当x 为 值时,y 的值为0;(2)当x 为 值时,y 的值为5.13.用公式法解方程(1)x x 35.12-=+; (2)02122=+-x x ; 14. 用因式分解法解方程(1)x 2-6x -16=0. (2) (2x +1)2+3(2x +1)+2=0.15.(1)利用求根公式完成下表: 方程 24b ac -的值 24b ac -的符号(填>0,=0,<0) 1x ,2x 的关系 (填“相等”“不等”或“不存在”)2230x x --=2210x x -+=2230x x -+=(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况.(3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0,①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.一元二次方程根的判别式及根与系数的关系1. 下列方程,有实数根的是( )A .2x 2+x +1=0B .x 2+3x +21=0C .x 2-0.1x -1=0D .22230x x -+=2.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是( ) A .240b ac -= B .240b ac -> C .240b ac -< D .240b ac -≥3.关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A .92k ≤B .92k <C .92k ≥D .92k > 4.关于方程0322=++x x 的两根x 1,x 2的说法正确的是( )A . x 1+x 2=2B .x 1+x 2=-3C . x 1+x 2=-2D .无实数根5.关于x 的一元二次方程x 2+4x +k =0有实数解,则k 的取值范围是( )A .k ≥4B .k ≤4C .k >4D .k =46.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为( ).A .3B .6C .18D .247.已知关于x 的方程x 2-2x +k =0有实数根,则k 的取值范围是________.8.已知3x 2-2x -1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,1211x x +=••_______,• x 12+x 22=_______,x 1-x 2=________.9.若方程0322=--x x 的两根是x 1、x 2,则代数式21222122x x x x --+的值是 10.设一元二次方程0232=--x x 的两根分别为1x 、2x ,以21x 、22x 为根的一元二次方程是________.11.已知一元二次方程x 2-6x +5-k =0•的根的判别式△=4,则这个方程的根为 .12.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 .13.当k 为何值时,关于x 的方程x 2-(2k -1)x =-k 2+2k +3,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?14. 已知a ,b ,c 是△ABC 的三边长,且方程(a 2+b 2)x 2-2cx +1=0有两个相等的实数根.请你判断△ABC 的形状.15.已知: x 1、x 2是关于x 的方程x 2+(2a -1)x +a 2=0的两个实数根且(x 1+2)(x 2+2)=11, 求a 的值.一元二次方程的应用1.在一幅长80cm 、宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .x 2+130x -1400=0B .x 2-65x -350=0C .x 2-130x -1400=0D .x 2+65x -350=02.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10cm 2 提高到12.1m 2,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%3.某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长 率为x ,那么x 满足的方程是( ).A .50(1+x )2=182B .50+50(1+x )+50(1+x )2=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )=1824.一个矩形的长是宽的3倍,若宽增加3cm ,它就变成正方形.则矩形面积是( ).A .24cm 3B .29cmC .227cm 4D .227cm 5.为执行“两免一补”政策,某地区2021年投入教育经费2500万元,预计2021年投入3600万元.设这 两年投入教育经费的年平均增长率为x ,则下列方程正确的是( ).A .2500(1+x )2=3600B .2500x 2=3600C .2500(1+x %)=3600D .2500(1+x )+2500(1+x )2=36006.一个跳水运动员从距离水面10米高的跳台向上跳起0.5米,开始做翻滚动作,它在空中每完成一个动作 需要时间0.2秒,并至少在离水面3.5米处停止翻滚动作准备入水,最后入水速度为14米/秒,该运动员在空中至多做翻滚动作( ).A .3个B .4个C .5个D .6个7.某商场销售额3月份为16万元,5月份25万元,该商场这两个月销售额的平均增长率是________.8.若两数的和是2,两数的平方和是74,则这两数为________.9.大连某小区准备在每两幢楼房之间开辟面积为300m 2的一块长方形绿地,并且长比宽多10m ,设长方形 绿地的宽为xm ,则可列方程为________.10.菱形ABCD 的一条对角线长6,AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为________.11.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了 个人?12.小明家为响应节能减排号召,计划用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至2021kg (全 球人均目标碳排放量),则小明家未来两年人均碳排放量平均每年需降低的百分率是________.13.用长12m 的一根铁丝围成长方形.(1)如果长方形的面积为5m 2,那么此时长方形的长是多少?宽是多少?如果面积是8m 2呢?(2)能否围成面积是10m 2的长方形?为什么?(3)能围成的长方形的最大面积是多少?14. 从一块长80cm ,宽60cm 的长方形铁片中间截去一个小长方形,使剩下的长方形四周宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个宽度.15.常德市工业走廊南起汉寿县太子庙镇,北玉桃源县盘塘镇创元工业园,在这一走廊内的工业企业2021 年完成工业总产值440亿元,如果要在2021年达到743.6亿元,那么2021年到2021年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2021年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?一元二次方程1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x +1=0的一个根,则m 的值是( )A .1B .﹣1C .0D .无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为 何( )A .2B .5C .7D .83.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x +=B .()0017312127x -=C .()2001731127x -=D .()2001271173x += 4.将代数式x 2+4x -1化成(x +p )2+q 的形式( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ).A .k <0B .k ≤0C .k ≠1且k ≠0D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A .64 cm 2B .100 cm 2C .121 cm 2D .144 cm 27.若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2)2(b at M += 的关系是( )A .△=MB . △>MC . △<MD . 大小关系不能确定8.如果关于x 的方程ax 2+x -1=0有实数根,则a 的取值范围是( )A .41->aB .41-≥aC .41-≥a 且0≠aD .41->a 且0≠a 9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.若分式01872=---x x x ,则x= . 11.关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则a= .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a =,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x -2=0的两个实数根,则2211223x x x x ++的值为________.15.问题1:设a 、b 是方程x 2+x -2021=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ;问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m 的值 是 ;问题4:已知一元二次方程x 2-2x +m =0,若方程的两个实数根为x 1,x 2,且x 1+3x 2=3,则m 的值是 .16.某校2021年捐款1万元给希望工程,以后每年都捐款,计划到2021年共捐款4.75万元,则该校捐款 的平均年增长率是 .17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得 的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善 经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.先阅读第(1)题的解法,再探究第(2)题.(1)已知230p p --=,21130q q --=,p 、q 为实数,且pq ≠1,求1p q+的值.解:因为pq ≠1,所以1p q≠. 又因为230p p --=,21130q q--=, 所以p 、1q是一元二次方程230x x --=的两个不相等的实数根. 由根与系数的关系,得1(1)1p q +=--=. (2)已知22370m m --=、27320n n +-=,m 、n 为实数,且mn ≠1,求1m n+的值. 20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元?。
人教版初中九年级数学上册因式分解法解一元二次方程综合练习题24
![人教版初中九年级数学上册因式分解法解一元二次方程综合练习题24](https://img.taocdn.com/s3/m/12e5c30677c66137ee06eff9aef8941ea76e4b4e.png)
人教版初中九年级数学上册因式分解法解一元二次方程综合练习题24某(4某-6)=12某-18(3某-5)2=(2-某)23某2-4某=08某2-2某=0某2-2某=-116某2-324=0某(3某-5)=18某-30(某+4)2=(8+某)24某2-3某=03某2+2某=0某2+14某=-499某2-169=0某(3某+2)=12某+8(某-5)2=(9+某)27某2-4某=02某2-33某=0某2+2某=-181某2-400=02某(2某+9)=6某+27(某-9)2=(3-6某)2某2+2某=0某2+53某=0某2+6某=-99某2-169=04某(4某-1)=24某-6(某-4)2=(10+8某)26某2+7某=03某2-53某=04某2-121=0某(4某+9)=24某+54(某-7)2=(7-某)25某2+5某=07某2-3某=0某2-6某=-964某2-144=02某(4某+8)=16某+32(5某+6)2=(6+某)24某2-某=02某2+32某=0某2-2某=-1100某2-225=04某(2某-8)=8某-32(某-5)2=(4-3某)26某2-5某=09某2+3某=0某2+8某=-164某2-121=0某(4某+5)=8某+10(某+8)2=(1-7某)28某2+某=02某2+3某=0某2+10某=-2549某2-4=02某(4某-7)=16某-28(5某-1)2=(2-7某)26某2-3某=09某2-22某=04某2-16=02某(3某-4)=15某-20(8某-1)2=(7-7某)2某2-2某=02某2-2某=0某2-12某=-364某2-9=02某(3某+1)=15某+5(8某-1)2=(3+6某)29某2-某=0某2-52某=0某2+4某=-4100某2-169=03某(3某+7)=18某+42(2某-4)2=(2+某)27某2-7某=08某2+3某=0某2+20某=-100100某2-256=04某(3某+7)=15某+35(某+1)2=(5-4某)23某2-某=03某2+43某=0某2+16某=-64100某2-64=0某(3某+3)=12某+12(某+8)2=(5-某)27某2-3某=0某2-3某=0100某2-4=0某(4某-3)=24某-18(5某+3)2=(3+某)25某2-2某=09某2-42某=0某2+18某=-8125某2-81=0某(4某+6)=12某+18(某+3)2=(8-3某)27某2-5某=07某2-22某=0某2-2某=-164某2-100=0某(3某-6)=9某-18(某+8)2=(9-4某)2某2+5某=07某2+43某=0某2+8某=-169某2-16=0某(4某+1)=24某+6(5某-4)2=(4+某)2某2-5某=0某2+23某=0某2+16某=-6425某2-100=0某(4某+3)=8某+6(6某+1)2=(9+4某)2某2-5某=0某2-23某=049某2-9=0某(3某+5)=9某+15(某+5)2=(2-4某)27某2-7某=06某2+33某=0某2+2某=-19某2-144=0某(4某-2)=8某-4(某-8)2=(5-某)24某2-某=07某2-32某=0某2-14某=-499某2-100=04某(2某-9)=8某-36(4某-5)2=(5+5某)2某2-6某=06某2+33某=0某2+4某=-4100某2-169=0某(4某-5)=20某-25(某+8)2=(5-7某)24某2-5某=02某2-3某=0某2+18某=-8116某2-16=04某(2某+8)=12某+48(3某-1)2=(5+某)22某2-某=08某2-3某=0某2+20某=-10025某2-121=02某2+8某=07某2+3某=0某2-16某=-6464某2-324=04某(4某+3)=12某+9(某+8)2=(2+2某)26某2+6某=03某2+32某=0某2+6某=-936某2-9=0某(3某+5)=12某+20(7某+7)2=(10+6某)29某2-3某=08某2-3某=0某2+20某=-10025某2-1=03某(3某+3)=15某+15(某+7)2=(9-某)24某2+某=07某2+42某=0某2-12某=-3681某2-121=03某(3某+5)=15某+25(某+1)2=(9+某)26某2+5某=04某2-43某=0某2-14某=-49100某2-49=0(2某-3)2=(3+4某)24某2-8某=08某2-2某=0某2+12某=-364某2-400=03某(3某+5)=15某+25(2某-8)2=(2-某)28某2-2某=03某2+43某=0某2+16某=-6449某2-289=0某(2某-2)=6某-6(7某+8)2=(2-2某)27某2+8某=02某2+3某=0某2+20某=-1009某2-81=0某(3某+8)=18某+48(6某-4)2=(1-6某)22某2-3某=0某2-2某=0某2-12某=-36100某2-4=0某(4某-4)=12某-12(7某+5)2=(5-6某)29某2+7某=04某2+3某=0某2+2某=-125某2-361=0(某+9)2=(2+某)2某2-5某=07某2+2某=0某2+16某=-6416某2-100=03某(3某+8)=15某+40(2某-4)2=(9-8某)22某2+6某=07某2+2某=0某2-14某=-4925某2-289=04某(3某-7)=18某-42(某+6)2=(6+4某)2某2-某=09某2-33某=0某2-18某=-819某2-16=0某(3某+7)=12某+28(某+1)2=(4+某)27某2+5某=04某2-52某=0某2-16某=-644某2-100=02某(3某+7)=15某+35(某-3)2=(5+某)25某2-2某=07某2+2某=0某2+12某=-3625某2-49=0(某-4)2=(7+某)28某2+某=07某2+53某=0某2+10某=-254某2-169=02某(4某+7)=20某+35(6某-5)2=(2+某)23某2-5某=09某2-52某=0某2-12某=-364某2-169=0某(4某-4)=20某-20(某-3)2=(3-7某)22某2+9某=0某2+2某=0某2-14某=-49100某2-4=0某(2某+3)=10某+15(9某-5)2=(6+7某)2某2-3某=08某2-53某=0某2+8某=-1625某2-144=0某(2某-8)=6某-24(某+9)2=(7+某)28某2-9某=0某2-3某=0某2+16某=-64100某2-1=0(某+7)2=(2+某)26某2-5某=05某2-3某=0某2+20某=-100100某2-144=0某(2某-6)=8某-24(某+7)2=(5+某)2某2+7某=03某2-3某=0某2+12某=-36100某2-4=02某(2某+8)=12某+48(5某-4)2=(4-6某)23某2-7某=0某2+2某=0某2+12某=-364某2-81=02某(3某+9)=12某+36(6某-1)2=(10+某)2某2+4某=05某2-42某=0某2-12某=-36100某2-256=02某(4某+2)=12某+6(某+4)2=(2+某)27某2-2某=09某2-33某=0某2+18某=-8116某2-81=0某(3某-8)=9某-24(7某-7)2=(1-7某)23某2-某=07某2+3某=0某2+14某=-499某2-400=0某(4某+7)=12某+21(3某-5)2=(7-某)25某2-4某=06某2-2某=0某2+12某=-3625某2-81=0某(4某+9)=16某+36(9某+2)2=(2-某)22某2+4某=0某2+32某=0某2+8某=-1616某2-9=02某(3某+9)=6某+18(某+7)2=(6+某)25某2+7某=09某2-32某=0某2-18某=-814某2-324=04某(2某-7)=10某-35(某+3)2=(9-某)25某2-6某=0某2-3某=0某2+14某=-4925某2-256=0某(2某-4)=10某-20(某-2)2=(5-9某)22某2-9某=04某2+53某=0某2+16某=-6425某2-324=0某(3某-9)=12某-36(某+5)2=(10-9某)22某2-7某=08某2-43某=0某2+12某=-3636某2-36=04某(2某-4)=8某-16(2某+9)2=(5+4某)24某2+8某=09某2+32某=0某2-18某=-814某2-196=0 4某(2某-1)=8某-4(某-5)2=(7+某)2某2-某=0某2+52某=0某2-20某=-1009某2-256=02某(4某+9)=20某+45(某+8)2=(2-7某)26某2-某=02某2+42某=0某2+18某=-8136某2-400=0(某-9)2=(7-7某)25某2+2某=0某2-52某=0某2+14某=-499某2-49=0某(4某+9)=20某+45(3某+2)2=(3-2某)28某2+3某=07某2+3某=0某2+8某=-164某2-361=04某(3某-8)=15某-40(4某-3)2=(7-某)2某2-5某=08某2-2某=0某2-10某=-2536某2-81=02某(4某+2)=8某+4(9某-7)2=(4-某)29某2+4某=04某2-3某=0某2+14某=-49100某2-196=0某(3某-5)=9某-15(某+1)2=(4-5某)2某2+2某=0某2-42某=0某2-16某=-649某2-196=0(2某-2)2=(7+某)26某2+4某=0某2+33某=0某2-20某=-10025某2-256=0某(4某+5)=20某+25(某+7)2=(9+7某)28某2+5某=07某2-53某=0某2+10某=-2536某2-100=0。
人教版九年级数学上册第21章《一元二次方程》专题练习
![人教版九年级数学上册第21章《一元二次方程》专题练习](https://img.taocdn.com/s3/m/54c642c07d1cfad6195f312b3169a4517723e534.png)
第21章 一元二次方程一、一元二次方程的定义1、下列方程是一元二次方程的有(1)y 2+y=12 (2)x 3+x 2=3 (3)x+2y=12(4)0212=-xx (5)x+1=0 (6)632=x(7)22)32(14+=-x x (8)062)(2=--x x (9)21503x x -=(10)2134x x x +=(11)2110x x--= (12)2111x x =+-(13)3(x +1)2=2(x +1)(14)ax 2+bx +c =02、一元二次方程的一般形式的有(1)ax 2+bx +c =0(2)ax 2+bx +c (a ≠0)(3) ax 2+bx +c =0(a ≠0) (4)ax 2+bx +c =0(b ≠0)(5)ax 2=0(a ≠0) (6)ax 2+bx =0(a ≠0)(7) ax 2+c =0(a ≠0)3、若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )A. m ≠2B. m ≠-2C. m ≠-2,或m ≠2D. m ≠-2,且m ≠24、 若关于x 的方程kx 2+2x -1=0是一元二次方程,则k .5、方程(m -1)x 2-(2m -1)x +m =0当m 时,方程是关于x 的一元二次方程.6、已知关于x 的方程()()021122=-++-x k x k(1)当k 为何值时,此方程为一元一次方程?(2)当k 为何值时,此方程为一元二次方程?并写出二次项系数、一次项系数、常数项7、已知关于x 的方程(m -n )x 2+mx+n=0,你认为: (1)当m 和n 满足什么关系时,该方程是一元二次方程? (2)当m 和n 满足什么关系时,该方程是一元一次方程?二、一元二次方程的项1、一元二次方程02=-x x 的常数项为 2、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为( ) A .3B .-3C .3D .-93、关于x 的一元二次方程()0235122=+-++-m m x x m 的常数项为0,则m =4、将下列方程先化为一般形式,写出二次项、二次项系数、一次项、一次项系数、常数项 (1)3x (x +1)=1 (2)(1-x )(1+x )=2(3)4x (x +1)=16 (4)2x (x +3)=x (2-x )三、 一元二次方程的根(1)已知1是关于x 的方程(m +2)x 2-x +4=0的根,则m = . (2)已知-1是关于x 的方程3x 2-x +a =0的根则a = .(3)已知方程x 2+mx -8=0的一个根是x=-3,求m = .另一个根是 (4)若x=1是一元二次方程ax 2+bx -2=0的根,则a+b= .(5)已知m 是方程x 2-x -2=0的根,则m m -2= . (6)若方程()321=---x m m是关于x 的一元二次方程,则m =四、 根的判别式(1)已知方程x 2+2x -b=0有两个不相同的实数根,求b 的取值范围 (2)已知方程x 2+4x+a=0有两个相同的实数根,求a 的取值范围 (3)已知方程3 x (x+1) +m=0无实数根,求m 的取值范围 (4)关于x 的方程kx 2+3x -2=0有实数根,则k 的取值范围(5)若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围 (6)关于x 的一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围(7)关于x的方程x2-kx+k-2=0的根的情况(8)关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,m的取值范围(9)关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根,则k的最大整数值是()A.-2B.-1C. 0D. 1(10)关于x的方程mx2-(m+2)x+2=0(m≠0).求证:方程总有两个实数根(11)关于x的方程x2-6x+(4m+1)=0有实数根,求:m的取值范围五、求方程的两根和与积(1)若方程x2-x-1=0的两根为x1、x2,则x1+x2= , x1x2= 。
人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)
![人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)](https://img.taocdn.com/s3/m/ac8827cc52d380eb63946dc5.png)
一元二次方程的解法 公式法 因式分解法一、选择题1. 方程x 2+x ﹣12=0的两个根为( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=32.整式x+1与整式x-4的积为x 2-3x-4,则一元二次方程x 2-3x-4=0的根是( ).A .x 1=-1,x 2=-4B .x 1=-1,x 2=4C .x 1=1,x 2=4D .x 1=1,x 2=-43.如果x 2+x -1=0,那么代数式3227x x +-的值为( )A .6B .8C .-6D .-84.若最新x 的一元二次方程(m -1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ). A .x =2或x =1 B .x =2且x =1C .x =2D .x =-16.一个等腰三角形的两条边长分别是方程x 2-7x+10=0的两根,则该等腰三角形周长是( ).A .12B .9C .13D .12或9二、填空题7.已知实数x 满足4x 2-4x+1=0,则代数式122x x +的值为________. 8.已知y =x 2+x-6,当x =________时,y 的值是24.9.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =________,n =________.10.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48.(1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 .11.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y+4=0 ①,解得y 1=1,y 2=4.当y=1时,x 2=1,∴x=±1;当y=4时,x 2=4,∴x=±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)方程(x 2+x )2﹣4(x 2+x )﹣12=0的解为 .12.三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x +60=0的一个实数根,则该三角形的面积是 .三、解答题13. 用公式法解下列方程:2(1)210x ax --=; (2)22222(1)()ab x a x b x a b +=+> .14.用适当方法解下列方程:(1)(2x-3)2=25 (2)x 2-4x+2=0 (3)x 2-5x-6=015.(1)利用求根公式计算,结合①②③你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.②方程x 2-3x-1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.③方程3x 2+4x-7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________.(2)利用求根公式计算:一元二次方程ax 2+bx+c =0(a ≠0,且b 2-4ac ≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.(3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x-1=0的两个根,根据上面的结论,求下列各式的值:①1211x x +; ②2212x x +.答案与解析一、选择题1.【答案】D【解析】x 2+x ﹣12=(x +4)(x ﹣3)=0,则x +4=0,或x ﹣3=0,解得:x 1=﹣4,x 2=3.故选D .2.【答案】B ;【解析】∵ 234(1(4)x x x x --=+-,∴ 2340x x --=的根是11x =-,24x =.3.【答案】C .【解析】∵ 210x x +-=,∴ 21x x +=.∴ 32322222277()77176x x x x x x x x x x x +-=++-=++-=+-=-=-.4.【答案】B ;【解析】由常数项为0可得m 2-3m+2=0,∴ (m -1)(m -2)=0,即m -1=0或m -2=0, ∴ m =1或m =2,而一元二次方程的二次项系数m -1≠0,∴ m ≠1,即m =2.5.【答案】C ;【解析】(2)(1)0x x --=且||1x ≠,∴ 2x =.6.【答案】A ;【解析】x 2-7x+10=0,x 1=2,x 2=5,此等腰三角形的三边只能是5,5,2,其周长为12.二、填空题7.【答案】2;【解析】用因式分解法解方程24410x x -+=得原方程有两个等根,即1212x x ==, 所以121122x x+=+=. 8.【答案】5或-6;【解析】此题把y 的值代入得到最新x 的一元二次方程,解之即可.如:根据题意,得2624x x +-=,整理得2300x x +-=,解得15x =,26x =-. 9.【答案】 1 ; -12 ;【解析】22(3)(4)12x mx n x x x x ++=-+=+-,∴ m =1,n =-12.10.【答案】(1)60;(2) 12x =,24x =-;(3) 14a =. 【解析】(1)3※5=4×3×5=60;(2)∵ x ※x +2※2x -※4=24(28)0x x +-=,∴ 12x =,24x =-; (3)∵ a ※4x ax ==x ,4(41)0ax x a x -=-=,∴ 只有410a -=,等式才能对任何x 值都成立.∴ 14a =. 11.【答案】(1) 换元; 降次; (2) x 1=﹣3,x 2=2.【解析】解:(1)换元,降次(2)设x 2+x=y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x=6,得x 1=﹣3,x 2=2.由x 2+x=﹣2,得方程x 2+x+2=0,b 2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.12.【答案】24或8.【解析】解:∵x 2﹣16x +60=0,∴(x ﹣6)(x ﹣10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高,∴BD=4,AD==2,∴S △ABC =BC•AD=×8×2=8; 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =BC•A C=×8×6=24.∴该三角形的面积是:24或8.故答案为:24或8.三、解答题13.【答案与解析】(1)∵1,2,1,a b a c ==-=-∴2224(2)41(1)440b ac a a -=--⨯⨯-=+> ∴2224412a a x a a ±+==±+ ∴22121, 1.x a a x a a =++=-+(2)222(1)ab x a x b x +=+,即222()0abx a b x ab -++=,令A =ab ,B =22()a b -+,C =ab .∵ 22222224()4()0B AC a b ab ab a b ⎡⎤-=-+-•=-⎣⎦>, ∴ 222224()2B B AC a b a b x ab-±-+±-==, ∴ 222221222a b a b a a x ab ab b++-===, 222222()222a b a b b b x ab ab a+--===, ∴ 1a x b =,2b x a=. 14.【答案与解析】解:(1)直接开平方得:2x-3=±5,∴2x-3= 5或2x-3=-5∴x 1= 4,x 2= -1(2)∵a=1,b=-4,c=2,∴△=b 2-4ac=16-8=8.∴ 42x ±=± ∴12=2=2.x x +(3)分解因式得:(x-6)(x+1)=0∴ x-6= 0或 x+1=0∴x 1= 6,x 2= -1.15.【答案与解析】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数.① -1 ; -1 ; -2 ; 1.② 32 ;32; 3 ;-1. ③ 73- ; 1 ; 43- ; 73- . ;;b a - ;c a. (3)1232x x +=-,1212x x =-. ①1212123112312x x x x x x -++===-. ②22212121291913()2214244x x x x x x ⎛⎫+=+-=-⨯-=+= ⎪⎝⎭.1、最困难的事就是认识自己。
人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]
![人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]](https://img.taocdn.com/s3/m/17ba38fbf424ccbff121dd36a32d7375a417c6ae.png)
人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:x2−4x=0(1);(x−6)(x+1)=−12(2) .2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=0x(x+2)=2x+45.解方程:.(x+3)(x−3)=x−36.解方程:.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.6x(x−1)=x−1(1);3x2−2x=x2+x+1(2).(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(x−2)2=3(x−2)(1);3x2−4x−1=0(2).17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3x1=−5,x2=1所以 .(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0x1=−1,x2=3所以 .3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:,(x+3)(x−3)−(x−3)=0.(x−3)[(x+3)−1]=0即.(x−3)(x+2)=0∴或,x−3=0x+2=0∴或.x1=3x2=−27.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x +2)=0解得: , .x 1=−2x 2=4(2)解: (x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得: , .x 1=1x 2=210.【答案】(1)解:两边同加.得,32x 2−6x +32=1+32即,(x−3)2=10两边开平方,得,x−3=±10即,或,x−3=10x−3=−10∴,x 1=10+3x 2=−10+3(2)解:,(x +2)(x−2)=3(x−2)∴,(x +2)(x−2)−3(x−2)=0∴,(x−2)(x−1)=0∴,或,x−2=0x−1=0解得x 1=2,x 2=111.【答案】解:x (x-3)=x-3x (x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x 1=3,x 2=1.12.【答案】解:(x+3)2﹣2x (x+3)=0(x +3)(x +3−2x)=0(x +3)(3−x)=0解得x 1=3,x 2=−313.【答案】解:(2x -5)(x -1)=0x 1=,x 2=15214.【答案】(1)解:移项,得6x (x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得,.x 1=16x 2=1(2)解:移项,得2x 2−3x−1=0,,a =2b =−3c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0∴x =−(−3)±172×2=3±174∴x 1=3+174,x 2=3−17415.【答案】(1)解:,x 2−2x +1=0即(x-1)2=0,∴x 1=x 2=1(2)解:,2x 2−7x +3=0因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=,x 2=31216.【答案】(1)解:原方程可化为(x−2)(x−5)=0即或,x−2=0x−5=0∴,x 1=2x 2=5(2)解:∵,,,a =3b =−4c =−1∴,Δ=b 2−4ac =28>0∴,x =4±282×3=2±73∴,x 1=2+73x 2=2−7317.【答案】(1)解:,(x−4)(5x +7)=0或,x−4=05x +7=0或,x =4x =−75即x 1=4,x 2=−75(2)解:,x 2−4x−6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±10,x =2±10即x 1=2+10,x 2=2−1018.【答案】(1)解:x 2﹣3x =0,x (x﹣3)=0,∴x =0或x﹣3=0,∴x 1=0,x 2=3;(2)解:2x (3x﹣2)=2﹣3x , 2x (3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x 1=,x 2=﹣.2312。
人教版九年级数学上学期(第一学期)《因式分解法》专题练习及答案.docx
![人教版九年级数学上学期(第一学期)《因式分解法》专题练习及答案.docx](https://img.taocdn.com/s3/m/616058b828ea81c759f57857.png)
新人教版数学九年级上册第二十一章第二节因式分解法同步训练一、选择题1、方程的解是()A、B、C、D、2、方程的正确解法是()A、化为B、C、化为D、化为3、方程正确解法是()A、直接开方得B、化为一般形式C、分解因式得D、直接得或4、经计算整式与的积为,则的所有根为()A、B、C、D、5、关于的一元二次方程的两实根都是整数,则整数的取值可以有()A、2个B、4个C、6个D、无数个6、若关于x的多项式含有因式x-3,则实数p的值为()A、-5B、5C、-1D、17、关于x的一元二次方程有一根为0,则m的值为()A、1B、-1C、1或-1D、8、三角形一边长为,另两边长是方程的两实根,则这是一个().A、直角三角形B、锐角三角形C、钝角三角形D、任意三角形9、将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为().A、B、C、D、210、若,则的值为().A、-3B、-1或4C、4D、无法计算11、因式分解结果为()A、B、C、D、12、一元二次方程的解是()A、1或-1B、2C、0或2D、013、若关于的方程的一个根是0,则另一个根是()A、1B、-1C、5D、14、下面一元二次方程的解法中,正确的是().A、,∴,∴B、,∴,∴C、,∴D、两边同除以x,得x=115、下列命题:①关于x的方程是一元二次方程;②与方程是同解方程;③方程与方程是同解方程;④由可得或.其中正确的命题有().A、0个B、1个C、2个D、3个二、填空题16、因式分解结果为________,方程的根为________.17、小华在解一元二次方程时,只得出一个根是x=4,则被他漏掉的一个根是x=________.18、方程的解是________.19、方程的解是________.20、三角形的每条边的长都是方程的根,则三角形的周长是________.三、解答题21、用适当的方法解方程.22、用因式分解法解下列方程:(1);(2);(3);(4).23、如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.24、把小圆形场地的半径增加5m得到大圆形场地,场地面积是小圆形场地的4倍,求小圆形场地的半径.25、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.(1)用,,表示纸片剩余部分的面积;(2)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求剪去的正方形的边长.答案解析部分一、选择题1、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】如果两个因式的积为0,那么至少有一个因式为0.【分析】本题考查直接利用因式分解法的求解.2、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,以x+1为整体提取公因式即可得C.【分析】将x+1看作整体进行提公因式可以简化计算.3、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解.【分析】公式法中常利用的公式有:平方差公式,与完全平方公式.4、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】整式x+1与x-4的积为,则为,∴.【分析】本题考查直接利用因式分解法的求解.【考点】解一元二次方程-因式分解法【解析】【解答】因为-5可以写成无数对整数的和,将其中一对整数相乘即可得到p的值得,所以p的值有无数个.【分析】本题考查因式分解法的逆向使用.6、【答案】D【考点】解一元二次方程-因式分解法【解析】【解答】因为关于x的多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解,将x=3代入得,解得p=1.【分析】本题的关键是多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解.7、【答案】B【考点】一元二次方程的定义,一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得,∴,∴,又∵关于x的方程为一元二次方程,∴m-1≠0即m≠1,∴m=-1.【分析】本题先根据0为方程的根列关于出m的方程,解所得的方程求得m的值,再根据一元二次方程的定义将m=1的情况排除即可.8、【答案】A【考点】解一元二次方程-因式分解法,勾股定理的逆定理【解析】【解答】在方程中,∵,∴,∴这个三角形的三边长分别为6,8,10,且,∴这个三角形为直角三角形.【分析】先解方程求得三角形的另两条边,再利用勾股定理的逆定理可知该三角形为直角三角形.【考点】完全平方公式,解一元二次方程-因式分解法,定义新运算【解析】【解答】根据题意有,∴,∴,∴,∴,∴.【分析】对于定义新运算的试题,我们可以将字母换成相应位置的式子或数,如在本题中可以认为a=x +1等.10、【答案】C【考点】解一元二次方程-因式分解法,平方的非负性【解析】【解答】在方程中,∴,又∵,∴.【分析】本题的关键在于将看作整体.11、【答案】D【考点】因式分解-提公因式法【解析】【解答】将多项式提公因式x-3得.【分析】本题考查因式分解中的提公因式法.12、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】对所给方程移项得,提公因式x得,∴.【分析】利用提公因式进行因式分解可以简化求解过程.13、【答案】C【考点】一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得k=0,∴所给方程为,∴,∴,∴方程的另一个根为5.【分析】先利用0为方程的一个根求得k的值,进而得到原方程,解方程即可求得另一个根.14、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】A中方程没有化成积为0的两个因式,所以错误;C中没有化成两个因式的积的形式,所以错误;D中同时除以x ,将x为0的解漏掉了,所以错误;B将方程化成了两个因式的积为0的形式,所以说法正确.【分析】用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.15、【答案】A【考点】一元二次方程的定义,解一元二次方程-因式分解法【解析】【解答】①中方程当k=0时不是一元二次方程;②中x=1比方程x2=1少一个解x=-1;③中方程x2=x比方程x=1多一个解x=0;④中由不能必然地得到x+1=3或x-1=3,因此没有正确的命题.【分析】同解方程有完全相同的解.二、填空题16、【答案】(x+24)(x-4);x1=-24 ,x2=4【考点】解一元二次方程-因式分解法,因式分解-十字相乘法【解析】【解答】用十字相乘法得,∴方程可以变为(x+24)(x-4) ,∴方程的根为x1=-24,x2=4.【分析】可以利用十字相乘进行因式分解,进而解方程.17、【答案】0【考点】解一元二次方程-因式分解法【解析】【解答】在方程中,∴,∴,∴被他漏掉的一个根是x=0.【分析】可以利用提公因式的方法进行因式分解.18、【答案】【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,提取公因式x+2得,∴方程的解为.【分析】考查提取公因式法的求解,且以x+2为整体提取公因式.19、【答案】【考点】解一元二次方程-直接开平方法【解析】【解答】∵,∴,∴,∴方程的解为.【分析】将256看作16的平方,利用平方差进行因式分解求方程解.20、【答案】6或10或12【考点】解一元二次方程-因式分解法,三角形三边关系【解析】【解答】将所给方程十字相乘进行因式分解得,∴方程的实数根为,当组成的三角形为等边三角形时:边长为2则周长为6,边长为4则周长为12;当组成的三角形为等腰三角形时,只能为:腰长为4,底边为2,那么周长为10,∴三角形的周长为6或10或12.【分析】一定要依据三角形的三边关系检验能否构成三角形.三、解答题21、【答案】解:,∴,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】以2t+3为整体提取公因式.22、【答案】(1)解:,∴,∴;(2)解:,∴,∴,∴;(3)解:,∴,∴,∴,∴;(4)解:,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】(1)利用十字相乘法进行因式分解;(2)将看作整体进行提公因式进行因式分解;(3)利用平方差公式进行因式分解;(4)将看作整体进行因式分解.23、【答案】解:将代入两个方程得,解得:,∴;将代入方程得,∴,∴,∴该方程的另一个根为-2;将代入方程得,∴,∴,∴该方程的另一个根为-5.【考点】解二元一次方程组,一元二次方程的解,解一元二次方程-因式分解法【解析】【分析】先根据题意列出关于的二元一次方程组,求得的值,再将其代入所给方程利用因式分解进行求解即可.24、【答案】解:设小圆形场地的半径为r ,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m .【考点】解一元二次方程-因式分解法,一元二次方程的应用【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.25、【答案】(1)解:纸片剩余部分的面积为:,(2)解:当a=6,b=4时,根据题意有:,∴,∴即,∴剪去的正方形的边长.【考点】解一元二次方程-因式分解法【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.。
人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)(3)
![人教版初中九年级数学上册第二十一章《一元二次方程》经典习题(含答案解析)(3)](https://img.taocdn.com/s3/m/3d15483a9ec3d5bbfc0a7408.png)
一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.6.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D 解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定C 解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0A 解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.13.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 15.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.18.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】 解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?解析:(1)2或4;(2)2;(3)1082-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=解析:(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,. 【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.23.解方程:y(y-1)+2y-2=0.解析:121,2y y ==-【分析】利用分解因式法解答即可.【详解】解:原方程可变形为:()()1210y y y -+-=,即()()120y y -+=,∴y -1=0或y +2=0,解得:121,2y y ==-.【点睛】本题考查了一元二次方程的解法,属于基础题目,熟练掌握求解的方法是关键. 24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:(2)小丽一次性购买这中服装付了1200元,请问她购买了多少件这种服装? 解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.解析:(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 27.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键. 28.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)解析:(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。
专题21.2.4 因式分解法解一元二次方程-2020-2021学年九年级数学上册(人教版)(解析)
![专题21.2.4 因式分解法解一元二次方程-2020-2021学年九年级数学上册(人教版)(解析)](https://img.taocdn.com/s3/m/75beba8c83c4bb4cf7ecd1d5.png)
第二十一章 一元二次方程因式分解法解一元二次方程一、基础巩固1、一元二次方程x 2﹣3x =0的两个根是( )A .0和﹣3B .0和3C .1和3D .1和﹣3【答案】B【解析】将一元二次方程因式分解得:x (x —3)=0解得:x 1=0,x 2=3故本题选B 。
【分析】考查因式分解法。
2、方程5x (x+3)=3(x+3)的解为( )A 、x 1= ,x 2=3B 、x=C 、x 1=— ,x 2=—3D 、x 1=,x 2=—3 【答案】D【解析】将方程进行移项:5x (x+3)—3(x+3)=0(x+3)(5x —3)=0解得:x 1=—3,x 2= 故本题选D 。
【分析】本题考查因式分解法。
将方程移项后发现可以因式分解求方程的解。
3、关于代数式﹣x 2+4x ﹣2的取值,下列说法正确的是( )A .有最小值﹣2B .有最大值2C .有最大值﹣6D .恒小于零【答案】B【解析】∵﹣x 2+4x ﹣2=﹣(x 2﹣4x +4)+4﹣2 53 53 535353=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.4、一元二次方程x²+5x=0的较大的一个根设为m,x²—3x+2=0较小的根设为n,则m+n的值为()A、1B、2C、—4D、4【答案】A【解析】第一个一元二次方程解得:x1=0,x2=—5,故m=0;第二个一元二次方程解得:x1=1,x2=2,故n=1;∴m+n=1,即m+n的值是1。
【分析】考查因式分解法,把方程解出来找出m、n值。
5、已知三角形的两边长为4和7,第三边的长是方程x²—16x+55=0的一个根,则第三边长是()A、5B、5或11C、6D、11【答案】【解析】解此一元二次方程得:x1=5,x2=11∵4+7==11∴第三边长只能是5故本题选A。
人教版数学九年级上学期课时练习-解一元二次方程100题(基础篇)(人教版)
![人教版数学九年级上学期课时练习-解一元二次方程100题(基础篇)(人教版)](https://img.taocdn.com/s3/m/79096b3e11a6f524ccbff121dd36a32d7275c758.png)
专题21.25 解一元二次方程100题(基础篇)(专项练习)1.解下列方程.(1)x 2+2x =0; (2)2x 2-3x -1=0.2.解下列方程(1)220x x -= (2)2690x x -+=3.解方程: 21142x x x =--+.4.用适当的方法解下列方程:(1)()22242x x x -=- (2)()()124x x -+=5.解方程(1)x 2+4x ﹣2=0; (2)3(x ﹣2)2=x (x ﹣2).6.解方程(1)()242-9x = (2)()32180x -+=7.用适当的方法解方程:(1)()()215140x x ---+= (2)21x +=8.解方程. (1)3x 2﹣1=4x ; (2)(x +4)2=5(x +4).9.解方程: (1)222(3)9x x -=- (2)22310x x +-=(公式法)10.解方程(1)配方法解方程2x 2﹣12x ﹣12=0; (2)(x +2)(x +3)=111.解下列一元二次方程. (1)2247x x +=(2)()22239x x -=-12.解方程:(1)x 2+4x ﹣1=0 (2)x (x -2)+x -2=013.解下列方程: (1)x 2+4x +3=0; (2)3x 2﹣x ﹣1=0.14.用适当的方法解下列方程 (1)2(x -1)2=18; (2)x 2-2x =2x +115.用适当的方法解方程: (1)2430x x -+=; (2)23110x x -=16.用适当的方法解方程: (1)()231250x --= (2)2260x x --=17.解方程: (1)2314x x -=(2)()2(21)321x x +=+18.解方程: (1)2x 2﹣3x ﹣1=0. (2)x 2﹣7x =﹣10.19.解方程:(1)用配方法解方程:2640x x -+=;(2)解方程:2(3)2(3)x x x -=-.20.解方程:(1)解方程:9x 2﹣1=3. (2)用配方法解方程:x 2﹣10x +22=0.21.解方程: (1)2430x x --= (2)2450x x -=+22.用适当的方法解下列方程:①2x 2﹣2x ﹣1=0; ①x (2x ﹣5)=4x ﹣10;23.解方程: (1)22980x x -+=;(2)()()223423x x +=+.24.用适当的方法解方程 (1)2230x x +-= (2)2250x x -=25.解方程(1)()()22120211x -=-, (2)2450x x --=,(3)()72y 140y y -+-=,(4)22530x x --=26.解方程: (1)x 2+x ﹣1=0;(2)()()2424x x -=-.27.解方程(1)2560x x ++=.(2)2240x x --=28.解下列方程: (1) x 2 =2x(2)x 2-4x +1=0(用配方法求解)29.解下列方程: (1)(x +3)2-9=0; (2)x 2+2x -3=0.30.解下列一元二次方程: (1)2280x x -=;(2)()()21321x x x -=-;(3)()234x +=.31.解一元二次方程 (1)x 2﹣4x =0; (2)3x 2﹣x ﹣1=0.32.解方程: (1)x 2﹣4x ﹣5=0; (2)2x (x +1)=x +1.33.解方程: (1)2430x x -+=;(2)()()226280x x ---+=34.解方程(1)()2190x --= (2)2250x x --=35.解方程:(1)2280x x --=(2)()221160x --=(3)()()23530x x x ---=36.用适当的方法解下列一元二次方程 (1)()229x -=(2)()33x x x -+=(3)2314x x -=(4)()()22311-=-x x37.用公式法解下列方程: (1)22410x x --=;(2)2523x x +=;(3)(2)(35)1x x --=;(4)230.252x x +=.38.解方程:(1)27180x x --=; (2)2414x x +=.39.解方程: (1)x 2﹣5x +4=0;(2)x 2+x ﹣1=0.40.解方程:(1)23410x x ++=(公式法) (2)22730x x -+=(配方)(3)()2222x x -=-(4)()29140x --=41.解下列方程: (1)x 2﹣2x +1=25;(2)x 2﹣4x +1=0.42.解方程: (1)(2x ﹣1)2=9. (2)x 2﹣4x ﹣12=0.43.不解方程,求下列各方程的两根之和与两根之积:(1)2210x x ++=; (2)230x -=;(3)22237x x x +=+; (4)25564x x -=-.44.解下列方程: (1)x 2+4x ﹣1=0; (2)(x ﹣1)(x +3)=5(x ﹣1).45.解下列方程: (1)2289x x x -=-; (2)24490x x ++=.46.用直接开平方法解下列方程. (1)2160x -=;(2)2(2)9x -=.47.解方程:(1)22310x x --=,(2)34x 2﹣2x ﹣12=048.用适当的方法解下列方程. (1)x 2+4x =2; (2)2x (x ﹣3)=7(3﹣x ).49.解方程:(1)x (x -3)-5(3-x )=0(2)()()222230x x +-+-=50.解下列一元二次方程: (1)(2x +1)2+4(2x +1)+4=0;(2)(31)(1)(41)(1)x x x x --=+-.51.解方程:(1)22(2)180x +-=(2)22530x x --=52.解方程: (1)x 2﹣2x ﹣5=0;(2)(x +1)﹣2(x 2﹣1)=0.53.解下列一元二次方程: (1)3x (x ﹣1)=2﹣2x ; (2)2x 2﹣x ﹣1=0(配方法).54.解方程: (1)()2219x +=; (2)210240x x -+=.55.计算:解方程:(1)2(1)4x x +=;(2)2(4)5(4)x x +=+;56.解方程:(1)2412x x -=(2)2310x x -+=57.解方程(1)22-0x x =(2)x 2―6x +4=058.解方程: (1)2820x -=;(2)()22x x x -=-.59.解方程:(1)228100x x --=(2)()()22213x x -=+60.解方程:(1)210250x x ++=,(2)2410x x -+=.61.解方程: (1)230x x -=(2)2410x x --=62.解下列一元二次方程: (1)2(1)4x -=(2)(5)x x x +=63.解方程: (1)2660x x --=(2)22(3)(3)x x x =++64.解方程: (1)256x x -=(2)()()2333x x x -=-65.解方程: (1)24120x x +-=.(2)()()2454x x +=+.66.解方程: (1)24x 9=; (2)2x -x-20=.67.解方程 (1)2610x x --=(2)()()22213x x -=-68.用适当的方法解下列方程: (1)x 2-x -1=0;(2)3x (x -2)=x -2;(3)x 2-+1=0;(4)(x +8)(x +1)=-12.69.按要求完成下列各小题, (1)解方程:2(3)(21)(3)x x x -=--(2)解方程:2320x x -+=70.解方程: (1)x 2-2x -3=0 (2)(x ﹣3)2=2x ﹣671.解方程: (1)x 2-x -2=0; (2)3x (x -2)=2-x .72.解下列方程: (1)()()2121x x -=-;(2)()2322x x +=+.73.选择适当方法解下列方程: (1)220x x +=; (2)232x x +=.74.解下列方程:(1)2410x x -+=(配方法) (2)24630x x --=(运用公式法)(3)()()223523x x -=-(分解因式法)75.解一元二次方程: (1)()()31231x x x +=+ (2)23410x x --=76.解方程: (1)245x x -=(2)()()2312x x --=77.解下列方程 (1)22410x x -+=(2)()()21210x x x ---=.78.用合适的方法解下列方程 (1)2510x x -+=(2)()()22550x x x -+-=79.用适当的方法解下列方程: (1)2-430x x(2)()3-2-2x x x =80.用适当方法解下列方程: (1)3x 2﹣2x ﹣1=0;(2)x (x +2)=2x +4.81.请选择适当的方法解下列一元二次方程: (1)2x 2﹣x ﹣3=0;(2)(x +2)2=3(x +2).82.解方程: (1)22x x =(2)2450x x -=+83.解下列方程: (1)28x x =(2)3(1)22x x x -=-84.解方程: (1)x 2-2x -3=0(2)2x 2+1=3x85.解方程: (1)260x x -=;(2)24120x x --=.86.解方程: (1)24250x -=(2)2240x x --=87.解方程:(1)解方程:2420x x--=;(2)解方程:53 212x x=+-.88.解方程:(1)2420x x++=(配方法)(2)2551x x x+=--(公式法)89.解方程.(1)()222180x--=;(2)24810x x-+=.90.解方程,(1)2x2+2x-1=0(2)5(x+3)2=x2-991.用适当的方法解一元二次方程.(1)x(x-3)=-(x-3)(2)x2+4x-3=092.解方程:(1)x(x-2)+x-2=0(2)x2﹣8x+6=0(配方法)93.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法,请你任意挑选择两个方程,并选择你认为适当的方法解方程.①210x x +-=;①2(1)2x -=;①2(1)(1)0x x +++=; ①222x x -=.94.用适当的方法解下列方程:(1)214x ()-=;(2)2340x x --=.95.解方程: (1)230x x +=;(2)212(1)x x -=+.96.解下列方程: (1)22350x x --=;(2)(32)23x x x -=-.97.解方程:(1)220x x -= (2)2310x x ++=98.用适当的方法解下列一元二次方程 (1)22730x x -+=(2)()2362x x -=-99.解方程: (1)2234x x -=(2)()252156x x -=-100.解方程: (1)241x x -=(2)()2133x x +=+参考答案1.(1)x 1=-2,x 2=0.(2)x 1,x 2【分析】(1)采用因式分解法即可求解; (2)直接用公式法即可求解. 解:(1)原方程左边因式分解, 得:(2)0x x +=, 即有:x 1=-2,x 2=0; (2)①24942(1)170b ac ⨯⨯>-=--=,①x =①1x =,2x =. 【点拨】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键.2.(1)10x =,22x = (2)123x x ==【分析】 (1)直接利用因式分解法解方程即可;(2)用因式分解法解方程即可.(1)解:x (x −2)=0,x 1=0,x 2=2;(2)解: (x −3)2=0,x 1=x 2=3.【点拨】此题考查了一元二次方程的解法,解题的关键是熟练掌握各种解法.3.11x =,2=1x 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:24(2)x x x =--- ,解得:11x =,2=1x经检验11x =,2=1x①原分式方程的解为11x =,2=1x【点拨】本题考查了解分式方程以及解一元二次方程,熟练掌握步骤是解题的关键,需要注意的是最后要记得检验是不是分式方程的解.4.(1)x 1=23,x 2=2(2):x 1=﹣3,x 2=2【分析】(1)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,再求出方程的解即可.(1)解:(1)(x ﹣2)2=4x ﹣2x 2,(x ﹣2)2+2x (x ﹣2)=0,(x ﹣2+2x )(x ﹣2)=0,x ﹣2+2x =0或x ﹣2=0,解得:x1=23,x2=2;(2)解:(x﹣1)(x+2)=4,整理,得x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,解得:x1=﹣3,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法求解是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.5.(1)x1=﹣,x2=﹣2(2)x1=2,x2=3【分析】(1)先把常数项移到方程的右边,然后把方程进行配方得到(x+2)2=6,再直接开方即可;(2)先移项再提取公因式(x﹣2)得到(x﹣2)(x﹣3)=0,然后解两个一元一次方程即可.(1)解:①x2+4x﹣2=0①x2+4x=2①x2+4x+4=6①(x+2)2=6①x+2=①x1=﹣x2=﹣2;(2)解:①3(x﹣2)2=x(x﹣2)①(x﹣2)(3x﹣6﹣x)=0①(x﹣2)(x﹣3)=0①x﹣2=0或x﹣3=0①x1=2,x2=3.【点拨】此题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法、配方法、公式法、因式分解法;解题的关键是要根据方程的特点灵活选用合适的方法.6.(1)12x=或72x=(2)12x=-【分析】(1)先将二次项系数化为1,再根据平方根的定义即可求解;(2)先将常数项移到等式右边,再根据立方根的定义即可求解.(1)解:()242-9x =,二次项系数化1得:()292-4x =, 开平方得:322x -=±, 解得:12x =或72x =. (2)解:()32180x -+=移项得:()3218x -=-,开立方得:212x -=-, 解得:12x =-.【点拨】本题主要考查了利用平立方根及立方根解方程,解题的关键是熟记开平方及开立方的定义.7.(1)122,5x x == (2)1222x x ==-【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.(1)解:()()215140x x ---+=, ()()14110x x ----=,()()520x x --=,20x -=,50x -=,122,5x x ==.(2)解:21x +=,21x -=-,2515x -+=-+,2(4x =,2x =±,1222x x ==-【点拨】本题考查了一元二次方程的解法,解题关键是熟练掌握因式分解法和配方法,准确解方程.8.(1)12x x ==x 1=-4,x 2=1 【分析】(1)先计算判别式的值,然后利用公式法解方程;(2)先移项得到(x +4)2-5(x +4)=0,然后利用因式分解法解方程.(1)解: 3x 2-4x -1=0,①a =3,b =-4,c =-1,①Δ=b 2-4ac =(-4)2-4×3×(-1)=16+12=28>0.①x ==,①12x x = (2)解:(x +4)2=5(x +4),(x +4)2-5(x +4)=0,(x +4)(x +4-5)=0,①x +4=0或x -1=0,①x 1=-4,x 2=1.【点拨】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.(1)13x =,29x =(2)1x =2x = 【分析】(1)先移项,然后利用平方差公式及因式分解法解方程即可得;(2)利用公式法解一元二次方程即可得.(1)解:()22239x x -=-,()()()223330x x x --+-=, ()()()32330x x x ⎡⎤---+=⎣⎦,()()390x x --=,∴30x -=或90x -=,∴13x =,29x =;(2)解:22310x x +-=,其中2a =,3b =,1c =-,∴()2243421170b ac =-=-⨯⨯-=>,x =,∴1x =2x =. 【点拨】题目主要考查解一元二次方程的方法:因式分解法与公式法,熟练掌握解方程的方法是解题关键.10.(1)x 1=x 2=3(2)x 1x 2【分析】(1)先将二次项系数化为1,再将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用公式法求解即可.(1)解:∵2x 2﹣12x ﹣12=0,∴x 2﹣6x ﹣6=0,∴x 2﹣6x =6,∴x 2﹣6x +9=6+9,即(x ﹣3)2=15,∴x ﹣3∴x 1=x 2=3(2)解:整理成一般式,得:x 2+5x +5=0,∴a =1,b =5,c =5,∴Δ=52﹣4×1×5=5>0,则x∴x 1x 2 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.11.(1)1x =,2x =(2)13x =,29x =. 【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可.(1)解:2247x x +=化简得,22740x x -+=,274a b c ==-=,,,224(7)424170b ac -=--⨯⨯=>,方程有两个不相等的实数根,x ==1x =,2x =. (2)解:()22239x x -=-,()223(3)(3)0x x x ---+=, ()(3)90x x --=,3090x x -=-=,,13x =,29x =.【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用公式法和因式分解法解方程.12.(1)x 1=﹣x 2=﹣22)x 1=2,x 2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)①x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=16+4=20,①x 2=-①12x =-22x =-(2)x (x -2)+x -2=0,因式分解得:(x ﹣2)(x +1)=0,可得x ﹣2=0或x +1=0,解得:x 1=2,x 2=﹣1.【点拨】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.13.(1)121,3x x =-=-;(2)12x x == 【分析】(1)利用因式分解法解方程即可得;(2)利用公式法解方程即可得.解:(1)2430x x ++=,(1)(3)0x x ++=,10x +=或30x +=,1x =-或3x =-,即121,3x x =-=-;(2)2310x x --=,此方程中的3,1,1a b c ==-=-,则x =x =,12x x == 【点拨】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.14.(1)4x =或2x =-;(2)2x =2x =【分析】(1)根据题意利用直接开方法进行一元二次方程的求解即可;(2)根据题意利用配方法进行一元二次方程的求解即可.解:(1)2(x -1)2=182(1)9x -=所以13x -=或13x -=-,解得:4x =或2x =-;(2)x 2-2x =2x +12410x x --=2(2)410x ---=2(2)5x -=所以2x -=2x -=解得:2x =2x =【点拨】本题考查解一元二次方程,熟练掌握并适当地选择一元二次方程求解的方法是解题的关键.15.(1)11x =,23x =;(2)10x =,2113x =. 【分析】(1)利用十字相乘法解一元二次方程求解即可;(2)利用提公因式法解一元二次方程求解即可.解:(1)2430x x -+= ()()310x x --=30x -=或10x -=,解得:11x =,23x =;(2)23110x x -=()3110x x -=0x =或3110x -=,解得:10x =,2113x =.【点拨】本题考查了一元二次方程的解法.解题的关键是熟练掌握一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(1)12x =,243x =-;(2)11x =,21x = 【分析】(1)先移项,然后利用开平方法解一元二次方程即可;(2)利用配方法解一元二次方程即可.解:(1)①()231250x --=,①()23125x -=,①315x -=±,①12x =,243x =-; (2)①2260x x --=,①226x x -=,①2217x x -+=即()217x -=,①1x -=①11x =21x =【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.17.(1)1x =2x =(2)112x =-,21x = 【分析】(1)用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)2314x x -=23410x x --= 341a b c ==-=-,,224=(4)43(1)28b ac ---⨯⨯-=x ==1x =2x =(2)()2(21)321x x +=+()2(21)3210x x +-+=(21)(213)0x x ++-=210x +=或220x -=112x =-,21x = 【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用恰当的方法解一元二次方程.18.(1)x 1,x 22)x 1=2,x 2=5 【分析】(1)利用公式法求解即可;(2)先移项,然后利用因式分解法求解即可.解:(1)①22310x x --=,①a =2,b =﹣3,c =﹣1,①()()2243421170b ac ∆=-=--⨯⨯-=>,①x ==①x 1x =2x = (2)①x 2﹣7x =﹣10,①x 2﹣7x +10=0,则(x ﹣2)(x ﹣5)=0,①x ﹣2=0或x ﹣5=0,解得x 1=2,x 2=5.【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.19.(1)135x ,235x ;(2)13x =,21x =【分析】(1)根据配方法对方程进行配方再解出方程即可.(2)移项后提取公因式,用因式分解法求出两个解即可.解:(1)2640x x -+=,264x x ∴-=-,26949x x ∴-+=-+,即()235x -=, 则35x ,13x ∴=235x ; (2)()()2323x x x -=--,()()23230x x x ∴-+-=,则()()3330x x --=,30x ∴-=或330x -=,解得13x =,21x =.【点拨】本题考查用配方法,因式分解法解一元二次方程,掌握这些解题方法是解决本题的关键.20.(1)1222,33x x ==-;(2)1255x x ==【分析】(1)移项、合并,然后把二次项系数化为1,再开平方即可;(2)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.解:(1)9x 2﹣1=3,9x 2=4,x 2=49, ①x =23, ①x 1=23,x 2=﹣23;(2)x 2﹣10x +22=0,x 2﹣10x =﹣22,x 2﹣10x +25=﹣22+25,即(x ﹣5)2=3,①x ﹣5=①x 1=x 2=5【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.(1)12x =,22x = ;(2)15x =-,21x =.【分析】(1)首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式,然后开方求解即可;(2)根据十字相乘法解一元二次方程求解即可.解:(1)2430x x --=()222434434272x x x x x x -=-+=+-=-=解得:12x =22x =;(2)2450x x -=+()()510x x +-=解得:15x =-,21x =.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.22.①x 1x 2;①x 1=52,x 2=2 【分析】①用公式法解方程即可得出答案;①利用因式分解法解方程即可;解:①①a =2,b =﹣2,c =﹣1,①Δ=(﹣2)2﹣4×2×(﹣1)=12>0,则x ,即x 1x 2 ①①x (2x ﹣5)=4x ﹣10,①x (2x ﹣5)﹣2(2x ﹣5)=0,①(2x ﹣5)(x ﹣2)=0,则2x ﹣5=0或x ﹣2=0,解得x 1=52,x 2=2; 【点拨】本题考查了公式法解一元二次方程、因式分解法解一元二次方程,熟悉各方法并合理运用是解题的关键.23.(1)1x =2x =2)132x =-,212x = 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.解:(1)①a =2,b =-9,c =8①224(9)428170b ac ∆=-=--⨯⨯=>①x①1x =2x =(2)移项得:()()2234230x x +-+=左边分解因式得:(23)(21)0x x +-=①230x +=或210x -= ①132x =-,212x = 【点拨】本题考查解一元二次方程,要根据方程的特点选用恰当的方法来解. 24.(1)1231x x ,=-=;(2)120 2.5x x ==,【分析】(1)使用十字相乘法进行因式分解解方程;(2)使用提公因式法进行因式分解解方程;解:(1)2230x x +-=()()310x x +-=①3010x x +=-=;①1231x x ,=-=(2)2250x x -=()250x x -=①0250x x =-=;①120 2.5x x ==,【点拨】本题考查的是一元二次方程的解法,解题的关键是会选择合适的解法解方程.25.(1)x 1=2021,x 2=﹣2019;(2)x 1=﹣1,x 2=5;(3)y 1=﹣2,y 2=7;(4)x 1=﹣12,x 2=3【分析】(1)利用直接开平方法解一元二次方程即可求解;(2)利用因式分解法解一元二次方程即可求解;(3)利用因式分解法解一元二次方程即可求解;(4)利用因式分解法解一元二次方程即可求解;解:(1)直接开平方得:x ﹣1=±2020,①x 1=2021,x 2=﹣2019;(2)原方程化为:(x +1)(x ﹣5)=0,①x +1=0或x ﹣5=0,①x 1=﹣1,x 2=5;(3)原方程化为:(y +2)(y ﹣7)=0,①y +2=0或y ﹣7=0,①y 1=﹣2,y 2=7;(4)原方程化为:(2x +1)(x ﹣3)=0,①2x +1=0或x ﹣3=0,①x 1=﹣12,x 2=3. 【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法并灵活运用是解答的关键.26.(1)1x =,2x =2)14x =,26x =. 【分析】 (1)直接利用公式法解方程得出答案.(2)移项后直接利用分解因式解方程即可;解:(1)210x x +-=,其中:1a =,1b =,1c =-,∴22=4=141-1=5b ac --⨯⨯(),①x =解得:1x ,2x =; (2)()()2424x x -=-(4)2(4)0x x ---=,()()460x x --=则40x -=或60x -=,解得:14x =,26x =.【点拨】此题主要考查了因式分解法以及公式法解方程,正确掌握相关解方程的方法是解题关键.27.(1)122,3x x =-=-(2)1211x x ==【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.解:(1)2560x x ++=.(2)(3)0x x ++=,20,30x x +=+=,122,3x x =-=-(2)2240x x --=.224x x -=,2215x x -+=,2(1)5x -=,1x -=,1211x x ==【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用因式分解法和配方法解方程.28.(1)120,2x x ==;(2)122x x ==【分析】(1)用因式分解法求解即可;(2)用配方法求解即可.解:(1)x 2=2x ,x 2﹣2x =0,x (x ﹣2)=0,解得:x 1=0,x 2=2;(2)x 2-4x +1=0,x 2-4x +4-3=0,(x -2)2=3,x -2=解得:x 1x 2=2【点拨】本题考查了因式分解法和配方法解解一元二次方程.掌握配方法的一般步骤是解答本题的关键.29.(1)x 1=-6,x 2=0;(2)x 1=-3,x 2=1.【分析】(1)根据题意直接利用因式分解法进行方程的求解即可;(2)根据题意直接进行十字交叉相乘利用因式分解法进行方程的求解即可.(1)解: (x +3+3)(x +3-3)=0.(x +6)x =0,x +6=0或x =0,①x 1=-6,x 2=0.(2)解: (x +3)(x -1)=0,x +3=0或x -1=0,①x 1=-3,x 2=1.【点拨】本题考查解一元二次方程,熟练掌握并灵活运用一元二次方程的各种解法是解题的关键.30.(1)10x =,24x =.(2)112x =,23x =.(3)15x =-,21x =- 【分析】(1)根据因式分解法解一元二次方程求解即可;(2)首先把等式右边的()321x -移到左边,然后根据因式分解法解一元二次方程求解即可;(3)首先把等式右边的4移到左边,然后根据因式分解法解一元二次方程求解即可. 解:(1)因式分解,得()240x x -=.于是有20x =或40x -=,①10x =,24x =.(2)原方程整理,得:(21)3(21)0x x x ---=,(21)(3)0x x --=, 210x -=或30x -=, ①221,32x x ==. (3)原方程整理,得()2340x +-=.因式分解,得()()32320x x +++-=.于是有50x +=或10x +=.①15x =-,21x =-.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.31.(①)x 1=0,x 2=4;(①)x 1x 2【分析】(1)利用因式分解法求解即可;(2)利用公式法求解即可.解:(1)x 2﹣4x =0,分解因式得:x (x ﹣4)=0,解得:x 1=0,x 2=4;(2)3x 2﹣x ﹣1=0,①a =3,b =﹣1,c =﹣1,①①=b 2﹣4ac =1﹣4×3×(﹣1)=13,①x =①x 1x 2 【点拨】本题考查了解一元二次方程,灵活运用简便的方法来求解一元二次方程是解决本题的关键.32.(1)1x =5,2x =﹣1;(2)1x =-1,2x =0.5【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.解:(1)①2x ﹣4x =5,①2x ﹣4x +4=5+4,即2(2)x -=9,则x ﹣2=3±,①1x =5,2x =﹣1;(2)①2x (x +1)﹣(x +1)=0,①(x +1)(2x ﹣1)=0,则x +1=0或2x ﹣1=0,解得1x =-1,2x =0.5.【点拨】本题考查了一元二次方程的配方法,因式分解法求解,根据方程的特点,灵活选择解题方法是解题的关键.33.(1)13x =,21x =;(2)14x =,26x =【分析】(1)利用因式分解法求解一元二次方程即可;(2)将2x -看成整体,利用因式分解法求解一元二次方程即可.解:(1)2430x x -+=(3)(1)0x x --=解得:13x =,21x =(2)()()226280x x ---+= ()()22240x x ----=604)()(x x --=解得:14x =,26x =【点拨】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的方法以及整体思想的利用.34.(1)14x =,22x =-,(2)11x =21x =【分析】(1)用直接开方法解方程即可;(2)用公式法解方程即可.解:(1)()2190x --= , ()219x -=,13x -=±,13x -=或13x -=-,14x =,22x =-,(2)2250x x --=,1=25a b c =-=-,,,224(2)41(5)24b ac -=--⨯⨯-=,22x ==11x =21x =【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用直接开方法和公式法解一元二次方程.35.(1)2x =-或4x =;(2)52x =或32x =-;(3)3x =或52x =- 【分析】(1)根据十字相乘法解一元二次方程求解即可;(2)根据直接开方法解一元二次方程求解即可;(3)根据提公因式法解一元二次方程求解即可.解:(1)2280x x --= ()()240x x +-=20x ∴+=或40x -=,解得:2x =-或4x =;(2)()221160x --= ()22116x -=,214x ∴-=或214x -=-, 解得52x =或32x =-; (3)()()23530x x x ---=` 解:2(3)5(3)0x x x -+-=,(3)(25)0x x ∴-+=,30x ∴-=或250x +=,解得:3x =或52x =-. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.36.(1)15=x ,21x =-;(2)13x =,21x =-;(3)1x =2x =(4)10x =,212x = 【分析】(1)本题利用直接开平方法解方程即可;(2)本题将3移项到等号的左边,通过因式分解法解方程即可;(3)先将4x 移项到等号左边,化成一般式,利用公式法解方程即可;(4)将2(1)x -移项到等号左边,利用因式分解法解方程即可.解:(1)直接开平方得23x -=±,解得15=x ,21x =-;(2)由已知得(3)(3)0x x x -+-=,则(1)(3)0x x +-=,解得11x =-,23x =;(3)由已知得23410x x --=,2(4)43(1)28∆=--⨯⨯-=,①x =解得1x =,2x = (4)由已知得22(31)(1)0x x ---=,利用因式分解法可得2(42)0x x -=,解得10x =,212x =. 【点拨】本题考查解一元二次方程的方法,可以利用直接开平方法,公式法或因式分解法,选择正确的方法解方程是解题的关键.37.(1)1211x x ==(2)12312x x ==-,;(3)12x x ==(4)没有实数根.【分析】先把各方程整理成一般形式()200++=≠ax bx c a ,然后计算24b ac ∆=-,再用求根公式x =计算即可. (1)解:22410x x --=,①241a b c ==-=-,,,① ()()224442124b ac ∆=-=--⨯⨯-=,① x =,即:1211x x == (2)解:23520x x --=,①352a b c ==-=-,,,① ()()2245432=49b ac ∆=-=--⨯⨯-,① 576x ±=, 即:12312x x ==-,; (3)解:2311+90x x -=,①3119a b c ==-=,,,① ()22411439=13b ac ∆=-=--⨯⨯,① x =,①12x x == (4)2250015x x +-=,①21550a b c ==-=,,,① ()2241542501750b ac ∆=-=-⨯⨯=-<,①此方程没有实数根.【点拨】本题考查求根公式法解一元二次方程,比较基础.38.(1)129,2x x ==-;(2)1212x x ==【分析】找出a ,b ,c 的值,计算出根的判别式的值,代入求根公式计算即可求出解.(1)解:①1,7,18a b c ==-=-,①224(7)41(18)1210b ac -=--⨯⨯-=>,①7112x ±==, 即129,2x x ==-;(2)解:24410x x -+=,①4,4,1a b c ==-=,①224(4)4410b ac -=--⨯⨯=, ①(4)01242x --±==⨯, 即1212x x ==. 【点拨】此题考查了解一元二次方程−公式法,熟练掌握求根公式是解本题的关键.39.(1)11x =,24x =;(2)1x ,2x =. 【分析】(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.解:(1)将左边分解因式得:()()140x x --=,①10x -=或40x -=,①11x =,24x =;(2)①1a =,1b =,1c =-,①()224141150b ac ∆=-=-⨯⨯-=>,①x ===,①1x =,2x =. 【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键. 40.(1)121,13x x ;(2)12317,44x x =-=(3)1252,2x x ==(4)1215,33x x == 【分析】(1)先计算4,= 再利用求根公式计算即可;(2)把原方程化为:273022x x -+=,再配方可得:272544x ⎛⎫-= ⎪⎝⎭,再利用直接开平方法解方程即可;(3)先移项,再提取公因式:()2,x - 再解方程即可;(4)可移项后把方程化为:()2419x -=,再利用直接开平方法解方程即可. (1)解:由24b ac ∆=-=16-4×3×1=4>0,故原方程有两个不同的解.x =42,6x -±= 121,13x x ∴=-=- (2)解:273022x x -+= 222777302442x x ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ 272544x ⎛⎫-= ⎪⎝⎭ 7542x ∴-=或75,42x -=- 12317,.44x x ∴=-= (3)解:()()22210x x ⎡⎤---=⎣⎦()()2250x x --=20x ∴-=或250,x -=1252,.2x x ∴== (4)解:()2419x -= 所以:213x -=± 1215,.33x x ∴== 【点拨】本题考查一元二次方程的各种解法,熟练掌握每种解法是解本题关键.41.(1)126,4x x ==-;(2)1222x x ==【分析】(1)根据配方法解一元二次方程的步骤计算可得答案;(2)移项后根据配方法解一元二次方程的步骤计算可得答案;.解:(1)22125x x -+=2(1)25x ∴-=15x ∴-=±126,4x x ∴==-;(2)①x 2﹣4x +1=0①2443x x -+=①()223x -=①2x -=①1222x x ==【点拨】本题考查解一元二次方程,涉及配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.42.(1)12x =,21x =-;(2)16x =,22x =-.【分析】(1)用直接开平方法求解即可;(2)根据分解因式法求解.解:(1)①(2x ﹣1)2=9,①2x ﹣1=3或2x ﹣1=﹣3,解得:12x =,21x =-;(2)x 2﹣4x ﹣12=0原方程可变形为()()620x x -+=,①x -6=0或x +2=0,①16x =,22x =-.【点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.43.(1)12122,1x x x x +=-=;(2)12123x x x x +==-;(3)121213,55x x x x +=-=-;(4)121251,66x x x x +==. 【分析】(1)(2)是一般式,先根据判别式确定根的情况,再利用韦达定理即可;(3)(4)先整理成一般式,再根据判别式确定根的情况,然后利用韦达定理即可.解:(1)①1,2,1a b c ===,且24440b ac -=-=, ①12122,1b c x x x x a a+=-=-==;(2)①1,3a b c ===-,且24212140b ac -=+=>,①12123b c x x x x a a+=-===-; (3)方程化为2530x x +-=,①5,1,3a b c ===-,且24160610b ac -=+=>, ①121213,55b c x x x x a a +=-=-==-; (4)方程化为26510x x -+=,①6,5a b ==-,1c =,且24252410b ac -=-=>,①121251,66b c x x x x a a +=-===. 【点拨】本题考查了一元二次方程根的判别式及根与系数的关系,掌握相关公式是解决本题的关键.44.(1)x 1=﹣x 2=﹣22)x 1=1,x 2=2.【分析】(1)利用公式法求解即可;(2)利用因式分解法求解即可.解:(1)x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=42﹣4×1×(﹣1)=20>0,则x =﹣2即x 1=﹣x 2=﹣2(2)(x ﹣1)(x +3)=5(x ﹣1),(x ﹣1)(x +3)﹣5(x ﹣1)=0,(x ﹣1)(x ﹣2)=0,则x ﹣1=0或x ﹣2=0,解得x 1=1,x 2=2.【点拨】本题考查了一元二次方程的解法,解题关键是熟记求根公式,熟练运用因式分解法解一元二次方程.45.(1)121,9x x ==;(2)无解【分析】(1)先将原方程整理为一般式,然后运用公式法求解即可;(2)先求出原方程的根的判别式∆<0,即可求解.解:(1)原方程化为 21090x x -+= ,2241049640b ac ∆=-=-⨯=> ,由求根公式得,=x 1082±=, 所以原方程的解为121,9x x == ;(2)22444491280b ac ∆=-=-⨯⨯=-< ,∴原方程无实数根.【点拨】本题主要考查了解一元二次方程——公式法,理解运用公式法解一元二次方程时要先求出根的判别式以确定根的情况是解题的关键.46.(1)14x =,24x =-;(2)15=x ,21x =-【分析】(1)移项,得216x =,根据平方根的定义,得4x =±.即14x =,24x =-.(2)根据平方根的定义,得23x -=±,即15=x ,21x =-.解:(1)2160x -=①2=16x①4x =±解得14x =,24x =-(2)2(2)9x -=①23x -=±①15=x ,21x =-【点拨】本题主要考查了用开方法解一元二次方程,解题的关键在于能够熟练掌握开方法.47.(1)1x =,2x =;(2)12x x ==. 【分析】(1)先判断0∆>,然后利用公式法解一元二次方程,即可得到答案;(2)先整理方程,判断0∆>,然后利用公式法解一元二次方程,即可得到答案; 解:(1)22310x x --=,224(3)42(1)170b ac ∆=-=--⨯⨯-=>,①x =①1x =,2x =; (2)2312042x x --=,则23820x x --=224(8)43(2)6424880b ac ∆=-=--⨯⨯-=+=>,则x ,解得:124433x x ==. 【点拨】本题考查了公式法解一元二次方程,解题的关键是熟练掌握公式法解方程.48.(1)1222x x =-=-2)1273,2x x ==- 【分析】(1)利用配方法求解可得答案;(2)利用因式分解法求解即可.解:(1)①x 2+4x =2,①x 2+4x +4=2+4,即(x +2)2=6,①x +2=,①1222x x =-=-(2)①2x (x ﹣3)=7(3﹣x ),①2x (x ﹣3)+7(x ﹣3)=0,则(x ﹣3)(2x +7)=0,①x ﹣3=0或2x +7=0, ①1273,2x x ==-. 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.(1)123,5x x ==-;(2)121,3x x ==-.【分析】根据因式分解法解一元二次方程的方法求解即可.解:(1)x (x -3)-5(3-x )=0()()3530x x x -+-=()()350x x -+=解得:123,5x x ==-.(2)()()222230x x +-+-= ()()23210x x +-++=()()130x x -+=解得:121,3x x ==-.【点拨】此题考查了因式分解法解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程的方法.50.(1)1232x x ==-;(2)11x =,22x =- 【分析】(1)可以用完全平方公式因式分解解一元二次方程;(2)可以用提公因式法解一元二次方程.解:(1)(2x +1)2+4(2x +1)+4=0,(2x +1+2)2=0.即2(23)0x +=,①1232x x ==-. (2)移项,得(3x -1)(x -1)-(4x +1)(x -1)=0,即 -(x -1)(x +2)=0,所以11x =,22x =-.【点拨】本题考查了一元二次方程的解法,熟练因式分解法解一元二次方程是解题的关键.51.(1)x 1=1,x 2=-5;(2)x 1=12-,x 2=3 【分析】(1)移项后利用直接开平方法求解可得;(2)利用公式法求解可得.解:(1)22(2)180x +-=,①22(2)18x +=,①2(2)9x +=,①23x +=或23x ,解得:x 1=1,x 2=-5;(2)22530x x --=,①a =2,b =-5,c =-3,①①=25-4×2×(-3)=49>0,①x 解得:x 1=12-,x 2=3. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.52.(1)x 1=x 2=2)x 1=﹣1,x 2=32. 【分析】(1)利用配方法法解方程;(2)利用因式分解法解方程.解:(1)∵x 2﹣2x ﹣5=0,。
人教版九年级上册数学因式分解法解一元二次方程同步训练(含答案)
![人教版九年级上册数学因式分解法解一元二次方程同步训练(含答案)](https://img.taocdn.com/s3/m/eca49fa4f021dd36a32d7375a417866fb84ac0ca.png)
人教版九年级上册数学21.2.3因式分解法解一元二次方程同步训练一、单选题1.一元二次方程230x x -=的解为( )A .x =3B .x =0C .x =0 且x =3D .x =0或x =3 2.一元二次方程2x x =的解为( )A .1x -=B .121x x ==C .120,1x x ==D .120x x == 3.已知三角形的两边长为3和6,第三边的长是方程27120x x -+=的一个根,则这个三角形的周长是( )A .12B .13C .12或13D .15 4.方程(1)(3)0x x +-=的解是( )A .1213x x ==,B .1213x x =-=,C .1242x x ==-,D .1242x x =-=, 5.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=3 6.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,0 7.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .20 8.若等腰三角形三边的长分别是a ,b ,3,且a ,b 是关于x 的一元二次方程240x x m -+=的两个根,则满足上述条件的m 的值有( )A .1个B .2个C .3个D .3个以上二、填空题9.方程220x x -=的解为___________.10.一元二次方程()25410x x x -=-的根是__________.11.方程22131x x -=-()()的解是_______________. 12.三角形两边的长分别为2和7,第三边的长是方程210160x x -+=的根,则该三角形的周长为______.13.如果(a 2+b 2)2﹣(a 2+b 2)﹣2=0,则a 2+b 2=__.14.一元二次方程()()270x x -+=的根是_________.15.已知关于x 的一元二次方程230x mx m --+=有两个相等的实数根,那么m 的值为_______.16.已知a 、b 是一元二次方程2230x x +-=的两个根,则代数式22a b +的值为______.三、解答题17.用适当的方法解下列方程:(1)2(21)3(21)x x x -=- (2)23557x x -+=18.已知关于x 的一元二次方程x 2−mx +m −2=0.(1)求证:此方程总有两个不相等的实数根;(2)若此方程有一个根是0,求出m 的值和另一个根.19.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.20.如果方程 260--=ax bx 与方程 22150ax bx +-=有一个公共根是3,求 a 、b 的值,并分别求出两个方程的另一个根.参考答案:1.D2.C3.B4.B5.D6.B7.D8.B9.10x=,22x=10.12x=,25 2x=11.11x=,25 2x= 12.1713.214.12x=或27x=-15.2或6-16.1017.(1)11 2x=,21x=-(2)11 3x=-,22x=18.(2)m=2,方程的另一个根是2.19.17.20.a=b=1;该方程的另一个根为-2;该方程的另一个根为-5.答案第1页,共1页。
人教版数学九年级上册一元二次方程(已编辑可直接打印)练习题(
![人教版数学九年级上册一元二次方程(已编辑可直接打印)练习题(](https://img.taocdn.com/s3/m/af2bde52e518964bcf847cec.png)
解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:1.把常数项移到方程的右边;2.把二次项的系数化为1;3.同时加上1次项的系数的一半的平方;4.配成完全平方公式。
1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)1.公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
2.一般地,式子b 2-4ac 叫做一元二次方)0(02≠=++a c bx ax 根的判别式。
通常用希腊字母“Δ”表示b 2-4ac ,即Δ=b 2-4ac 。
3.当Δ〉0时,方程有两个不相等的实数根;当Δ= 0时,方程有两个相等的实数根;当Δ〈0时,方程没有实数根。
此结论,繁殖亦成立。
4.一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 5.公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。
人教版九年级数学上册解一元二次方程测试题
![人教版九年级数学上册解一元二次方程测试题](https://img.taocdn.com/s3/m/13bfbc322cc58bd63086bdcb.png)
人教版九年级数学考试题测试题人教版初中数学21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值 6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)
![人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)](https://img.taocdn.com/s3/m/d1257ceb866fb84ae55c8d48.png)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.一元二次方程x2=4x的解是()A.x=4 B.x=0 C.x=0或-4 D.x=0或4第II卷(非选择题)请点击修改第II卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.9.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A 解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2250x x +-=.解析:1216,16x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 23.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=,整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
九年级数学解一元二次方程专项练习题【40道】
![九年级数学解一元二次方程专项练习题【40道】](https://img.taocdn.com/s3/m/ff343935aa00b52acec7caeb.png)
解一元二次方程专项练习题(带答案)1、用配方法解以下方程:( 1)x2+12 x+25=0(2)x2+4x=10( 3)x2-6x=11(4)x 2-2x-4=02、用配方法解以下方程:( 1)6x 2- 7x+1=0(2)5x2-18=9x( 3)4x 2- 3x=52(4)5x2=4-2x3、用公式法解以下方程:( 1)2x 2-9x+8=0(2)9x 2+6x+1=0( 3)16x2+8x=3(4)2x2-4x-1=04、运用公式法解以下方程:(1)5x2+2x-1=0(2)x 2+ 6x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2x25(2)x2 2 3x 30 ( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 4 7、解以下对于x 的方程:(1)x2+2x-2=0(2) 3x2+4x-7=(3) ( x+3)( x-1)=522 x=0 ( 4) ( x-2 ) +48、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程:x2— 4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3( x-5) 2=2(5- x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】( 1)-6 11 ;(2)-2 14 ;(3)3 2 5 ;(4)15 2、【答案】( 1)x1=1,x2=1(2)x1=3,x2=-6 6 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】() x=917 ()x1=x 2=-11 42 3( 3)x1=1,x2=-3( 4)x=26 4 4 24、【答案】(1)x1= 16, x2 1 6 (2). x1=-3+7, x2=-3-7 5 5( 3)x=2,x=-1( 4)x=11131 2 3 6 5、【答案】( 1)x1=x2=-1(2)x1=1,x2=-23 3( 3)x1=-3,x2=1(4)x1=3,x2=9 2 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3) x 15, x 2 4;( 4) x 1 2, x 2337、【答案】(1) x =- 1± 3 ;(2)x =1, x =-7123(3) x 1=2, x 2=- 4;(4)=x 2=-28、【答案】解:( 1) x 1 3, x 21( 2) x 1 23, x 2 235 105 10( 4) x 1 5, x 213 ( 3) x 13, x 23。
人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)
![人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)](https://img.taocdn.com/s3/m/0ce60e06360cba1aa911da6e.png)
人教版九年级数学上册第二十一章 一元二次方程 专题练习题专题1 一元二次方程的解法1.用直接开平方法解下列方程:(1)3x 2-27=0;解:3x 2=27,x 2=9,x =±3,∴x 1=3,x 2=-3.(2)2(3x -1)2=8.解:(3x -1)2=4,3x -1=±2,∴x 1=1,x 2=-13.2.用配方法解下列方程:(1)x 2-2x +5=0;解:x 2-2x =-5,x 2-2x +1=-5+1,(x -1)2=-4<0,∴原方程无解.(2)14x 2-6x +3=0.解:x 2-24x +12=0,(x -12)2=132,x-12=±233,∴x1=233+12,x2=-233+12.3.用因式分解法解下列方程:(1)x2-3x=0;解:x(x-3)=0,∴x=0或x-3=0.∴x1=0,x2=3.(2)(x-3)2-9=0;解:∵(x-3)2-32=0,∴(x-3+3)(x-3-3)=0,即x(x-6)=0.∴x=0或x-6=0.∴x1=0,x2=6.(3)2(t-1)2+8t=0;解:原方程可化为2t2+4t+2=0.∴t2+2t+1=0.∴(t+1)2=0.∴t1=t2=-1.(4)x2-3x=(2-x)(x-3);解:原方程可化为x(x-3)=(2-x)(x-3).移项,得x(x-3)-(2-x)(x-3)=0.∴(x-3)(2x-2)=0.∴x -3=0或2x -2=0.∴x 1=3,x 2=1.(5)x 2-4x -12=0.解:分解因式,得(x -6)(x +2)=0,∴x 1=6,x 2=-2.4.用公式法解下列方程:(1)3x 2-2x +1=0;解:∵a =3,b =-2,c =1,b 2-4ac =(-2)2-4×3×1=-8<0,∴原方程无实数根.(2)x 2-23x +2=0;解:∵a =1,b =-23,c =2,b 2-4ac =(-23)2-4×1×2=4,∴x =-(-23)±22×1=3±1. ∴x 1=3-1,x 2=3+1.(3)3x =2(x +1)(x -1). 解:将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(-2)=11>0,224∴x 1=6+224,x 2=6-224. 5.用合适的方法解下列方程:(1)4(x -3)2-25(x -2)2=0;解:原方程可化为[2(x -3)]2-[5(x -2)]2=0,即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0,即(7x -16)(-3x +4)=0.∴x 1=167,x 2=43. (2)5(x -3)2=x 2-9;解:5(x -3)2=(x +3)(x -3),移项,得5(x -3)2-(x +3)(x -3)=0.∴(x -3)[5(x -3)-(x +3)]=0,即(x -3)(4x -18)=0.∴x -3=0或4x -18=0.∴x 1=3,x 2=92. (3)t 2-22t +18=0. 解:方程两边都乘8,得8t 2-42t +1=0.∵a =8,b =-42,c =1, ∴b 2-4ac =(-42)2-4×8×1=0.2×84∴t 1=t 2=24. 6.阅读材料:为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,设x 2-1=y ,那么原方程可化为y 2-5y +4=0①,解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2.∴x =±2;当y =4时,x 2-1=4,∴x 2=5.∴x =± 5.故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=- 5.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;(2)请利用以上知识解方程:(x 2+x)2-5(x 2+x)+4=0;(3)请利用以上知识解方程:x 4-3x 2-4=0.解:(2)设y =x 2+x ,则y 2-5y +4=0.∴(y -1)(y -4)=0.解得y 1=1,y 2=4.①当x 2+x =1,即x 2+x -1=0时,解得x =-1±52; ②当x 2+x =4,即x 2+x -4=0时,解得x =-1±172. 综上所述,原方程的解为x 1=-1+52,x 2=-1-52,x 3=-1+172,x 4=-1-172.(3)设x 2=y ,则y 2=x 4,原方程化为y 2-3y -4=0,解此方程,得y 1=4,y 2=-1.∵y ≥0,∴y =4.当y =4时,x 2=4,解得x 1=2,x 2=-2.专题2 根的判别式及根与系数的关系的综合1.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B)A .1B .2C .1或2D .02.已知关于x 的方程x 2-(2k 2-3)x +k +7=0有两个不相等的实数根x 1,x 2,且x 1=5-x 2,则k 的值为-2.3.已知关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个实数根α,β.(1)求m 的取值范围;(2)若1α+1β=-1,求m 的值. 解:(1)由题意知,(2m +3)2-4×1×m 2≥0,解得m ≥-34. (2)由根与系数的关系,得α+β=-(2m +3),αβ=m 2.∵1α+1β=-1,∴α+βαβ=-1. ∴-(2m +3)m 2=-1. 变形得m 2-2m -3=0,解得m 1=-1,m 2=3.经检验,m 1=-1和m 2=3是原分式方程的解.由(1)知m ≥-34,∴m 1=-1应舍去. ∴m 的值为3.4.已知关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴Δ=(-6)2-4(m +4)=20-4m ≥0.解得m ≤5.(2)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1x 2=m +4②.∵3x 1=|x 2|+2,∴x 1>0.当x 2≥0时,有3x 1=x 2+2③,联立①③,解得x 1=2,x 2=4.∴8=m +4.∴m =4,满足m ≤5;当x 2<0时,有3x 1=-x 2+2④,联立①④,解得x 1=-2,x 2=8(不合题意,舍去).∴m 的值为4.5.已知x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两个实数根.(1)若(x 1-1)(x 2-1)=19,求m 的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解:(1)根据题意,得x1+x2=2(m+1),x1x2=m2+5.(x1-1)(x2-1)=19整理,得x1x2-(x1+x2)+1=19.把x1+x2=2(m+1),x1x2=m2+5代入x1x2-(x1+x2)+1=19,得m2+5-2(m+1)+1=19.整理,得m2-2m-15=0.解得m1=-3,m2=5.∵由Δ=4(m+1)2-4(m2+5)≥0,得m≥2,∴m1=-3不合题意,应舍去.∴m的值为5.(2)若等腰△ABC的腰长为7,把x=7代入方程x2-2(m+1)x+m2+5=0,得49-14(m+1)+m2+5=0,解得m1=4,m2=10.若m=4,则原方程为x2-10x+21=0,解得x1=7,x2=3.△ABC三边为7,7,3(符合题意).若m=10,则原方程为x2-22x+105=0,解得x1=7,x2=15.△ABC三边为7,7,15(不合题意,舍去).若等腰△ABC的底边长为7,则Δ=[-2(m +1)]2-4(m 2+5)=8m -16=0,解得m =2.原方程为x 2-6x +9=0.解得x 1=x 2=3.△ABC 三边为3,3,7(不合题意,舍去).综上可知:△ABC 三边为7,7,3,周长为7+7+3=17,即这个三角形的周长为17.专题3 一元二次方程的实际应用1.印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?解:设有x 只猴子,由题意,得(18x)2+12=x , 整理,得x 2-64x +768=0,解得x 1=16,x 2=48.答:这群猴子的总数为16只或48只.2.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16 m ,宽(AB)9 m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112 m 2,则小路的宽应为多少?解:设小路的宽应为x m ,根据题意,得(16-2x)(9-x)=112.解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去.∴x =1.答:小路的宽应为1 m.3.某农场去年种植了10亩地的南瓜,亩产量为2 000 kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为x.(1)则今年南瓜的种植面积为10(1+x)亩;(用含x 的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的12,今年南瓜的总产量为60 000 kg ,求南瓜亩产量的增长率.解:根据题意,得10(1+x)×2 000(1+x 2)=60 000, 整理,得x 2+3x -4=0,解得x 1=1=100%,x 2=-4(不合题意,舍去).∴12x =50%. 答:南瓜亩产量的增长率为50%.4.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万千克与3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意,得2.5(1+x)2=3.6.解得x =0.2,x =-2.2(不合题意舍去).答:该养殖场蛋鸡产蛋量的月平均增长率为20%.(2)设再增加y 个销售点,根据题意,得3.6+0.32y ≥3.6×(1+20%),解得y ≥94. 答:至少再增加3个销售点.5.如图,在直角墙角AOB(OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m 2.(1)求矩形地面的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?解:(1)设AC =x m ,则BC =(20-x)m ,由题意,得x(20-x)=96,整理,得x 2-20x +96=0,解得x 1=12,x 2=8.当AC =12时,BC =8;当AC =8时,BC =12.答:矩形地面的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖:120.8×80.8=15×10=150(块), 150×50=7 500(元);②若选用规格为1.00×1.00(单位:m)的地板砖:121×81=96(块), 96×80=7 680(元).∵7 500<7 680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.6.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元/台)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元/台,如果该公司想获得10 000万元的年利润,那么该设备的销售单价应是多少万元/台?解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b(k ≠0),将(40,600),(45,550)代入y =kx +b ,得⎩⎪⎨⎪⎧40k +b =600,45k +b =550.解得⎩⎪⎨⎪⎧k =-10,b =1 000. ∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)根据题意,得(x -30)(-10x +1 000)=10 000,整理,得x 2-130x +4 000=0,解得x 1=50,x 2=80.∵此设备的销售单价不得高于70万元/台,∴x =50.答:该设备的销售单价应是50万元/台.7.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2 090元,则这种干果每千克应降价多少元?解:(1)设一次函数关系式为y =kx +b ,当x =2,y =120;当x =4,y =140.∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140,解得⎩⎪⎨⎪⎧k =10,b =100. ∴y 与x 之间的函数关系式为y =10x +100.(2)由题意,得(60-40-x)(10x +100)=2 090,解得x 1=1,x 2=9.∵让顾客得到更大的实惠,∴x =9.答:商贸公司要想获利2 090元,且让顾客得到更大的实惠,则这种干果每千克应降价9元.8.如图,在△ABC 中,∠C =90°,AC =16 cm ,BC =8 cm ,一动点P 从点C 出发沿着CB 边以2 cm/s 的速度运动,另一动点Q 从点A 出发沿着AC 边以4 cm/s 的速度运动,P ,Q 两点同时出发,运动时间为t s.(1)若△PCQ 的面积是△ABC 面积的14,求t 的值; (2)△PCQ 的面积能否与四边形ABPQ 面积相等?若能,求出t 的值;若不能,说明理由.解:(1)根据题意,得S △PCQ =12×2t(16-4t),S △ABC =12×8×16=64. ∵△PCQ 的面积是△ABC 面积的14, ∴12×2t(16-4t)=64×14. 整理,得t 2-4t +4=0,解得t =2.答:当t =2 s 时,△PCQ 的面积为△ABC 面积的14. (2)△PCQ 的面积不能与四边形ABPQ 面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 面积相等时,则S △PCQ =12S △ABC ,即12×2t(16-4t)=64×12, 整理,得t 2-4t +8=0.∵Δ=(-4)2-4×1×8=-16<0,∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 面积相等.。
初中数学新人教版因式分解法解一元二次方程练习题及答案
![初中数学新人教版因式分解法解一元二次方程练习题及答案](https://img.taocdn.com/s3/m/04851cad31b765ce0408146d.png)
初中数学新人教版因式分解法解一元二次方程练习题及答案1.选择题方程=0的根是A.x1=-16,x2=B.x1=16,x2=-C.x1=16,x2=D.x1=-16,x2=-8222下列方程4x-3x-1=0,5x-7x+2=0,13x-15x +2=0中,有一个公共解是1 B.x=C.x=1D.x=-1方程5x=3解为3333A.x1=,x2=B.x= C.x1=-,x2=- D.x1=,x2=-5555方程=1的根为A.y1=5,y2=-2B.y= C.y=-2D.以上答案都不对22方程-4=0的根为A.x1=1,x2=-B.x1=-1,x2=-C.x1=1,x2=D.x1=-1,x2=522一元二次方程x+5x=0的较大的一个根设为m,x -3x+2=0较小的根设为n,则m+n的值为 A.x=A.1 B. C.-4D.42已知三角形两边长为4和7,第三边的长是方程x-16x+55=0的一个根,则第三边长是A.5B.5或11C. D.112.填空题方程t=28的解为_______.2方程+3=0的解为__________.2方程+3+2=0的解为__________.2关于x的方程x+x+mn=0的解为__________.方程x=-x的解为__________.3.用因式分解法解下列方程:222x+12x=0;4x-1=0; x=7x;2x-4x-21=0;=12; 3x+2x-1=0;2210x-x-3=0;-4-21=0.4.用适当方法解下列方程:222x-4x+3=0;=256; x-3x+1=0;2222x-2x-3=0;=3;+y=9;22x-8x=7;-2-8=0.5.解关于x的方程:2222x-4ax+3a=1-2a; x+5x+k=2kx+5k+6; 2222x-2mx-8m=0; x+x+m+m=0.2222226.已知-12=0.求x+y的值.7.解方程:x=864.228.已知x+3x+5的值为9,试求3x+9x-2的值.9.一跳水运动员从10米高台上跳水,他跳下的高度h与所用的时间t的关系式h=-5.求运动员起跳到入水所用的时间.10.解方程22242-5+4=0x-3x-4=0.初中数学用因式分解法解一元二次方程一.选择题1.用因式分解法解一元二次方程x﹣2=0,正222222二.填空题8.一元二次方程3x2﹣4x﹣2=0的解是.9.一元二次方程x2﹣2x﹣3=0的解是.10.一元二次方程2﹣36=0的解是.三.解答题11.用指定的方法解下列一元二次方程:2x2﹣4x+1=0;3x=2﹣2x;x2﹣x﹣3=0.第1页12.用因式分解法解下列关于x的一元二次方程.22x+x﹣kx=0222x﹣2mx+m﹣n=0.13.计算:;我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x﹣3x+1=0;②=3;③x﹣3x=0;④x﹣2x=4.14.用因式分解法解下列一元二次方程:25x=x24﹣=022==.15.因式分解法解方程:3x﹣12x=﹣12.16.用因式分解法解方程:x﹣9x+18=0.第2页2222222217.用因式分解法解方程:12x+x﹣6=0.18.用因式分解法解方程:3=219.用因式分解法解方程=520.因式分解法解一元二次方程.+1﹣=.22第3页初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题1.用因式分解法解一元二次方程x﹣2=0,正22第4页2222第5页因式分解法解一元二次方程练习题1.选择题方程=0的根是A.x1=-16,x2=B.x1=16,x2=-C.x1=16,x2=D.x1=-16,x2=-8222下列方程4x-3x-1=0,5x-7x+2=0,13x-15x +2=0中,有一个公共解是1 B.x=C.x=1D.x=-1方程5x=3解为3333A.x1=,x2=B.x= C.x1=-,x2=- D.x1=,x2=-5555方程=1的根为A.y1=5,y2=-2B.y= C.y=-2D.以上答案都不对22方程-4=0的根为A.x1=1,x2=-B.x1=-1,x2=-C.x1=1,x2=D.x1=-1,x2=522一元二次方程x+5x=0的较大的一个根设为m,x -3x+2=0较小的根设为n,则m+n的值为A.1 B. C.-4D.42已知三角形两边长为4和7,第三边的长是方程x-16x+55=0的一个根,则第三边长是A.5B.5或11C. D.112方程x-3|x-1|=1的不同解的个数是A.0 B.1 C.D.32.填空题方程t=28的解为_______.2方程+3=0的解为__________.2方程+3+2=0的解为__________.2关于x的方程x+x+mn=0的解为__________. A.x =方程x=-x的解为__________.3.用因式分解法解下列方程:2222x+12x=0; 4x-1=0; x=7x; x-4x-21=0;222=12; 3x+2x-1=0;10x-x-3=0;-4-21=0.4.用适当方法解下列方程:2222x-4x+3=0;=256; x-3x+1=0; x-2x -3=0;222=3;+y=9;x-x=0; x-x+=0;222x-8x=7;-2-8=0.25.解关于x的方程:2222x-4ax+3a=1-2a; x+5x+k=2kx+5k+6; 2222x-2mx-8m=0; x+x+m+m=0.x?y226.已知x+3xy-4y=0,试求的值. x?y2222227.已知-12=0.求x+y的值.8.请你用三种方法解方程:x=864.229.已知x+3x+5的值为9,试求3x+9x-2的值. 10.一跳水运动员从10米高台上跳水,他跳下的高度h与所用的时间t的关系式h=-5.求运动员起跳到入水所用的时间.222222211.为解方程-5+4=0,我们可以将x-1视为一个整体,然后设x-1=y,则y=,原方程化为y-5y +4=0,解此方程,得y1=1,y2=4.当y=1时,x-1=1,x=2,∴x=±2.当y=4时,x-1=4,x=5,∴x=±.∴原方程的解为x1=-2,x2=2,x3=-5,x4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.42运用上述方法解方程:x-3x-4=0.2既然可以将x-1看作一个整体,你能直接运用因式分解法解这个方程吗?222。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解法解一元二次方程
1、方程(x -16)(x +8)=0的根是( )
A .x 1=-16,x 2=8
B .x 1=16,x 2=-8
C .x 1=16,x 2=8
D .x 1=-16,x 2=-8
2、下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )
A .x =21
B .x =2
C .x =1
D .x =-1
3、方程5x (x +3)=3(x +3)解为( )
A .x 1=
53,x 2=3 B .x =5
3 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 4、方程(y -5)(y +2)=1的根为( )
A .y 1=5,y 2=-2
B .y =5
C .y =-2
D .以上答案都不对
5、方程(x -1)2-4(x +2)2=0的根为( )
A .x 1=1,x 2=-5
B .x 1=-1,x 2=-5
C .x 1=1,x 2=5
D .x 1=-1,x 2=5
6、已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长
是( )
A .5
B .5或11
C .6
D .11
7、用因式分解法解下列方程:
(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ;
(4)x 2-4x -21=0; (5)(x -1)(x +3)=12;
(6)3x 2+2x -1=0;
(7)10x 2-x -3=0;
(8)(x -1)2-4(x -1)-21=0.
(9)x 2-4x +3=0; (10)x 2-2x -3=0; (11)(2t +3)2=3(2t +3);
8、解关于x 的方程:
(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;
9、已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.
10、已知x 2+3x +5的值为9,试求3x 2+9x -2的值.
综合训练题
一、填空:
1.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m
时为一元二次方程。
3.若a 是方程2x -x -2=0的一个根,则代数式2a -a =
4.已知方程x 2+k x +3=0 的一个根是 - 1,则k= , 另一根为
5.若代数式5242--x x 与122
+x 的值互为相 反数,则x 的值是 。
6.方程492=x 与a x =23的解相同,则a = 。
7.当t 时,关于x 的方程032=+-t x x 可用公式法求解。
8.若实数b a ,满足022=-+b ab a ,则b
a = 。
9.若8)2)((=+++
b a b a ,则b a += 。
10.已知1322++x x 的值是10,则代数式1642++x x 的值是 。
11.关于x 的一元二次方程02
=+k x 有实数根,则 k 的取值范围为
二、选择: 1.要使分式4
452-+-x x x 的值为0,则x 应该等于( ) (A )4或1 (B )4 (C )1 (D )4-或1-
2.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是
( )
(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m
3.下列方程中,无论a 取何值,总是关于x 的一元二次方程的是( )
(A )02=++c bx ax (B )x x ax -=+221
(C )0)1()1(222=--+x a x a (D )03
12=-+=a x x 4.若方程02
=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程
的根是( )
(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定
三、解方程
(1)3x 2-7x =0 (2)0432=-+x x (3))4(5)4(2+=+x x
(4)31022=-x x (5)(x -1)(x +3)=12;
(6)3x 2+2x -1=0;
四、解答 1. 已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角形的面积。
2. 已知一元二次方程043712
2=-+++-m m mx x m )(有一个根为零,求m 的值。
3. 已知一元二次方程0132=-+-m x x .
(1)若方程有两个不相等的实数根,求m 的取值范围.
(2)若方程有两个相等的实数根,求此时方程的根。