天津大学考研《水力学》知识点总结
《水力学基础》各章重要知识点
《水力学基础》各章重要知识点一、绪论1.液体的力学特性2.密度与容重,水力计算中的取用值情况3.粘滞性,影响粘性的主要因素4.理想液体与实际液体二、水静力学1.静水压强的特性2.静力学基本方程及各项含意3.压强的单位,相互之间如何换算4.绝对压强与相对压强5.水力意义上的“真空”6.压力式水位计的工作原理7.静水压强分布图、压力体8.静水总压力的计算三、水动力学基本原理1.流线2.过水断面、湿周、水力半径3.流量、断面平均流速4.恒定流与非恒定流、均匀流与非均匀流、渐变流与急变流、5.连线性方程、能量方程式的物理意义及应用6.利用能量方程式分析水流运动的动、势能转换。
7.水力坡度、水面坡度8.均匀流、非均匀渐变流过水断面上z +四、水流型态和水头损失1.水头损失的分类2.雷诺试验,层流与紊流,雷诺数3.紊流的特征4.沿程水头损失的计算5.局部水头损失的计算五、明渠恒定均匀流1.明渠的类型:顺坡、平坡与逆坡明渠;棱柱体明渠与非棱柱体明渠2.明渠均匀流的特性及产生条件3.明渠均匀流的计算公式及水力计算4.明渠均匀流中各水力因素间的变化关系5.水力最佳断面六、明渠恒定非均匀流1.明渠水流的缓流与急流流态及其特征2.佛汝德数3.临界水深及主要影响因素4.临界底坡、缓坡与陡坡p γ=c5.水跌现象与水跃现象6.河渠水面线计算的基本思路7.弯道水流特点七、明渠非恒定渐变流明渠非恒定流的基本特性八、泄水建筑物过水流量的计算1.堰流与闸孔出流的异同点2.堰流的分类3.利用堰闸测流的基本思路。
水力学知识点总结
水力学知识点总结1. 水的基本性质水是自然界中非常重要的物质,它具有一系列独特的物理、化学性质。
如水的密度、粘度、表面张力等重要性质对水力学研究有着重要的影响。
2. 水动力学水动力学是研究流体的运动规律及其与物体之间的相互作用的科学。
水动力学是水力学的基础,分为静水力学和流体力学。
静水力学研究静止的流体,而流体力学则研究流体的运动。
3. 流体静力学流体静力学是研究静止流体中的压力、浮力和力的平衡问题。
在水力学中,流体静力学主要用于水库、坝体等结构的压力分析。
4. 流体动力学流体动力学是研究流体运动及其产生的压力、阻力以及对物体的作用力。
在水力学中,流体动力学主要应用于河流、渠道等流体动力学性质的研究。
5. 流态力学流体力学是研究流体运动状态与性质的学问。
在水力学中,流态力学主要应用于分析水流的速度、流量、流向、涡流情况等。
6. 水流的稳定性水流的稳定性是水力学中的重要概念,它指的是水体流动时所产生的稳定的流态特性,包括流态的平稳性、安定性和可操作性等。
7. 水力工程水利工程是利用水资源进行灌溉、供水、发电等利用的工程。
水利工程设计要考虑水力学的各种知识,如水流的稳定性、水利工程的结构和设备等方面。
8. 水道工程水道工程是为了改善河流、渠道等水道的通航、排涝等目的的工程项目。
在水道工程设计中,水力学知识对水流速度、水位变化、水力坡等方面有着重要影响。
9. 水电站在水力学中,水电站是一个重要的应用领域。
水力功率的计算、水轮机的设计、水库的水位控制等都需要水力学知识。
10. 河流水文学河流水文学是研究河流的水文特性、水位变化规律、涨落情况等方面的科学。
水文学是水力学中应用最广泛的一个分支,水利工程、水资源评价等方面都需要水文学的知识。
11. 液压机械液压机械是以流体静力学和流体动力学的理论为基础,利用液体作为传动介质的机械装置。
水力学的理论基础对液压机械的设计、制造和使用都有着重要的影响。
12. 水资源评价水力学的知识还被应用于水资源评价领域,通过水文学、水文模型等方法来评价水资源的分布、利用、保护等问题。
水力学复习资料汇总
第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即.0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管.4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃。
水力学__主要知识点
第3章 流态与水头损失
水头损失以及与水头损失有关的液体的流态。
(一)水头损失的计算方法
1.总水头损失: hw= ∑hf + ∑hj 沿程水头损失:
通过尼古拉兹实验研究发现紊流三个流区内的沿程水力摩擦系数
的变化规律。
5. λ的变化规律 尼古拉兹实验 (人工粗糙管)
层流区: λ=f1(Re)=
64 Re
光滑区:λ= f2 (Re) 紊流粗糙区紊也称流为区紊:流粗过阻糙渡力区区平::方λλ==区,ff34沿((Rr0程e), 水r0 力) 摩擦系数λ与雷诺数无关,
忽略不计
j
hf
l d
2
2g
H
Q2 K2
l
K Ac R — 流量模数
1
l d
(5)水头线绘制 注意事项: (1)局部水头损失集中在一个断面; (2)管中流速不变,总水头线平行于测压管水头线; (3)总水头线总是下降,而测压管水头线可升可降; (4)当测压管水头线在管轴线(位置水头线)以下,表示该处存在负压; (5)注意出口的流速水头(自由出流)或局部损失(淹没出流)。
1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述
液体运动的物理量.
2.理想液体:忽略粘滞性、可压缩性的液体
(三)作用在液体上的两类作用力
第1章水静力学
水静力学包括静水压强和静水总压力两部分内容。通过静水压强和静水
总压力的计算,可以求作用在建筑物上的静水荷载。
水力学重点
复习总结(标红或划线的需记住)0 绪论一、概念1、水力学:用实验和分析的方法,研究液体机械运动(平衡和运动)规律及其实际应用的一门科学。
2、密度和容重:ρ=V M γ=V Mgγ=ρg 纯净水1个标准大气压下,1atm 4℃时密度最大 ρ水=1000kg /m 3 γ水=9.80kN/m 3ρ水银=13.6×103 kg /m 3(1atm20℃) 1N=1kg m/s 2容重γ的概念一般新教材中多已不引用,但工程中仍采用,本教案中仍采用,3、粘滞性:液体质点抵抗相对运动的性质。
粘滞性是液体内摩擦力存在的表现,是液体运动中能量产生损失的根本原因。
4、理想液体:不考虑粘滞性、压缩性、热涨性、表面张力性质的液体称为理想液体。
τ=ηdydu 或T=ηAdyduη动粘 [ML -1T -1] Pa.s (帕.秒) 1 Pa=1N/m 2 1N=1kg ²m/s 2ν运粘 [L 2T -1] m 2/sν=η/ρ水的经验公式:ν=2000221.00337.0101775.0tt ++公式中ν单位为cm 2/s ,t 为水温℃。
5、连续介质模型:假定液体质点毫无空隙地充满所占空间,描述液体运动物理量(质量、速度、压力等)是时间和空间的连续函数,因而可用连续函数的分析方法来研究,这种假定对解决一般工程实际问题是有足够的精度的。
6、压缩性 一般不考虑热膨胀性 流动性二、 问题1、 牛顿内摩擦定律简单应用;2、 作用于液体上的力:质量力、表面力;3、 水力学研究方法:理论分析、科学试验、数值模拟4、 水力学应用(水利工程):1)确定水力荷载2)确定水工建筑物过水能力(管、渠、闸、堰 ) 3)分析水流流动形态4)确定水流能量消耗和利用 5)水工建筑物水力设计1 水静力学一、概念1、静水压强:p =AP A ∆∆→∆0lim=dAdP2、等压面:均质连通液体中,压强各点相等的点构成的面称为等压面。
天大水力学知识点
天大水力学知识点绪论1. 连续介质2.实际流体模型由质点组成的连续体,具有:易流动性、粘滞性、不可压缩性、不计表面张力的性质.3.粘滞性:牛顿内摩擦定律 dydu μτ= 4.理想流体模型:不考虑粘滞性。
5.作用在液体上的力:质量力、表面力例:1.在静水中取一六面体,分析其所受的外力:作用在该六面体上的力有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力 2.在明渠均匀流中取一六面体,其所受的外力:作用在该六面体上有 ( ) (a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力 3. 理想流体与实际流体的区别仅在于,理想流体具有不可压缩性。
( )第1章 水静力学1.静压强的特性(1)垂直指向受压面。
(2)在同一点各方向的静压强大小与受压面方位无关. 2.等压面:等压面是水平面的条件 3.水静力学基本方程2. 基本概念位置水头、压强水头、测压管水头 、绝对压强、相对压强、真空压强。
3. 静压强分布图 5.点压强的计算C gpz =+ρghp p ρ+=0利用:等压面、静压强基本方程。
解题思路:① 找等压面② 找已知点压强③利用静压强基本方程推求。
6 作用在平面上的静水总压力图解法:Ω=b P解析法:A gh P c ρ= A y I y y c cc D +=7. 作用在曲面上的静水总压力关键:压力体画法以曲面为底面,向自由液面(自由液面延长面)投影,曲面、铅锤面、自由液面所包围的水体为压力体。
压力体与水在同一侧为实压力体,铅锤分力方向向下。
反之,为虚压力体,铅锤分力方向向上。
例 1. 流体内部某点存在真空,是指 ( )(a )该点的绝对压强为正值 (b )该点的相对压强为正值 (c )该点的绝对压强为负值 (d )该点的相对压强为负值2. 流体内部某点压强为2个大气压,用液柱高度为 ( )a) 10米水柱 b) 22米水柱 c)20米水柱 d)25米水柱3. 无论流体作何种运动,流体内任何一个水平面都是等压面。
《水力学》自己复习整理知识框架
《水力学》自己复习整理知识框架水力学是研究水流在各种流动条件下的物理规律的学科。
水力学的研究对象包括河流、湖泊、水库、海洋等自然水体的运动规律,以及水力工程中涉及的渠道、管道、泵站等的水流行为。
以下是水力学的知识框架及复习整理。
一、基本概念和基本方程1.水力学的研究对象、目标和意义2.水的物理性质及其在水力学中的应用3.流动的基本概念:流线、流量、流速、剖面平均流速、平均流速、瞬时流速、表观流速、临界流速等4.流体运动的宏观描述:物质守恒定律、动量守恒定律、能量守恒定律5.海森堡统一速度场二、流态分类和力学特性1.流态分类:层流和湍流2.湍流的产生和发展机制3.湍流的统计特性:平均流速、涡度、雷诺应力、雷诺应力公式等4.湍流的判别方法和湍流的传输性质三、流动的基本方程1.牛顿第二定律和欧拉方程2.曼宁公式和雨道公式3.马克斯韦方程组和势流理论4.控制体分析法和控制体微分形式四、流动的能量方程1.泊肃叶方程和能量守恒方程2.流动过程中的能量转化和能量损失3.流体摩擦和阻力的计算五、水力学实验和模型1.水力学原理实验、水工模型2.模型尺度和相似理论3.型流和真流的关系4.实测资料的处理和分析六、流动的计算方法1.数值方法在水力学中的应用2.一维水流数值模拟方法3.CFD在水力学中的应用4.流动的计算机模拟与可视化技术七、水动力学1.水体运动的动力学机制2.水体运动的力学特性3.溶解氧和氨氮的弥散4.水体温度和盐度的传输以上是《水力学》的知识框架和复习整理,通过掌握这些知识点,可以对水力学的基本概念、基本方程和流态分类等进行全面地理解和复习。
同时,了解水力学实验和模型、流动的计算方法以及水动力学等内容,可以为深入研究水力学提供一定的基础。
在复习过程中,可以结合教材、参考书籍和相关研究论文进行学习和理解,通过刷题和实践练习来提高对该学科的应用能力和实际问题解决能力。
天津市考研水利工程复习资料水力学核心知识点整理
天津市考研水利工程复习资料水力学核心知识点整理天津市考研水利工程复习资料:水力学核心知识点整理水力学是研究水的运动、水流的变化规律以及水与固体物质相互作用的力学学科。
它是水利工程领域的核心学科之一,对于水利工程的设计、建设和管理具有重要意义。
本文将对天津市考研水利工程复习中的水力学核心知识点进行整理,帮助考生系统学习和掌握。
一、水力学基本概念1. 水力学的定义及研究对象水力学是研究水的运动、水流的变化规律以及水与固体物质相互作用的力学学科。
研究对象包括水流的稳定性、液体的运动规律、水流与固体物质之间的相互作用等。
2. 流体的基本性质流体是指能够流动的物质,包括液体和气体。
流体的基本性质包括密度、粘度、压力和流速等。
3. 流体静力学流体静力学研究的是静止的流体及其受力情况。
根据帕斯卡原理,流体中的每一点受到的压力相等。
流体静力学的关键概念包括压强、大气压和压力之间的关系。
二、亚声速流动和超声速流动1. 亚声速流动亚声速流动是指流体流动速度小于声速的情况。
亚声速流动的特点是流体的运动速度相对较小,流速变化较缓慢,流动中没有明显的压力波。
2. 超声速流动超声速流动是指流体流动速度大于声速的情况。
超声速流动的特点是流体的运动速度相对较大,流速变化剧烈,流动中存在明显的压力波。
三、水的运动方程与动量方程1. 水的连续性方程水的连续性方程是基于质量守恒定律推导出来的,用于描述流体的质量守恒。
连续性方程可以表达为质量流量在流体流动中的守恒。
2. 水的动量方程水的动量方程描述了水体受力及其对周围环境造成的作用。
动量方程包括质量力和体积力对水体的作用,在水力学分析中具有重要的应用价值。
四、流体流动的稳定性与失稳性1. 流动的稳定性稳定性是指流体流动在不受外力干扰的情况下,流动状态是否保持不变。
流动的稳定性受到多种因素的影响,如雷诺数、流速分布的均匀性以及外界条件的变化等。
2. 流动的失稳性流动的失稳性是指流动状态的微小扰动会引起原来的流动模式发生变化的情况。
水力学常用知识讲解(笔记)
《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
水力学考试重点总结
水力学考试重点总结(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除水力学考试重点总结水力学考试重点总结篇一:水力学课程总结1,水力学基础知识(液体的基本特征及其物理力学性质,量纲分析法。
a,液体只承拉不受压;b,牛顿内摩擦定律;c,作用于液体上的力为表面力和质量力。
d,p定理法)2,水静力学(静水压强的基本性质、量测以及压强分布,静水总压力的计算。
a,静水压强的指向性和各向等值性;b,相对压强、绝对压强概念;c,图解法、解析法求解静水总压力。
)3,水动力学基本方程(液体运动的基本概念与分类,恒定总流的连续方程、能量方程以及动量方程。
a,描述液体运动的方法拉格朗日法、欧拉法;b,流管、元流、总流的概念;c,恒定流与非恒定流、均匀流与非均匀流;d,恒定总流能量方程。
)4,液流型态与水头损失(水头损失的分类:局部、沿程;均匀流沿程水流损失;雷诺试验确定水流型态:层流、紊流;层流水流特性及沿程水头损失计算;紊流水流特性及沿程水流损失计算;实际工程中沿程水头损失计算的经验公式:舍齐公式;局部水头损失的成因及计算。
)5,有压管道流动(有压管流的特点及分类:长管、短管;简单管道恒定流的水力计算分自由出流与淹没出流;复杂管道恒定流的水力计算:管道串联与并联。
有压管中的非恒定流:水击现象的分类、消弱和水击压强计算。
)6,恒定明渠水流(明渠水流概念、水力要素的定义与计算;渠道的允许流速、水力最佳断面的计算;明渠水流的流态及其判别:缓流、临界流以及急流;断面比能以及最小断面比能对应的临界水深与临界低坡计算;水跌现象以及水跃现象的水力计算:共轭水深、水跃长度计算;棱柱体明渠恒定流非均匀渐变流水面曲线的分析:12种水面曲线;明渠恒定非均匀渐变流的水面曲线计算:分段求和法。
)7,过流建筑物的水力计算(堰闸出流的特点与区别:堰流、闸孔出流;堰流的类型及水力计算:薄壁堰、宽顶堰、WES堰的过流能力计算;闸孔出流水力计算;泄水建筑唔下游水流衔接与消能:底流消能与调流消能。
天津市考研水利工程复习水力学与水资源规划核心知识点整理
天津市考研水利工程复习水力学与水资源规划核心知识点整理水力学是水利工程中的基础学科,它研究水在流动过程中的力学规律和流态变化。
水资源规划则是对水资源进行科学管理和合理利用的过程。
在天津市考研的水利工程专业中,水力学与水资源规划是非常重要的核心知识点。
本文将对这两个知识点进行整理和总结,以帮助考生更好地备考。
一、水力学1. 流体力学基本概念与原理在水力学中,流体力学是最基础的概念和原理。
它包括流体的性质、流体的静力学、流体的动力学和流体的黏性等方面内容。
2. 流体流动的描述与分析流体流动的描述方式有欧拉法和拉格朗日法。
欧拉法是以空间坐标和时间为自变量描述流动;拉格朗日法是以流体微团为自变量描述流动。
对于不可压缩流体,连续方程和动量方程是重要的分析工具。
3. 流动过程中的能量转化与输运水力学研究的另一个重要方面是流动过程中的能量转化和输运。
例如,伯努利方程描述了在无摩擦流动中沿流线上能量守恒的原理。
4. 模型试验与数值计算方法为了更好地研究和分析水力学问题,模型试验和数值计算方法是常用的手段。
模型试验可以通过缩小比例在试验设备中模拟真实流动情况;数值计算方法则依靠计算机模拟流体流动过程。
二、水资源规划1. 水资源与城市发展在城市化进程中,水资源规划非常重要。
水资源的合理配置和利用可以满足城市的用水需求,并且提供对城市发展的支持。
2. 水资源评价与保护水资源评价是对水资源的定量分析和评估,包括水量分析、水质评估等。
而水资源保护则是通过合理的管理和决策减少对水环境的破坏,保证水资源的可持续利用。
3. 水资源配置与调度水资源的配置和调度是建立在水资源评价的基础上的。
它涉及到水资源的调度、水量的分配和水质的控制等问题,以确保各个水资源的合理使用和管理。
4. 水资源管理与政策水资源管理和政策是保证水资源规划有效实施的重要手段。
它包括建立完善的水资源管理体系、制定相关政策和法规等,以促进水资源的可持续利用和保护。
天津市考研水利工程复习资料水力学重要公式归纳
天津市考研水利工程复习资料水力学重要公式归纳一、引言水力学是水利工程中的重要学科,主要研究水体运动规律、水压力、水力势等相关理论和公式。
在考研水利工程的学习中,水力学是必不可少的一部分。
本文将对水力学中的一些重要公式进行归纳和总结。
二、重力流量公式1. 基本公式:重力流量(Q) = 单位宽度上的平均流速(V) ×单位宽度(B)Q = V × B2. 斯托曼公式:斯托曼公式是用于河流水量计算的经验公式。
Q = C × H^α × R^β其中,C为斯托曼系数,H为水深,R为水力半径,α和β为经验系数。
三、经验公式1. 曼宁公式:曼宁公式是用于河道水流速度计算的经验公式。
V = C × R^α × S^β其中,C为曼宁系数,R为水力半径,S为水槽坡度,α和β为经验系数。
2. 辛诺公式:辛诺公式是用于水流管道和导流构筑物流量计算的经验公式。
Q = c × A × H^m × S^n其中,c为辛诺系数,A为过流面积,H为水头,m和n为经验系数。
四、波浪公式1. 斯托克斯第三次演算公式:用于计算波浪传播和变形的理论公式。
H = 2.0 × ξ × Hm其中,H为波高,ξ为波长系数,Hm为平均波高。
2. 吉浦-亥姆霍兹公式:用于计算波浪传播速度的经验公式。
c = g × T / (2π)其中,c为波浪速度,g为重力加速度,T为波浪周期。
五、水力学公式应用举例1. 计算水库供水能力:水库供水能力(Q) = 溢洪流量(Qf)+ 下泄流量(Qo)- 供水流量(Qt)其中,Qf为溢洪流量,Qo为下泄流量,Qt为供水流量。
2. 计算水力机械効率:水力机械效率(η) = 实际输出功率(Pout)/ 理论输出功率(Pin)其中,Pout为实际输出功率,Pin为理论输出功率。
六、结论本文对天津市考研水利工程复习资料中水力学重要公式进行了归纳和总结。
《水力学》课程复习提纲汇总
《水力学》课程复习提纲2010-2•第1章绪论考核知识点:1.液体运动的基本特征,连续介质和理想液体的概念;2.液体主要物理性质:惯性、万有引力特性(重力)、粘滞性、可压缩性和表面力特性;3.物理量量纲的概念和单位;4.作用在液体上的两种力:质量力、表面力。
考核要求:1.了解液体的基本特征,理解连续介质与理想液体的概念和在水力学研究中的作用;2.理解液体5个主要物理性质及其特征值和度量单位,重点掌握液体粘滞性及粘滞系数、牛顿内摩擦定律及其适用条件。
了解什么情况下需要考虑液体的可压缩性和表面张力特性;3.了解量纲的概念,并且能表示各种物理量的量纲和单位;4.了解质量力、表面力的定义,理解单位表面力(压强、切应力)和单位质量力的物理意义。
• 第2章静力学考核知识点:1.静水压强及其两个特性,等压面概念;2.静水压强基本公式及其物理意义;3.静水压强的表示方法、单位和水头的概念;4.静水压强的量测和计算;5.作用于平面上静水总压力的计算;6.作用在曲面上静水总压力的计算。
1.理解静水压强的两个特性和等压面的概念和性质;2.掌握静水压强基本公式,理解公式的物理意义;3.理解静水压强三种表示方法(绝对压强,相对压强,真空度)及它们间的相互关系,注意真空度的概念,理解表示压强的单位和位置水头、压强水头、测压管水头的概念;4.了解静水压强量测原理和方法,掌握静水压强的计算;5.掌握绘制静水压强分布图和计算作用在平面上静水总压力的图解法和解析法。
6.掌握压力体剖面图的绘制和计算作用在曲面上的静水总压力水平分力和铅垂分力的方法。
•第3章液体运动的基本理论考核知识点:1.描述液体运动的两种方法:拉格朗日法和欧拉法;2.液体运动的分类和基本概念;3.恒定总流连续性方程及其应用;4.恒定总流能量方程及其应用;5.有势流动和有涡流动的概念。
考核要求:1.了解描述液体运动的拉格朗日方法和欧拉法;2.理解液体流动的分类和基本概念(恒定流与非恒定流,均匀流与非均匀流,渐变流与急变流;流线与迹线,元流,总流,过水断面,流量与断面平均流速,一维流动、二维流动和三维流动等),并能在分析水流运动时进行正确判断和应用;3.掌握恒定总流连续性方程的不同形式和应用;4.掌握恒定总流能量方程的形式、应用条件和注意事项,理解能量方程的物理意义、水头线绘制方法和水力坡度的概念,能熟练应用恒定总流能量方程进行计算;5.掌握恒定总流投影形式的动量方程、应用条件和注意事项,正确分析作用在控制体上的作用力和确定作用力及流速投影分量的正负号,能熟练应用恒定总流动量方程、能量方程和连续方程求解实际工程中的水力学问题;6.了解有势流动和有涡流动的概念及特点。
天津大学考研专业课0815水力学终极复习资料
方程为:+=
注意:动量流入,流出需加一次正负,流速本身方向还要加一次正负。
52、分叉管路能量方程。
+=++
+=++
55、有能量输入、能量输出时的能量方程:
+=++
式中,为1-1至2-2断面间,通过外加设备使单位重量液体所获得或减少的机械能。
5、顺坡渠道,平坡渠道、逆坡渠道如何定义。哪种渠道可以产生均匀流。
32、宽顶堰形成淹没出流的条件。
宽顶堰的淹没条件为:hs>0.8H0
式中,hs为下游水深,H0为堰顶全水头.
(下游水位过堰顶,不一定形成淹没出流。)
33、明渠水流的三种流态及四种判别方法。
明渠水流的三种流态分别为:缓流、急流、临界流。
水流流速与微波波速判别,顺着看。
佛汝德数与一判别,顺着看。
水深与临界水深判别,逆着看。
24、薄壁小孔口出流的水流现象。
流线只能逐渐弯曲而不能拐直角,在孔口平面上,流线都互不平行,因而在孔口平面之后,流速的横断面积比孔口面积要小,称为收缩断面,该断面上流线平行。而后由于空气阻力的影响,流速降低,流束横断面又开始扩散。
25、孔口、管嘴同条件出流下,哪个流量大,为什么。
在孔口面积相等,上游水头相等的条件下,管嘴出流的流量要比孔口出流的流量大,比较两公式:孔口:;管嘴:;其中,和A是相等的,而管嘴出流的公式多了一项:。易知,多出的水头正好是收缩断面的真空值,因此管嘴流量增大的原因是由于管嘴内真空的存在。
22、等压面是水平面的条件。
如果液体处于静止状态,即作用于液体上的质量力只有重力,则就一个局部范围而言,等压面必是水平面。(就一个大范围而论,等压面是处处与地心引力正交的曲面)
23、压力体的绘制原则。
水力学知识点总结
一、流体的主要性质:①惯性(质量密度)②万有引力(重量和容重)③粘滞性④压缩性二、表面力:作用在液体的表面上,并与受作用的的液体表面积成比例的力。
三、质量力:作用在液体的每一个质点上,并与受作用的液体质量成比例的力。
四、静水压强:把静置液体作用在受压面单位面积上的静水压力,称为静水压强。
五、静水压强的特性:(1)静水压强的方向垂直并指向受压面(2)静水压强的大小与作用面的方位无关六、等压面:由压强相等的空间点构成的面积称为等压面。
七、等压面的两个性质:①在平行液体中,等压面为等势面②等压面垂直质量力八、描述液体运动的两种方法:(1)拉格朗日法:把每一个质点作为研究对象,观察其运动的轨迹、速度和加速度,掌握其运动状况,综合所有质点的运动情况就可得到这个液体的运动规律,(2)欧拉法:以考察不同液体质点通过固定的空间点的运动情况来了解这个运动空间内的流动情况,既着眼于研究各运动要素的分布场,又叫流场法。
九、流管:在水流中,任取一条与流线重合的微小封闭曲线,通过曲线上每一点做一条流线,这些流线成一个封闭的管状表面,称为流管十、元流:充满以流管为边界的水流称为元流。
十一、非恒定流:液体运动区域内每个点处的动水压强和流速随时间而改变,也就是说他们不仅同坐标有关,而且同时间有关。
十二、恒定流:当运动液体在任意空间点处的动水压强和流速,均不随时间而改变时,称为恒定流。
十三、均匀流:组成总流的各个流线或元流为互相平行的直线时,这种水流称为均匀流。
十四、均匀流的特性:(1)均匀流的过水断面为平面,其形状和尺寸均沿程不变。
(2)均匀流中,同一流线上不同点的流速都相等,,因此各过水断面上的流速分布相同,断面平均流速相等。
(3)均匀流过水断面上的动水压强分布规律与静水压强分布规律相同,既在同一过水断面上各点的测压管水头为一常输。
十四、非均匀流:水流的流线与流线之间不是互相平行的直线时,该水流称为非均匀流十五、渐变流:水流的流线虽然不是相互平行的直线,但其流线间夹角甚小,或流线虽然平行,但并非直线,而其曲率半径甚大。
水力学复习知识点
第一章绪论 1.水力学的研究方法:理论分析方法、实验方法,数值计算法。
2.实验方法:原型观测、模型试验。
3.液体的主要物理性质:①质量和密度②重量和重度③易流动性与粘滞性④压缩性⑤气化特性和表面张力。
4.理想液体:没有粘滞性的液体(μ=0)。
5.实际液体:存在粘滞性的液体(μ≠0)。
6.牛顿液体:τ与du/dy呈过原点的正比例关系的液体。
7.非牛顿液体:与牛顿内摩擦定律不相符的液体。
8.作用在液体上的力:即作用在隔离体上的外力。
9.按物理性质区分:粘性力、重力、惯性力、弹性力、表面张力。
10.按力的作用特点区分:质量力和表面力两类。
11.质量力:作用在液体每一质点上,其大小与受作用液体质量成正比例的力。
12.表面力:作用于液体隔离体表面上的力。
第二章水静力学 1.静水压强特性:①垂直指向作用面②同一点处,静水压强各向等值。
2.静水压强分布的微分方程:dp=ρ(Xdx+ Ydy+ Zdz),它表明静水压强分布取决于液体所受的单位质量力。
3.等压面:液体压强相等各点所构成的曲面。
等压面概念的应用应注意,它必须是相连通的同种液体。
4.压强的单位可有三种表示方法:①用单位面积上的力表示:应力单位Pa,kN/m2②用液柱高度表示:m(液柱),如p=98kN/m2,则有p/γ=98/9.8=10m(水柱)③用工程大气压Pa的倍数表示:1p a=98kP a。
5.绝对压强p abs:以绝对真空作起算零点的压强(是液体的实际压强,≥0)p abs=p o+γh6.相对压强pγ:以工程大气压p a作起算零点的压强,pγ=p abs-p a= (p o+γh)-p a 真空:绝对压强小于大气压强时的水力现象。
真空值p v:大气压强与绝对压强的差值。
7.帕斯卡原理:在静止液体中任一点压强的增减,必将引起其他各点压强的等值增减。
应用:水压机、水力起重机及液压传动装置等。
8.压强分布图的绘制与应用要点:①压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性。
水力学复习知识点
水力学复习知识点水力学是研究液体的运动和行为的学科,主要研究液体在管道中的流动、流体的力学性质以及与流体运动相关的现象。
下面将介绍水力学的一些重要知识点。
1.流体的性质:-流体的密度:单位体积流体的质量,通常用ρ表示。
-流体的粘度:流体阻止流动的性质,通常用μ表示。
-流体的压力:单位面积上流体对物体施加的作用力,通常用P表示。
2.流体静力学:- 流体压力:与深度有关,可以通过P = ρgh计算,其中ρ为液体密度,g为重力加速度,h为液体的高度。
-流体静力学定律:流体静力学定律包括帕斯卡定律、阿基米德原理和斯托克斯定律。
3.流体动力学:-流体的运动:流体可以分为层流和湍流。
层流是指流体的分子按照规则的、平行的和层层叠加的方式运动。
湍流是指流体的分子按照混乱无序的方式运动。
-流速:指流体在单位时间内通过其中一截面的体积,通常用v表示。
-流量:指流体在单位时间内通过其中一截面的质量,通常用Q表示,流量Q=Av,其中A为截面积。
-连续性方程:流体质量守恒定律,即当流体连续流动时,进出流体质量需要保持一致,表达式为A1v1=A2v2,其中A为截面积,v为流速。
- 能量守恒方程:描述了流体的能量转化和损失,表达式为P1 +0.5ρv1^2 + ρgh1 = P2 + 0.5ρv2^2 + ρgh2,其中P为压力,ρ为密度,v为流速,h为高度。
-流体动力学定律:主要包括伯努利定律、托利少定律和勒让德定律。
伯努利定律描述了流体在不同压力下的流动,托利少定律描述了流体在曲线壁面上的流动,勒让德定律描述了固体颗粒在流体中的运动。
4.管道流动:-管道流动类型:包括层流和湍流两种。
-管道流动速度分布:在层流中,流速沿半径方向呈线性分布;在湍流中,流速分布更复杂,通常是非线性的。
-管道流量与压力损失:管道流量与压力损失之间存在一定的关系,通常可以通过流体动力学定律来计算。
-管道流动的实际应用:管道流动广泛应用于供水、排水、油气输送管道等领域,对于基础设施建设和工程设计具有重要意义。