超声波流量计原理详细说明

合集下载

超声流量计的测量原理以及计算方程

超声流量计的测量原理以及计算方程

超声流量计的测量原理以及计算方程1.基本工作原理超声波流量计的测量原理是以物理学中的多普勒效应为基础的。

依赖声学多普勒效应,当声源和观察者之间有互相运动时,观察者所感受到的声频率将不同于声源所发出的频率。

这个因相对运动而产生的频率变化与两物体的相对速度成正比.在超声波多普勒流量测量方法中,超声波发射器为一固定声源,随流体一起运动的固体颗粒起了与声源有相对运动的“观察者”的作用,当然它仅仅是把入射到固体颗粒上的超声波反射回接收据.发射声波与接收声波之间的频率差,就是由于流体中固体颗粒运动而产少的声波多普勒频移.由于这个频率差正比于流体流速,所以测量频差可以求得流速.进而可以得到流体的流量.因此,超声波多普勒流量测量的一个必要的条件是:被测流体介质应是含有一定数量能反射声波的固体粒子或气泡等的两相介质.这个工作条件实际上也是它的一大优点,即这种流量测量方法适宜于对两相流的测量,这是其它明渠流量计难以解决的问题.因此,作为一种极有前途的两相流测量方法和电磁流量计,超声波多普勒流量测量方法目前正日益得到应用.2.流量方程假设,超声波波束与流体运动速度的夹角为,超声波传播速度为c,流体中悬浮粒子运动速度与流体流速相同,均为u.现以超声波束在一颗固体粒子上的反射为例,导出声波多普勒频差与流速的关系式.当超声波束在管轴线上遇到一粒固体颗粒,该粒子以速度u沿营轴线运动.对超声波发射器而言,该粒子以u cos a的速度离去,所以粒子收到的超声波频率f2应低于发射的超声波频率f1,降低的数值为f2-f1=- f1 (3-73)即粒子收到的超声波频率为f2=f1- f1 (3-74)式中f1――发射超声波的频率;a――超声波束与管轴线夹角;c――流体中声速。

固体粒子又将超声波束散射给接收器,由于它以u cos a 的速度离开接收器,所以接收器收到的超声波频率f3又一次降低,类似于f2的计算,f3可表示为f3=f2- f2 (3-75)将f2的表达式代入上式,可得:f3=f1(1- )2 =f1(1-2 +)(3-76)由于声速c远大于流体速度u,故上式中平方项可以略去,由此可得:f3=f1(1-2 )(3-77)接收器收到的超声波频率与发射超声波频率之差,即多普勒频移 f1,可由下式计算:f=f1-f3=f1-f1(1-2 )=f1 (3-78)由上式可得流体速度为u= f (3-79)体积流量qv可以写成:qv=uA= f (3-80)式中,A为被测管道流通截面积.出以上流量方程可知,当流量计、管道条件及被测介质确定以后,多普勒频移与体积流量成正比,测量频移 f就可以得到流体流量qv。

超声波流量计工作原理是什么

超声波流量计工作原理是什么

官方网址 超声波流量计工作原理是什么超声波流量计利用了低电压、多脉冲时差原理,采用高精度和超稳定的双平衡信号差分发射、差分接收数字检测技术来测量顺流和逆流方向的声波传输时间,根据时差计算出流速。

超声波流量计具有稳定性好、零点漂移小、测量精度高、量程比宽、抗干扰性强等特点。

其中插入式和外夹式超声波流量计以其安装方便,测量精度高的优点被广泛应用于各个行业。

外夹式超声波流量计
超声波流量计工作原理:
当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,其传播时间的变化正比于液体的流速。

零流量时,两个传感器发射和接收声波所需的时间完全相同(唯一可实际测量零流量的技术),液体流动时,逆流方向的声波传输时间大于顺流方向的声波传输时间。

其关系符合下面表达式:
官方网址
其中:
V 介质流速
θ 为声束与液体流动方向的夹角
M为声束在液体的直线传播次数
D 为管道内径
Tup 为声束在正方向上的传播时间
Tdown 为声束在逆方向上的传播时间
ΔT=Tup –Tdown
通过上式计算出流速V,再通过我们输入到变送器上的管道数据D计算出流量。

流量公式为:
Q=πV
Q 瞬时流量
π圆周率
D 管道内径
V 流速
官方网址
艾拓利尔仪表专注自动化仪表及自控系统12年,我们拥有专业的技术人员,可为您提供各种完善的自动化解决方案。

解决用户遇到的问题使我们一直以来努力的目标,并且我们将付诸更大努力不断推陈出新,藉由与用户的紧密合作,共同开创更智能、更环保、更美好的未来。

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述一、工作原理1、概述超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。

在气体的测量现场主要的检测元件包括一对或几对超声传感器。

这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。

由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。

Q.Sonic-3采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。

此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。

图2-1信号反射路径2、流速的测量超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。

当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。

如果管道中的气体有一定流速V (该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。

这样,顺流传输时间tD会短些,而逆流传输时间tU会长些。

这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有:LtD = ----------------------- ---------------- (2.1)C + V ? cos和LtU = ----------------------- ---------------- (2.2)C —V ? cos式中,L代表两个传感器之间声道的直线长度,可按下式确定L:L D= ------------- ---------------- (2.3)2 sinA采用电子学手段来测量此传输时间。

根据时间倒数的差,可按下式计算流速VA L 1 1V = ------------- ( -------------------- )-——(2.4)2cos tD tU一般说来,沿管道横截面的流速并不是一个固定不变的常量。

在流过很长圆管的定常无涡流的流体中,流速仅是径向位置的函数。

超声波流量计原理

超声波流量计原理

超声波流量计原理超声波流量计是一种利用超声波技术来测量流体流量的仪器。

它可以用于各种各样的流体,包括液体,蒸汽和气体等,并可以处理各种不同形状和尺寸的管道和容器。

它能够实现有效的、精确的流量测量,而且安装简单,使用方便,受到广泛应用。

超声波流量计由发射器,接收器,电路板和显示屏等部件组成。

发射器对流体发射超声波,接收器接收发射的超声波。

然后超声波将根据流体的流量反射回来。

电路板的作用是接收反射的超声波,然后根据流量的变化来计算出流量值,最后由显示屏显示出来。

超声波流量计根据不同工作原理可分为三类:时间频率法、Doppler法、断层法。

时间频率法是利用发射器和接收器发出的声音波在同一管路内的传播时间和频率的变化来计算流量的;Doppler法是利用发射波与流体中的细微颗粒相互作用产生的频率变化来计算流量;断层法是利用发射波与流体体积变化的相应变化计算流量的。

超声波流量计的主要特点有:对管道尺寸无要求,可用于各种管道,如液体管道、蒸汽管道和气体管道;易于安装,电缆连接简单,安装和调试快捷;测量精度高,测量精度可达0.2%以内;可靠性高,可长时间工作;测量范围宽,可用于各种流量的测量。

超声波流量计有多种应用,如可用于热力系统中的蒸汽和水流量测量;燃气系统中煤气,液化石油气,空气等流量测量;用于控制设施中的有毒,易燃液体流量测量;也可用于工业液体流量测量,如油杂水,啤酒,果汁等。

超声波流量计虽然具有很多优点,但也有一些缺点,比如它对流体温度、压力和噪声等有一定敏感度,受因素的影响容易出现测量误差;它只能用于液体,不适用于气体;它对流体中的杂质也有一定要求,对含有大量杂质的介质测量精度较低。

超声波流量计作为一种流量测量仪器,它可以实现有效,精确的流量测量,安装简单,使用方便,受到广泛应用。

然而,要想正确使用超声波流量计,我们必须熟悉它的工作原理,了解它的优缺点,认真分析影响流量测量的因素,以便正确运用它,取得良好的测量效果。

超声波流量计方案

超声波流量计方案

超声波流量计方案一、引言超声波流量计是一种常见的流量测量设备,通过利用超声波的传播特性实现对流体流量的测量。

它具有测量准确、无压力损失、无移动部件等优点,在工业生产中得到广泛应用。

本文将介绍超声波流量计的基本原理、常见类型以及应用案例,为读者提供一个全面了解和选用超声波流量计的方案。

二、基本原理超声波流量计通过发射超声波脉冲到流体中,利用声波在流体中传播的速度差异来测量流速。

其工作原理基于多普勒效应,即当声波遇到流体运动时,波长会发生变化,从而实现对流速的测量。

常见的超声波流量计包括传输时间差法和多普勒效应法,下面将分别进行介绍。

2.1 传输时间差法传输时间差法是一种基于声速差异原理的测量方法。

超声波流量计通常由两个传感器组成,一个作为发射器向下游发射超声波信号,另一个作为接收器接收信号。

超声波在流体中传播的速度取决于流体的物理性质以及流速。

当超声波流经流体时,由于流体的速度不同,传输时间会发生变化。

通过测量声波传播的时间差,可以计算出流体的平均流速。

2.2 多普勒效应法多普勒效应法是一种基于声波频率变化原理的测量方法。

超声波流量计的传感器通常同时具备发射和接收功能。

当超声波与流体运动相互作用时,声波的频率会发生变化。

对于与流体相对运动的声波而言,当流速较大时,声波频率会增加;当流速较小时,声波频率会减小。

通过测量超声波频率变化,可以计算出流体的实际流速。

三、常见类型根据实际应用需求和流体特性,超声波流量计可以分为不同类型,下面将介绍其中三种常见的类型。

3.1 声速差法超声波流量计声速差法超声波流量计采用传输时间差法进行测量,其原理是通过测量超声波在流体中传播的时间差来计算流体的流速。

该类型的流量计适用于流体中无颗粒或颗粒较小的情况,如液体或气体的流量测量。

3.2 直接时间差法超声波流量计直接时间差法超声波流量计是一种改进的传输时间差法测量方法。

与传统声速差法不同的是,该类型的流量计不再使用两个传感器,而是采用单个传感器进行测量。

超声波流量计原理

超声波流量计原理

超声波流量计原理超声波流量计是一种利用超声波技术来测量流体流速的仪器。

它主要由传感器、转换器和显示器组成。

传感器用于发射和接收超声波信号,转换器用于处理信号并将其转换为流速值,显示器用于显示流速数值。

超声波流量计的原理是利用超声波在流体中传播的速度与流体流速成正比的关系来测量流速。

超声波流量计的原理基于多普勒效应。

当超声波信号穿过流体时,如果流体是静止的,超声波的频率不会发生变化。

但是,如果流体是运动的,超声波的频率会发生变化,这就是多普勒效应。

根据多普勒效应,当超声波与流体运动方向一致时,超声波频率增加;当超声波与流体运动方向相反时,超声波频率减小。

通过测量超声波信号的频率变化,可以计算出流体的流速。

超声波流量计的原理还涉及到超声波在流体中传播的速度。

超声波在流体中传播的速度与流体的密度和压力有关,但与流速无关。

因此,通过测量超声波在流体中传播的速度,可以得到流体的密度和压力,从而计算出流速。

超声波流量计的原理还包括超声波传感器的安装位置。

传感器的安装位置对测量结果有很大影响。

通常情况下,传感器应该安装在流速较大的地方,以保证测量的准确性。

此外,传感器的安装位置还应该避免有气泡、杂质等影响超声波传播的物质,以确保测量的可靠性。

总的来说,超声波流量计的原理是基于超声波在流体中传播的速度与流体流速成正比的关系来测量流速。

它利用多普勒效应和超声波在流体中传播的速度来实现流速的测量。

通过合理安装传感器,可以确保测量结果的准确性和可靠性。

超声波流量计因其测量范围广、精度高、不易受流体性质影响等优点,被广泛应用于工业生产、环境监测、水利水电等领域。

超声波流量计原理、类型及应用

超声波流量计原理、类型及应用

超声波流量计原理、类型及应用预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制超声波流量计原理、类型及应用超声波流量计一、超声波流量计的基本原理及类型超声波在流动的流体中传播时就载上流体流速的信息。

因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。

根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。

起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。

它与水位计联动可进行敞开水流的流量测量。

使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。

众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。

因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。

被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。

在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。

超声被流量汁也可用于气体测量。

管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。

另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。

超声波流量计工作原理

超声波流量计工作原理

超声波流量计工作原理
超声波流量计是一种检测不同类型流体流量的装置,它主要基于一种叫做“超声波流量计原理”的原理来工作。

超声波流量计原理是利用超声波技术,通过在流体中发出、接收和测量超声波来估计流体的流量。

原理是流量计通过发射一种称为超声波的电磁波,然后检测在液体中的反射波。

基于波的幅度和时间,可以确定流量的大小。

首先,流量计将发出一个超声波信号,然后,该信号穿过流体,然后碰撞到另一端,接着再反射回来,最后,它会被接收到流速计,从而计算出流量的大小。

首先,在流体中放置超声波传感器,这个传感器主要由声发射器和接收器组成,声发射器发出一个高频超声波,这个超声波由流体中穿过,然后接收到另一端的声接收器,声接收器会接收到声波的反射信号。

接下来,流量计会将反射信号的时间和幅度捕捉到,然后计算出它与发射信号的时间差和幅度差,根据这些数据,就可以计算出流量。

一般来说,流速越快,反射时间越短,反射幅度越大,这说明流量越大,反之亦然。

流量计是由一个专业操作的控制系统组成,该系统可以控制声发射器、计算检测到的反射信号与发射信号的时间差和幅度差,从而判断出流量。

该系统还可以在变速时自动调整,从而保证测量的准确性。

超声波流量计的一个很大的优势是准确度高,安装也很容易,可以帮助你测量出各种形状的不同流体的流速,比如液体和气体。

它用来测量流量,可以准确控制流量,从而可以节约能源。

请简述超声波明渠流量计基本原理

请简述超声波明渠流量计基本原理

超声波明渠流量计基本原理
超声波明渠流量计是一种非接触式的流量计量装置,它利用超声波的多普勒效应来测量水流速度和流量。

以下是超声波明渠流量计的基本原理:
1. 测量水流速度
超声波明渠流量计采用多普勒超声波技术,通过向水流发射超声波,并测量回波中的多普勒频移,可以计算出水流速度。

多普勒频移与水流速度成正比,因此可以通过测量多普勒频移来计算出水流速度。

2. 测量流量
超声波明渠流量计通过测量水流速度和渠道的横截面积来计算
流量。

流量等于水流速度乘以渠道横截面积。

因此,只要测量出水流速度和渠道横截面积,就可以计算出流量。

3. 标定
超声波明渠流量计需要进行标定才能准确测量流量。

标定可以通过将已知流量通过流量计进行测量,并记录测量值来完成。

然后可以通过比较测量值和已知流量的比值来计算出流量计的准确度,从而进行标定。

4. 解决不准确问题
如果超声波明渠流量计测量值不准确,可以通过调整参数来解决。

例如,可以调整流量计的灵敏度、流量计的测量范围等参数。

此外,可以利用流量计的密码进入菜单,进行更加精细的调整和设置。

总之,超声波明渠流量计是一种高效、准确、非接触式的流量计
量装置。

超声波流量计的测量原理简介

超声波流量计的测量原理简介

超声波流量计的测量原理简介一、定义超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。

二、工作原理超声波流量计根据对信号检测的原理可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。

超声波流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的流量计之一。

1、时差法当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式:其中θ为声束与液体流动方向的夹角M 为声束在液体的直线传播次数D 为管道内径Tup 为声束在正方向上的传播时间Tdown为声束在逆方向上的传播时间ΔT=Tup –Tdown设静止流体中的声速为c,流体流动的速度为u,传播距离为L,当声波与流体流动方向一致时(即顺流方向),其传播速度为c+u;反之,传播速度为c-u.在相距为L的两处分别放置两组超声波发生器和接收器(T1,R1)和(T2,R2)。

当T1顺方向,T2逆方向发射超声波时,超声波分别到达接收器R1和R2所需要的时间为t1和t2,则 t1=L/(c+u) t2=L/(c-u)由于在工业管道中,流体的流速比声速小的多,即c>>u,因此两者的时间差为▽t=t2-t1=2Lu/cc 由此可知,当声波在流体中的传播速度c已知时,只要测出时间差▽t即可求出流速u,进而可求出流量Q。

利用这个原理进行流量测量的方法称为时差法。

此外还可用相差法、频差法等。

2、相差法原理如果超声波发射器发射连续超声脉冲或周期较长的脉冲列,则在顺流和逆流发射时所接收到的信号之间便要产生相位差▽O,即▽O=w▽t=2wLu/cc 式中,w为超声波角频率。

当测得▽O时即可求出u,进而求得流量Q。

超声波流量计的原理及应用

超声波流量计的原理及应用

超声波流量计的原理及应用
超声波流量计是一种通过测量流体中的超声波传播时间和频率变化来确定流速和流量的仪器。

它能够实现非接触式测量,不影响管道内的流体流动,具有高精度、高灵敏度、稳定性好、使用寿命长等特点,因此被广泛应用于各种工业领域的液体和气体流量测量。

超声波流量计的原理是利用超声波在流体中传播的速度与方向受流体速度的影响,从而实现流速和流量测量。

它的工作原理可分为时差法和多普勒法。

时差法是通过测量超声波从传感器发射到反射回来的时间差来计算液体流量的。

当超声波传播在流体中时,它的速度受到液体流速的影响而发生变化,这导致了反射回传感器的超声波信号的到达时间会发生变化。

使用两个超声波传感器分别作为发射器和接收器,测量时间差,就可以得到流速和流量的数据。

而多普勒法则是测量通过超声波反射后发生其他频率变化的超声波信号的技术。

当超声波以一定倾角穿过液体流动时,流速会导致它们以不同的频率回反射回来。

利用这种现象,只需测量回波的频率变化就可以确定液体流量。

超声波流量计的应用非常广泛,包括水厂、石油化工、制药、食品饮料、化肥生产以及市政供水等行业。

用于管道的流量计可以测量液体、气体、和气体粉尘混合物的流速和流量。

它还能够自适应地适应温度、压力、粘度和介质的变化。

此外,超声波流量计对管道的直径、材料和形状等都没有严格的要求,适用范围非常广泛。

总之,超声波流量计是一种高效、高精度、高灵敏度的流量测量仪器,具有广泛的应用领域,是现代工业流量测量和控制领域不可或缺的重要仪器。

超声波流量计的工作原理

超声波流量计的工作原理

超声波流量计的工作原理
超声波流量计是一种流量测量仪器,它利用水的超声波传播特性来测量流体的流量。

超声波流量计的工作原理是:它通过发射一个超声波,来测量流体中的流量,当超声波穿过流体时,它会受到流体中的声速变化的影响,并以此来估算流量。

流量计中的超声波传感器由发射器和接收器组成,发射器会发出一个超声波,然后接收器会接收发射器发出的超声波,这个超声波穿过流体时,它会受到流体中的声速变化的影响,当这个超声波经过流体时,它的传播速度会发生变化。

这个变化的特性可以用来估算流量,因为声速受到流体中的流量的影响,当流量增加时,声速也会增加,当流量减少时,声速也会减少。

超声波流量计的另一个优点是它可以测量高温、高压或悬浮物含量较高的流体。

超声波流量计可以准确测量流量,即使在高温、高压或悬浮物含量较高的情况下,也能达到准确测量流量的目的。

它还可以准确测量流体中的温度,以及测量流体中的悬浮物含量,这两个功能使它更加适用于工业应用。

超声波流量计的缺点是它的成本较高,安装较为复杂,而且它的测量范围也有一定的限制。

它的测量范围受到水的声速变化的影响,因此,它只能测量一定范围内的流量,而且它也受到温度和压力的影响,这些影响会使它的测量精度受到一定的影响。

总之,超声波流量计是一种流量测量仪器,它可以准确测量流量,即使在高温、高压或悬浮物含量较高的情况下也能达到准确测量流量的目的,但是它的成本较高,安装较为复杂,而且它的测量范围也有一定的限制。

超声波流量计说明书

超声波流量计说明书
探头接到放大板的 三根线中,黑色信 号线(+)、白色信 号线(-) 、S接地线
Mark II
CPU 主板 电源板
本安接口板 现场接线板 诊断和接口板
四、CUI软件
DANIEL CUI是基于Windows操作系统的软件,可为用户呈 现:流速剖面、各声道的声速、增益、信噪比
连接PC机与超声流量计之间的RS232(以太网)通讯电缆, 在PC机中运行“Daniel CUI MARK III”软件,点击 “connect(连接)”按钮,建立PC机与超声流量计之间 的通讯。
声波是如何产生的 ?
当振动体与介质相接触时,便产生声波
声波的频率 (Hz)
单位时间内通过某一给定点的声波的数量叫 声波的频率
声波的速度
速度是指声波通过某一介质的速率(米/秒, 英 尺/秒), 它是独立于频率的一个概念
介质的弹性越大,声波传播的速度越快 介质的密度越大, 声波传输的速度越慢 如果气体的密度已知的话,声波的速度是可以
如果某声道探头脏了,那么探头的能量就会被大大削弱, 此时流量计可以通过探头的反馈信号得知能量损耗较大,结 果就会增加此声道的增益,从而增加能量,能够克服由于探 头脏污而导致的能量损失。
Signal to noise ratios:信噪比,指的是超声波流量计的信 号和噪声的比值,信噪比越大,则说明超声波流量计的工作 情况越好。
当管道中有气体流过时,传感器1和传感器2所发射的超声波 脉冲分别被传感器2和传感器1接受,由于超声波脉冲在气流 中传播速度受到气流的影响,导致超声波脉冲顺流传播的速 度要比逆流时快,在超声波声道长度内,其顺流、逆流方向 的传播时间分别为:
ts
L
cvcos
tn
L
cvcos

超声波流量计的工作原理

超声波流量计的工作原理

超声波流量计的工作原理
超声波流量计是一种常用的流量测量设备,它通过发送超声波信号并测量其传播时间和频率来实现流量的测量。

其工作原理如下:
1. 发送超声波信号:流体通过流量计时,设备中的传感器会发送超声波信号。

2. 波束传播:超声波信号以一个特定的角度向流体传播,并在流体中形成一个波束。

3. 接收回波信号:超声波在流体中传播时,会遇到不同的流速,从而导致信号的传播时间和频率发生变化。

当超声波波束遇到流体中的颗粒或气泡时,会反射回来,形成回波信号。

4. 测量时间差:流量计会测量超声波信号从发送到接收回波的时间差。

根据声速和传输距离,可以计算流体的流速。

5. 计算流量:根据测量得到的流速和截面积,可以计算得出流体的流量。

超声波流量计的工作原理基于多次测量和计算,可以提供精确的流量数据。

由于超声波的高频信号和无需直接接触流体,该技术广泛应用于各种工业和商业领域中的流量测量。

简述超声波流量计工作原理

简述超声波流量计工作原理

超声波流量计是一种常见的流量计量设备,广泛应用于工业自动化控制系统中的流体流量监测和测量。

其工作原理是利用超声波的传播速度与流体流速之间的关系来测量流量。

超声波流量计主要由传感器、信号处理器和显示器等部分组成。

传感器是核心部件,通过发射和接收超声波信号来测量流体的流速。

一般情况下,传感器安装在管道的壁面上,其内部包含一个或多个超声波传感器和一个温度传感器。

在测量过程中,超声波流量计发射超声波信号,并由流体传播回传感器。

超声波在流体中的传播速度与流体的速度有关,根据声速与流速之间的关系,可以通过测量超声波的传播速度来推算流体的流速。

超声波的传播速度受到多种因素的影响,其中包括流体的温度、密度和压力等。

因此,在测量过程中需要考虑这些因素对超声波传播速度的影响,并进行修正以提高测量的准确性。

信号处理器是超声波流量计的关键部分,其主要功能是对传感器采集到的超声波信号进行处理和分析。

例如,它可以计算超声波的传播时间、频率和幅度等参数,并根据这些参数计算出流体的流速和流量。

显示器是超声波流量计的输出部分,用于显示测量结果。

一般情况下,显示器可以显示流体的流速、流量和累积流量等参数,同时还可以显示其他相关信息,如温度、压力等。

除了基本的测量功能,超声波流量计还具有其他一些特点,例如无动态压力损失、无直接接触等优点。

这使它在许多工业领域具有广泛的应用,如石油化工、电力、水处理等。

在使用超声波流量计时,需要注意一些操作细节。

首先,要确保传感器正确安装在管道上,并保持良好的接触。

其次,要考虑流体的物性参数,并对测量结果进行修正。

最后,要定期对超声波流量计进行校准和维护,以确保测量的准确性和可靠性。

总而言之,超声波流量计是一种利用超声波传播速度与流体流速之间的关系来测量流量的设备。

它具有精度高、测量范围广、反应时间快等特点,并在工业自动化控制系统中发挥重要作用。

在应用中,我们需要合理选择、正确安装和维护超声波流量计,以确保测量结果的准确性和可靠性。

超声波流量计原理

超声波流量计原理

超声波流量计原理
超声波流量计原理
1. 基本原理
超声波流量计(Ultrasonic Flowmeter)是一种无接触,无损伤的流量测量仪表。

它是利用超声波的特性,通过在流体流程中发射和接收超声波,来测量流体的流速和流量。

它可以探测流体的声速,速度和体积,从而测量流量。

2. 工作原理
超声波流量计将发射器和接收器安装在管路上。

发射器向管道发射超
声波,在管道内传播时,被流体内的微粒吸收,因而发生衰减,当超
声波到达接收器时,只有剩余信号被接收器检测,经过相关运算,将
获得流速和流量的数据。

3. 优点
(1)操作简单,易于安装、维护;
(2)无接触测量,不会损伤流体,可长期使用;
(3)可以远程操作,便于远程监控;
(4)可进行动态测量,包括瞬时流量和累计流量;
(5)抗干扰能力强,对流速测量误差低。

4. 特点
(1)测量范围广:可以测量细微流量;
(2)数据可调:可以根据流量变化进行实时调节;
(3)灵敏度高:可以检测微小流动;
(4)低成本:无接触测量,易于安装且使用成本低。

5. 应用
超声波流量计可以用于量测液体、蒸汽、气体、热对流等多种流体,应用于各种工况,如蒸汽流量测量、油品流量测量、卷烟干燥机流量测量等。

超声波流量计测量原理

超声波流量计测量原理

超声波流量计测量原理
超声波流量计:
1、特点
a) 超声波流量计可以用来直接测量流体流量,具有操作简单、性能稳定、测量精度高以及能够承受环境恶劣等优点。

b)成本低廉、维护费用低,可以长期使用,不受温度、高压以及多种液体的影响。

2、工作原理
超声波流量计的工作原理是通过放置一个发射超声波的源,比如超声
波换能器,放入流体之中,超声波本身随着流体以一定的速度流动,
由发射源发出的超声波沿着流体反射,在接收器外壳上接收反射信号,根据信号的大小来计算流体的流速,从而得出流量的大小。

3、应用领域
a) 超声波流量计可以用于量测密闭管道内任何特性的工业流体,包括水、汽油、液化气、石油等不同流体的流量,尤其应用于各种类型的
原液的流量的测量。

b) 用于环境水收集、饮用水水源、废水处理厂、空调冷却水流量的监测等领域。

c) 也可用于制药、食品、石油、化工、热电、造纸等行业的流量检测监控。

4、测量方法
a)单管法:
在单管流量计中,发射源和受声器被放置在同一侧。

射频超声波从发射方向发射出去,沿着管道壁反射,从而充分利用声波反射体来测量流体流量。

b)双管法:
在双管流量计系统中,发射源和接收器分别放置在流体的不同侧。

发射源发出的超声波在管道的对侧侧面反射,接收器可以检测到超声波的反射信号并得到流速和流量的测量值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、优点:超声波流量计非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
一、超声波流ห้องสมุดไป่ตู้计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。
五:前四步骤完成后可确认使用何种传感器安装
六:开始向表体输入参数以确定安装距离。
七:非常重要:精确测量出安装距离。
(1) 外夹式可选安装传感器大概距离,然后不断调试活动传感器以达到信号和传输比
最好的匹配
(2) 插入使用专用工具测量管道上安装点距离,这个距离很重要,它直接影响表的
根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。
由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。
五、超声波流量计安装步骤
安装超流可按照以下步骤操作:
一:观察安装现场管道是否满足直管段前10D后5D以及离泵30D的距离。(D为管道内直径)
二:确认管道内流体介质以及是否满管。
三:确认管道材质以及壁厚(充分考虑到管道内壁结垢厚度)
四:确认管道使用年限,在使用10左右的管道,即使是碳钢材质,最好也采用插入式安装。
波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.
多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。
相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。
噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。
以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合(COM)、煤水泥合(CWM)燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。
二、构成:超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
2、 超声波流量计输送介质含有水等液体杂质时,流量计引压管容易产生积液,气温较低时会出现引压管冻堵现象,尤其在北方地区冬季较常见。解决办法:对引压管进行吹扫或加电伴热
超声波在传播过程中,由于受介质和介质中杂质的阻碍或吸收,其强度会产生衰减。不论是超声波流量计还是超声波物位计,对所接受的声波强度都有一定要求,所以都要对各种衰减进行抑制。
四、缺点:主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。目前我国只能用于测量200℃以下的流体。另外,超声波流量计的测量线路比一般流量计复杂。这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量最大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。
实际测量精度,所以最好进行多次测量以求较高精度。
八:安装传感器——调试信号——做防水——归整好信号电缆——清理现场线头等废弃物 ——安装结束——验收签字
六、超声波流量计使用中常见问题:
1、 超声波流量计探头使用一段时间,会出现不定期的报警。尤其是输送介质杂质较多时,这种问题会较常见。解决办法:定期清理探头(建议一年清理一次)。
相关文档
最新文档