复杂电阻网络的处理方法
电阻网络Y←→△的变换技巧
电阻网络Y-△的的变换技巧大家知道,对于复杂电路的等效阻值计算,往往要应用Y-△变换。
若将图1(b )△形网络等效变换为图1(a )的Y 形网络,有如下的公式:31121122331R R R R R R ⨯=++23122122331R R R R R R ⨯=⨯⨯ (1)23313122331R R R R R R ⨯=⨯⨯反过来若将图1(a )Y 网络等效变换成1(b )△网络,则有公式:122331123R R R R R R R R ++=122331231R R R R R R R R ++=(2)122331312R R R R R R R R ++=这两组变换公式具有一定的对称性,但毕竟不好记忆。
笔者在教学中进行了认真分析,探索出公式的规律性,由此自编了两句非常实用且便于记忆的口诀。
在实际计算中只需直接应用口诀,公式可弃之一旁,无须再死记硬背公式了,现介绍给同行们参考。
首先把图1的Y-△网络合并画在一张图上(如图2),口诀正是由图2得出的。
对于△变Y 很简单,分子两边R 乘、分母一圈R 加。
例如求图2中的R 1,R 1的两边是R 12和R 31,分母则是三角形一圈的R 相加。
口诀(3)则完整地表达了公式(1)。
对于Y-△变换,公式(2)的口诀是:Y 变△也好变,分子两两积相连,分母就在正对面。
这里强调一下“正对面”三字的含义,对照图2,若求R 12,则R 12的正对面就是R 3,其余类推。
现举例如下。
求图3(a )的a 、b 两端等效电阻R ab 。
解法一:采用△→Y 变换1. 先确定待变换网络并编号1、2、3节点,然后将(a )变换成(b )。
2. 结合图3(a )(b )。
应用△→Y 口诀(3),有:121220.8()(R 5R ⨯2==ΩΩ,Ω)的两边是22 同理:2313120.4()5120.4()5R R ⨯==Ω⨯==Ω这里应用口决的关键是"两边"二字意义的理解。
电阻网络中的三角形星形等效变换解析实例
电阻网络中的三角形星形等效变换解析实例电阻网络中的三角形-星形等效变换解析实例在电路分析中,等效变换是一种将复杂电路简化成简单电路的方法。
其中,三角形-星形等效变换是常用的一种方法,可以将电阻网络中的三角形形式转换为星形形式,使得电路的计算更加简便。
本文将通过几个实例来解析电阻网络中的三角形-星形等效变换,以展示这一方法的应用。
实例一:在如下电阻网络中,我们希望将三角形形式转换为星形形式:R1 R2 R3o--------o-----------o-----------o| | |RL R5 R6| | |o--------o-----------o-----------oR4 R7 R8首先,我们按照以下步骤进行等效变换:1. 将RL与R1进行并联,得到RL1;2. 将RL1与R7进行并联,得到RL2;3. 将R4与RL2进行并联,得到RL3;4. 将R5与RL3进行并联,得到RL4。
经过以上等效变换后,得到如下的星形形式电路:RL4 RL3 RL2o--------o-----------o-----------o| | |R2 R3 R8| | |o--------o-----------o-----------oR1 R5 R6通过以上变换,我们成功将电阻网络转换为了星形形式,从而简化了电路的计算。
实例二:现在考虑一个稍为复杂的电阻网络,其中包含多个三角形形式的电阻网络。
我们希望将整个电路转换为星形形式。
R2 R3o--------o----------------------o|R1 L|o|RL R4 RL|R5 L|o|R6 R7o ----------------------o----------------o为实现等效变换,我们按照以下步骤进行处理:1. 将RL与R1进行并联,得到RL1;2. 将RL1与R4进行并联,得到RL2;3. 将RL2与R5进行并联,得到RL3;4. 将R6与RL3进行并联,得到RL4;5. 将RL4与R3进行并联,得到RL5;6. 将RL5与R7进行并联,得到RL6。
加源法求等效电阻-定义说明解析
加源法求等效电阻-概述说明以及解释1.引言1.1 概述概述加源法是一种常用的电路分析方法,通过添加电压源或电流源到电路中,来简化复杂网络电路的分析。
加源法能够将复杂的电路网络转化为简单的串联、并联或星型网络,从而方便计算等效电阻。
本文将介绍加源法的基本原理、应用范围以及在等效电阻求解中的具体应用,总结加源法的优势和在工程实践中的意义,并展望加源法的发展方向。
通过本文的学习,读者将能够掌握加源法在电路分析中的重要作用,从而更好地理解电路网络的特性和性能。
1.2 文章结构文章结构部分的内容应该包括对整篇文章的框架和各个部分的内容进行简要介绍。
可以包括每个章节的主题和重点,以及整篇文章的线索和逻辑展开。
例如:文章结构部分:本文共分为引言、正文和结论三个部分。
在引言部分中,我们将概述加源法在电路分析中的重要性和应用价值,介绍文章的结构和目的。
在正文部分,我们将详细讨论加源法的基本原理、应用范围以及在等效电阻求解中的具体应用。
最后,在结论部分,我们将总结加源法的优势,讨论其在工程实践中的意义,并展望其未来的发展方向。
通过这样的结构安排,读者可以清晰地了解到全文的主要内容和观点。
1.3 目的本文旨在探讨加源法在求解等效电阻中的应用,旨在介绍加源法的基本原理、应用范围以及在工程实践中的意义。
通过深入分析加源法的特点和优势,我们可以更好地了解该方法在电路分析和设计中的作用,为工程实践提供可靠的理论支持和技术指导。
同时,也可以为加源法在未来的发展方向提供一些思路和展望。
通过本文的研究,我们旨在为读者提供一个全面而深入的了解加源法在等效电阻求解中的应用价值,为相关领域的研究和实践提供有益的参考和借鉴。
2.正文2.1 加源法的基本原理加源法是一种电路分析方法,其基本原理是通过在电路中加入虚拟电源或虚拟电阻,从而简化原始电路的复杂度,进而求解电路中的等效电阻。
这种方法的核心思想是将原始电路转化为一个更简单的等效电路,以便更方便地进行分析和计算。
电阻网络中的戴维南定理推导实例分析
电阻网络中的戴维南定理推导实例分析在电路理论中,戴维南定理(Thevenin's theorem)是一种简化复杂电路分析的方法。
它可以将一个复杂的电阻网络简化为一个等效的电压源和串联电阻的电路,从而方便我们进行电路分析和计算。
在本文中,将通过一个实例来演示戴维南定理的推导和分析过程。
实例:考虑一个包含多个电阻的电路,如下图所示:(图:电阻网络示意图)我们的目标是推导和计算该电路的戴维南等效电路。
解决方案:首先,我们需要计算电路中的等效电阻。
根据戴维南定理,我们可以通过以下步骤来推导等效电路:步骤1:找到我们感兴趣的节点,并将其定义为戴维南等效电路的输出端口。
在本例中,我们将节点N2定义为输出端口。
步骤2:将电路中的所有电源(如电压源或电流源)替换为其内部电阻。
假设电源的内部电阻为Ri。
步骤3:将除输出端口外的所有电阻都删除,即将它们短路或断路。
根据上述步骤,我们进行以下具体推导:步骤1中,我们选择节点N2作为输出端口,将其标记如下图所示:(图:电阻网络示意图,标记输出端口)接下来,我们继续进行步骤2。
假设电源的内部电阻为Ri,我们将其添加到电路中:(图:电阻网络示意图,添加电源内阻)在步骤3中,删除除输出端口外的所有电阻。
我们需要删除R1,R2和R3:(图:电阻网络示意图,删除电阻)接下来,我们可以绘制戴维南等效电路,如下图所示:(图:戴维南等效电路图)在等效电路中,我们有一个等效电压源Vth和一个等效电阻Rth。
我们的目标是计算这两个等效参数。
首先,我们计算等效电压源Vth。
根据戴维南定理,Vth等于从输出端口观察到的电压。
为了计算Vth,我们需要恢复被删除的电阻。
恢复被删除的电阻后,电路变为如下图所示:(图:电阻网络示意图,恢复电阻)现在我们观察到的电路如下:(图:电阻网络示意图,观察电路)根据电路中的节点电压分析,我们可以得到以下等式:Vth = V2 - V1根据欧姆定律,我们有:V1 = I * R1V2 = I * (R1 + R3)将上述等式代入Vth的表达式,并消去I项,我们得到:Vth = (R1 + R3) / R1 * V1 - R3 / R1 * V2注意到V1和V2的值取决于节点N1的电压,即V1 = V_N1,V2 = V_N1。
电阻网络的等效电路分析
电阻网络的等效电路分析电阻网络是电路中常见的一种电路元件组合形式,在电子电路设计和分析中扮演着重要角色。
通过等效电路分析,我们可以将复杂的电阻网络简化为一个等效电路,便于电路的计算和设计。
本文将详细介绍电阻网络的等效电路分析方法及应用。
一、电阻网络的基本概念电阻网络由多个电阻器按照一定的连接方式组成。
电阻器是一种被动元件,具有阻抗特性。
在电阻网络中,电阻器的连接方式可以是串联或并联。
1. 串联连接:当多个电阻器相互连接,电流依次经过每个电阻器后流入负载,称为串联连接。
图1为三个电阻器R1、R2和R3串联连接的电阻网络示意图。
```plaintext图1:串联连接示意图```2. 并联连接:当多个电阻器的一端或两端直接相连,电流在各个电阻器中分流,称为并联连接。
图2为三个电阻器R1、R2和R3并联连接的电阻网络示意图。
```plaintext图2:并联连接示意图```二、电阻网络的等效电路分析方法等效电路分析是指将复杂的电阻网络转化为简化的等效电路,以方便电路的计算和分析。
下面将介绍两种常用的等效电路分析方法:串并联电阻法和特殊电阻组合法。
1. 串并联电阻法串并联电阻法是将复杂的电阻网络通过串联和并联电阻的等效性,转化为简化的电阻网络。
具体步骤如下:步骤一:将电阻网络中的串联电阻进行合并。
若电阻网络中存在多个串联电阻,将其合并为一个等效电阻。
例如,图3为一个含有多个串联电阻的电阻网络。
```plaintext图3:含有多个串联电阻的电阻网络示意图```可以将R1和R2合并为一个等效电阻Req1,R3和R4合并为一个等效电阻Req2,得到简化的电阻网络。
```plaintext图4:等效电阻合并后的简化电阻网络示意图```步骤二:将电阻网络中的并联电阻进行合并。
若电阻网络中存在多个并联电阻,将其合并为一个等效电阻。
例如,图4中的电阻网络可以将Req1和Req2合并为一个等效电阻Req。
步骤三:根据需要,继续进行串并联电阻的合并,直到最终得到等效电路。
高二物理辅优专题专题七:复杂电阻网络的简化
高二物理辅优专题专题七:复杂电阻网络的简化一、等势缩点法将电路中电势相等的点缩为一点,是电路简化的途径之一。
至于哪些点的电势相等,则需要具体问题具体分析——例1.在图所示的电路中,R1 = R2= R3= R4= R5= R ,试求A、B两端的等效电阻RAB。
例2.在图所示的电路中,R1= 1Ω,R2= 4Ω,R3= 3Ω,R4= 12Ω,R5= 10Ω,试求A、B两端的等效电阻RAB 。
例3.英国物理学家惠斯登曾将上图中的R5换成灵敏电流计○G,将R1、R2中的某一个电阻换成待测电阻、将R3、R4换成带触头的电阻丝,通过调节触头P的位置,观察电流计示数为零来测量带测电阻Rx的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。
请同学们思考惠斯登电桥测量电阻的原理,并写出Rx 的表达式(触头两端的电阻丝长度LAC和LCB是可以通过设置好的标尺读出的)。
二、对称法:在一个复杂的电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等势点间的导线或电阻或不含有电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势结点连接起来,不影响电路的等效性.可以将网络沿轴对折。
例4.在图所示的有限网络中,每一小段导体的电阻均为R ,试求A、B两点之间。
的等效电阻R例5.《高考奥赛自主招生》P34例7:(北大自招)正四面体ABCD,每条边的电阻为R ,取一条边的两个顶点,如图所示中的AB,整个四面体的等效电阻R AB为多少?例6.20个相同的电阻R按如图所示那样连接,度求AB现点间的等效电阻R AB三、添加等效法:先设k个小网络元组成的二端网络的等效电阻记为RK,再连接一个小网络无,设法找出RK与RK+1之间的数学递推关系式,最后令K→∞,RK与RK+1便同为所求原二端无限网络的等效电阻。
例7.在图所示无限网络中,每个电阻的阻值均为R ,试求A、B两点间的电阻。
R例8.如图所示,每一个电阻的阻值都为R,求AB之间的等效电阻。
电阻网络中的戴维南诺顿等效变换解析实例
电阻网络中的戴维南诺顿等效变换解析实例在电路分析中,戴维南诺顿等效电路是一种常用的方法,用来简化复杂的电阻网络。
通过将电路中的所有电源替换为等效电流源和等效电阻,我们可以更方便地进行电路分析和计算。
本文将通过一个实例,详细介绍戴维南诺顿等效变换的具体步骤和解析方法。
假设我们有一个由多个电阻组成的电路,如下图所示:[图示电路]该电路中包含多个电阻,我们需要对其进行分析,计算出特定端口的电压和电流。
首先,我们要进行戴维南诺顿等效变换,将电源替换为等效电流源和等效电阻。
戴维南诺顿等效变换的步骤如下:步骤一:计算等效电流源的数值在原电路中,我们需要确定特定端口的电流。
为了计算等效电流源,我们需要断开该端口,并用电阻R连接。
然后,通过欧姆定律计算在该电阻上的电压V。
根据欧姆定律,V = I * R,其中I为等效电流源的大小。
步骤二:计算等效电阻的数值在步骤一中,我们已经得到了等效电流源的数值。
现在,我们需要计算等效电阻的大小。
为了计算等效电阻,我们需要在断开的端口处测量开路电压Voc。
然后,用欧姆定律计算在开路电压下的电流Isc。
最后,等效电阻的数值为R = Voc / Isc。
步骤三:确定等效电流源和等效电阻的位置和方向在步骤一和步骤二中,我们已经得到了等效电流源和等效电阻的数值。
现在,我们需要确定它们在电路中的位置和方向。
等效电流源与断开的端口相连,方向与实际电流的方向相反。
等效电阻与实际电阻位置相同。
通过以上步骤,我们成功地将原始电路转化为了戴维南诺顿等效电路。
接下来,我们可以利用等效电路来进行电路分析。
例如,我们希望计算特定端口的电压。
在等效电路中,我们只需要计算等效电源与该端口之间的电压。
通过应用基本的电路分析技巧,结合欧姆定律和基尔霍夫定律,我们可以轻松地计算出所需的电压。
除了计算特定端口的电压之外,戴维南诺顿等效电路还可以用于计算特定端口的电流以及其他电路参数。
通过将复杂的电路简化为等效电流源和等效电阻,我们能更加便捷地进行电路分析,并得到准确的结果。
电阻网络中的星形三角形变换分析
电阻网络中的星形三角形变换分析在电阻网络中,星形和三角形连接是常见的连接方式。
这两种连接方式在电路分析和设计中具有重要的作用。
本文将对电阻网络中的星形三角形变换进行详细分析,以帮助读者更好地理解和应用这一概念。
一、星形连接和三角形连接简介1. 星形连接在电路中,星形连接是指将三个或更多的电阻连接在一起,其中一个节点连接到电源正极,其余节点连接到电源负极。
这种连接方式常用于电路中需要提供共地或共点的情况。
2. 三角形连接三角形连接是指将三个电阻以闭合的三角形连接方式相连。
三角形连接常用于电路中需要提供平衡电路或无共地的情况。
二、星形三角形变换原理星形三角形变换是一种将一个电路转换为与它等效的另一个电路的方法。
通过执行星形三角形变换,可以简化电路的分析和计算。
具体变换原理如下:1. 星型到三角形变换将星形连接的电阻网络转换为等效的三角形连接网络。
设星形连接的电阻为R1,R2,R3,其中节点A连接到电源正极,节点B和C连接到电源负极。
则等效的三角形连接电阻可表示为:RT = R1 * R2 / (R1 + R2 + R3)RA = R1 * R3 / (R1 + R2 + R3)RB = R2 * R3 / (R1 + R2 + R3)2. 三角形到星形变换将三角形连接的电阻网络转换为等效的星形连接网络。
设三角形连接的电阻为RT,RA,RB,其中节点A、B、C两两相连,形成闭合的三角形。
则等效的星形连接电阻可表示为:R1 = RA * RB / (RA + RB + RT)R2 = RA * RT / (RA + RB + RT)R3 = RB * RT / (RA + RB + RT)三、星形三角形变换的应用星形三角形变换在电路分析和设计中具有广泛应用,其中包括但不限于以下几个方面:1. 简化电路分析和计算通过执行星形三角形变换,可以将复杂的电路转换为等效的简化电路,从而简化电路的分析和计算。
这种方法尤其适用于涉及大量电阻和复杂连接的电路。
二端网络参数计算方法总结
二端网络参数计算方法总结概述二端网络是电路中常见的一种电气网络,由两个节点和与之相关的元件组成。
在电路分析和设计中,我们经常需要计算二端网络的参数,以便了解和优化电路性能。
本文将总结常见的二端网络参数计算方法,包括电阻、电流、电压和功率等。
1. 电阻计算方法电阻是指在电路中阻碍电流流动的性质。
对于简单的电阻器,电阻值可直接使用元件上标注的数值。
对于复杂的二端网络,计算电阻值的常用方法有以下几种:1.1 平行连接电阻的计算方法如果二端网络中的多个电阻器是平行连接的,那么它们的电阻值可以简单地相加。
例如,两个电阻分别为R1和R2,则它们的平行连接电阻值Rp可通过下式计算得出:Rp = R1 + R21.2 串联连接电阻的计算方法如果二端网络中的多个电阻器是串联连接的,那么它们的电阻值可以通过相加来计算。
例如,两个电阻分别为R1和R2,则它们的串联连接电阻值Rs可通过下式计算得出:Rs = R1 + R21.3 复杂电阻网络的计算方法对于复杂的电阻网络,可以采用电路分析法、基尔霍夫定律等方法来计算电阻值。
2. 电流计算方法电流是电子在电路中的流动,可用于衡量电路的运行情况。
在二端网络中,电流的计算常常与电阻的计算密切相关。
根据欧姆定律,电阻电流可通过以下公式计算:I = V/R其中,I为电流,V为电压,R为电阻。
3. 电压计算方法电压是电路中电势差的度量,用于描述电路各节点之间的电压差异。
根据欧姆定律,电压可通过以下公式计算:V = I*R其中,V为电压,I为电流,R为电阻。
4. 功率计算方法功率是电路中能量转换和消耗的表现,对于电路性能的评估和设计至关重要。
功率的计算涉及到电流和电压两个参数。
根据电功率的定义,功率可通过以下公式计算:P = V*I其中,P为功率,V为电压,I为电流。
结论二端网络参数的计算方法包括电阻、电流、电压和功率等多个方面。
对于简单的情况,计算方法相对简单明了;而对于复杂的电路网络,可能需要借助电路分析法、基尔霍夫定律等方法进行计算。
电阻串并联(含星三角联接)化简技巧
《大学电路/电路原理/电路分析》03—电阻串、并联(含星-三角联接)化简技巧电阻是表示对电流阻碍作用大小的元件,由线性电阻成的电路是电学中最常见的电路形式,在分析各种电路问题中经常选用。
电阻的联接方式有串、并联,星-三角联接,为求电路中某电压/电流,需对电阻网络进行化简,即求其等效电阻。
本文将介绍电阻电路的一些实用化简技巧,帮你轻松对付电阻电路的求解。
1.电阻电路中的重要公式电阻电路化简过程中,需要根据电路结构及电阻值特点,快速找到合适的方法。
很多学生一看到密密麻麻的电阻网络,一下子就惊呆了,感觉无从下手。
其实如果熟悉一些方法、技巧后,也是有迹可寻的。
为此先把3条重要公式给记牢,包括2个电阻的并联公式、串联分压公式和并联分流公式。
(1)2电阻并联公式:电路如下图所示,根据电阻并联的规律,整理可得并联电阻为:(2)2电阻串联分压公式:电路如下图所示,电阻R1,R2串联后对端口电压u进行分压,公式如下:u2前面的“-”号表示R2两端电压的参考方向与端口电压u的参考方向相反。
(3)2电阻并联分流公式:电路如下图所示:电阻并联后可对流入端口的电流i进行分流,公式如下:同样,i2前面的“-”号表示流过R2电流的参考方向与流入端口i的参考方向相反。
可以发现,5条公式的分母都是R1+R2,只要记住分子的区别就可以了,并联是两电阻相乘,分压是用本身的电阻,分流是用与本电阻并联的另一个电阻。
2. “等电位点”在化简中的应用在使用叠加定理分析电路时,需画出各独立源单独作用时的分电路,再求出各分量进行叠加。
当某电源单独用时,要把其它的电源置零。
对于电压源置零是短路处理,电流源置零是开路处理,受控源一般保留在各分电路中。
电流源置零后的电路一般比较简单好求,因为电流源断开,少了一条支路。
而电压源置零是短路,有时电路结构看起来很“怪”,这时需用“等电位点”概念来处理。
如下图电路,求电路中的电流I。
首先要画出两个电源单独作用的分电路,如下图所示:较难求解的是的右边的电流源单独作用电路,感觉真复杂!那些电阻到底是什么联接?下面那条红线又该怎么处理?别慌,解题的突破口就是那条红线!因为导线上作一点都是“等电位”的,所以可以将b,c间的4欧电阻的“c”点沿着红色导线移动到“a”点,同样将c,d间的2欧电阻的“c”点也沿着红色导线移动到“a”点,马上就可以画出其简化电路,如下图所示:接下来的求解就简单了,是不是心情一下子舒畅了?那赶快把这个“等电位点”记下来吧。
电阻网络中的三角形星形等效变换解析
电阻网络中的三角形星形等效变换解析引言:电阻网络是电路分析中常见的一种形式,使用电阻、电源和连接线将电路元件组装在一起。
在电路分析中,对于复杂的电阻网络,我们经常需要简化电路结构以便更方便地进行计算和分析。
其中一种常见的简化方法就是进行等效变换。
一、三角形到星形等效变换1. 三角形等效变换的原理在电阻网络中,当使用三个电阻相互连接而成三角形时,我们可以通过将三角形转换为星形来简化电路结构。
这种等效变换的原理是基于KCL(电流守恒定律)。
根据KCL,三角形中的每个节点的电流总和为零。
因此,我们可以通过连接三角形中的节点中间电路的电阻,将三角形转换为星形。
2. 三角形到星形等效变换的公式在进行三角形到星形等效变换时,我们需要计算三角形电阻与星形电阻的关系。
假设三角形电阻分别为R1、R2和R3,星形电阻分别为Rab、Rbc和Rca,则它们之间的关系为:1/Rab = 1/R1 + 1/R2 + 1/R31/Rbc = 1/R1 + 1/R2 + 1/R31/Rca = 1/R1 + 1/R2 + 1/R33. 三角形到星形等效变换的实例以一个简单的三角形电阻网络为例,假设三角形中的三个电阻分别为10Ω、20Ω和30Ω。
我们来计算它们的星形等效电阻。
根据上述公式,我们可以得到:1/Rab = 1/10 + 1/20 + 1/30 = 3/60 + 2/60 + 2/60 = 7/601/Rbc = 1/10 + 1/20 + 1/30 = 3/60 + 2/60 + 2/60 = 7/601/Rca = 1/10 + 1/20 + 1/30 = 3/60 + 2/60 + 2/60 = 7/60通过求倒数,并计算总电阻,我们可以得到星形电阻的数值为:Rab = 60/7 ΩRbc = 60/7 ΩRca = 60/7 Ω二、星形到三角形等效变换1. 星形等效变换的原理与三角形到星形等效变换相反,我们可以通过将星形转换为三角形来简化电路结构。
复杂二端网络电阻的求解方法研究
A h ut or’ S a ddr ss D h u e ez o Voc ti nal an Te hni al Col eg , De ho a o d c c l e z u, Sh d g, an on
C a 5 3 hj 2 30 4 n
1 前 言
电路 计 算 中 ,常 常 需 要 对 二 端 网 络 电阻进 行 计 算 。
UA = UA c D七U D C+U C c。
不 是 并联 的特 殊 电阻 电路 ,求 等 效 电 阻就 不 是那 么容 易
了 。为此 ,笔 者找 出简单 、方 便 的方 法 。
2 特 殊 二 端 网 络 电 阻求 解 方 法
如 图 1 示 ,正 方 体 的每 条 棱 都 是 一 个 电 阻 ,试 问 所 这 个 正 方 体 的对 角 顶 点A、C 的 电阻 是 多少 ?这 一 问题 问 如 果 用 通 常 的 求 解 电阻 串 并 联 的方 法 是 无 法 解 决 的 ,必
教 学 园 地
张 洪宝:复 二端网 阻 解方 杂 络电 的求 法研究
7 7
i . 9 9 j i s . 6 1 4 9 . 0 0 . 7 0 36 /. sn 17— 8X 2 1. 30 7 1
复 杂 二 端 网络 的 解 方 法 研 究 电阻 求
张 洪 宝
德 州 职 业 技 术 学 院 电子 与 新 能 源 技 术 工 程 系 山东 德 州 2 3 3 504
Abs a Spe al p tr ct ci asSi 1i ve nea t —t mi r wo er nal n wo eq val nt res st ce et rk ui e i an c c at n m h . A ub e c e e S re s o R h w o al ul i g et od c e a h dg i a si t r , o t fi t re s a e nd he si t nc
复杂电阻网络的处理方法
复杂电阻网络的处理方法一:有限电阻网络原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。
它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。
电路中任何一个闭合回路,都符合闭合电欧姆定律。
下面我介绍几种常用的其它的方法。
1:对称性简化所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。
它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。
在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。
例(1)如图1所示的四面体框架由电阻都为R的6根电阻丝连接而成,求两顶点A、B间的等效电阻。
图1 图2分析:假设在A、B两点之间加上电压,并且电流从A电流入、B点流处。
因为对称性,图中CD两点等电势,或者说C、D 间的电压为零。
因此,CD间的电阻实际上不起作用,可以拆去。
原网络简化成简单的串、并联网络,使问题迎刃而解。
解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得R AB=R/2例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R,试求图中A、B两点之间的等效电阻。
图3 图4 图5分析:从图3中可以看出,整个电阻网络相对于AB的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。
从如图4所示的网络中可以看出,从A点流到O电流与从O点到B 电流必相同;从A1点流到O电流与从O点到B1电流必相同。
据此可以将O点断开,等效成如图5所示的简单网络,使问题得以求解。
解:根据以上分析求得R AB=5R/48例(3)如图6所示的立方体型电路,每条边的电阻都是R。
如何解决电阻的串联和并联问题
如何解决电阻的串联和并联问题电阻的串联和并联问题是电路中常见的基础知识,解决这些问题不仅能够帮助我们更深入地理解电路原理,还能够应用到实际的电路设计与故障排除中。
本文将从不同角度探讨如何解决电阻的串联和并联问题。
一、串联电阻的解决办法在电路中,当多个电阻依次相连,形成一条路径时,我们称其为串联电阻。
如何有效地解决串联电阻的问题,能够帮助我们计算电流和电压分配,从而更好地设计和优化电路。
首先,对于简单的串联电阻,我们可以直接将电阻值相加求和。
例如,当我们有三个串联电阻R1、R2、R3时,其总电阻Rt可以用下式表示:Rt = R1 + R2 + R3当然,对于更复杂的串联电阻网络,我们可以应用基尔霍夫定律和欧姆定律来解决。
基尔霍夫定律告诉我们,在串联电路中,总电流等于各个电阻上的电压之和。
欧姆定律则告诉我们,电流与电阻成反比,电压与电阻成正比。
通过结合基尔霍夫定律和欧姆定律,我们可以得到以下通用的串联电阻计算公式:Rt = R1 + R2 + ... + Rn其中,R1、R2、...、Rn分别代表串联电路中的各个电阻。
这样,我们就可以根据实际情况进行计算,并求得电流和电压分配。
二、并联电阻的解决办法与串联电阻相反,当多个电阻同时连接在电路上,形成多个平行路径时,我们称其为并联电阻。
解决并联电阻的问题,可以帮助我们计算总电阻和总电流,进一步设计和优化电路。
对于简单的并联电阻,我们可以直接应用如下公式进行计算:1/Rt = 1/R1 + 1/R2 + ... + 1/Rn其中,Rt为总电阻,R1、R2、...、Rn为并联电路中的各个电阻。
通过将各个电阻倒数相加,再取倒数,我们就可以得到总电阻。
对于更复杂的并联电阻网络,我们同样可以应用基尔霍夫定律和欧姆定律来解决。
基尔霍夫定律告诉我们,在并联电路中,总电压相等于各个电阻上的电流之和。
欧姆定律则告诉我们,电流与电阻成反比,电压与电阻成正比。
通过结合基尔霍夫定律和欧姆定律,我们可以得到以下通用的并联电阻计算公式:1/Rt = 1/R1 + 1/R2 + ... + 1/Rn其中,Rt为总电阻,R1、R2、...、Rn为并联电路中的各个电阻。
复杂电阻网络的处理方法
复杂电阻网络得处理方法一:有限电阻网络原则上讲解决复杂电路得一般方法,使用基尔霍夫方程组即可。
它包含得两类方程出自于两个自然得结论:(1)对电路中任何一个节点,流出得电流之与等于流入得电流之与。
电路中任何一个闭合回路,都符合闭合电欧姆定律。
下面我介绍几种常用得其它得方法。
1:对称性简化所谓得对称性简化,就就是利用网络结构中可能存在得对称性简化等效电阻得计算。
它得效果就是使计算得以简化,计算最后结果必须根据电阻得串、并联公式;电流分布法;极限法等来完成。
在一个复杂得电路中,如果能找到一些完全对称得点,那么当在这个电路两端加上电压时,这些点得电势一定就是相等得,即使用导线把这些点连接起来也不会有电流(或把连接这些点得导线去掉也不会对电路构成影响),充分得利用这一点我们就可以使电路大为简化。
例(1)如图1所示得四面体框架由电阻都为R得6根电阻丝连接而成,求两顶点A、B间得等效电阻。
图1图2分析:假设在A、B两点之间加上电压,并且电流从A电流入、B点流处。
因为对称性,图中CD两点等电势,或者说C、D 间得电压为零。
因此,CD间得电阻实际上不起作用,可以拆去。
原网络简化成简单得串、并联网络,使问题迎刃而解。
解:根据以上分析原网络简化成如图2所示得简单得串、并联网络,由串、并联规律得R AB=R/2例(2)三个相同得金属圈两两正交地连成如图所示得形状,若每一个金属圈得原长电阻为R,试求图中A、B两点之间得等效电阻。
图5,B得电流流入、,因此可上下压电流与从O点到B电流O5所示得简单网络,使问题得以求解。
解:根据以上分析求得R AB=5R/48例(3)如图6所示得立方体型电路,每条边得电阻都就是R。
求A、G之间得电阻就是多少?分析: 假设在A 、G两点之间加上电压时,显然由于对称性D、B、E 得电势就是相等得,C、F、H得电势也就是相等得,把这些点各自连起来,原电路就变成了如图7所示得简单电路。
解:由简化电路,根据串、并联规律解得R AG=5(同学们想一想,若求A、F或A、E例(4)在如图8所示得网格形网络中,每一小段电阻均为R AB。
电路简化方法
电路简化方法电路简化是指通过一定的方法和技巧,将复杂的电路简化为简单的等效电路,以便更好地理解和分析电路的行为。
电路简化方法在电子工程领域中具有重要的意义,它可以帮助工程师快速解决电路设计和故障排除中遇到的问题。
本文将介绍几种常用的电路简化方法。
一、串并电阻简化法串并电阻简化法是用于简化电路中的串联和并联电阻的方法。
对于串联电阻,可以将它们的电阻值相加得到等效电阻;对于并联电阻,可以将它们的导纳值相加得到等效导纳,然后再求得等效电阻。
这样可以将复杂的电路简化为一个等效电阻,从而简化了电路的分析和计算。
二、戴维南定理戴维南定理是一种常用的电路简化方法,它利用了线性电路的叠加性质。
根据戴维南定理,任意一个电路可以看作是由一组电压源和电流源以及它们的内阻构成的。
通过将电路中的各个电源和内阻分别短路或开路,可以得到一系列简化电路。
然后利用线性电路的叠加性质,将这些简化电路的电流和电压分别相加,得到原始电路的电流和电压。
这样可以将复杂的电路简化为一系列简单的电路,从而方便了电路的分析和计算。
三、戴维南等效电阻戴维南等效电阻是一种常用的电路简化方法,它利用了电路中的等效电阻来简化电路。
对于线性电阻网络,可以通过计算出它的戴维南等效电阻来简化电路。
戴维南等效电阻是指将电路中的所有电源置零,并断开所有电流源和电压源,然后在两个端口之间施加一个测试电流,计算出两个端口之间的电压,最后将测试电流和两个端口之间的电压相除,得到戴维南等效电阻。
这样可以将复杂的电路简化为一个等效电阻,从而方便了电路的分析和计算。
四、Norton等效电流Norton等效电流是一种常用的电路简化方法,它利用了电路中的等效电流来简化电路。
对于线性电流网络,可以通过计算出它的Norton等效电流来简化电路。
Norton等效电流是指将电路中的所有电源置零,并断开所有电流源和电压源,然后在两个端口之间施加一个测试电压,计算出两个端口之间的电流,最后将测试电压和两个端口之间的电流相除,得到Norton等效电流。
初中物理复杂电路的简化方法
初中物理复杂电路的简化方法初中物理中,复杂电路的简化方法是对于复杂电路进行分析和简化,以便更好地理解和应用电路原理。
下面将详细介绍几种常用的简化方法。
1.串联电阻的简化:当复杂电路中有多个电阻串联时,可以将它们简化为一个等效电阻。
串联电阻的等效电阻值等于各个电阻的阻值之和。
例如,当电路中有三个串联电阻分别为R1、R2、R3时,可以将它们简化为一个等效电阻Re等于R1+R2+R32.并联电阻的简化:当复杂电路中有多个电阻并联时,可以将它们简化为一个等效电阻。
并联电阻的等效电阻值等于各个电阻的倒数之和的倒数。
例如,当电路中有三个并联电阻分别为R1、R2、R3时,可以将它们简化为一个等效电阻Re等于(1/R1+1/R2+1/R3)^(-1)。
3.电阻网络的简化:复杂电路中常常包含大量的电阻,此时可以利用“与并之差”的方法将电阻网络简化为一个等效电阻。
先将全部电阻并联起来,得到总电阻Rt;然后再将总电阻与一个电阻串联,得到等效电阻Re。
例如,当电路中有多个电阻网络,先将全部电阻并联得到总电阻Rt,再与一个电阻R串联得到等效电阻Re。
4.电容器与电感的简化:复杂电路中常常包含电容器和电感,此时可以利用它们的等效电容和等效电感来简化电路。
对于多个并联电容器,等效电容等于各个电容的和。
例如,当电路中有三个并联电容器分别为C1、C2、C3时,可以将它们简化为一个等效电容Ce等于C1+C2+C3对于多个串联电感,等效电感等于各个电感的和。
例如,当电路中有三个串联电感分别为L1、L2、L3时,可以将它们简化为一个等效电感Le等于L1+L2+L35.电源的简化:复杂电路中常常包含多个电源,此时可以将它们简化为一个等效电源。
当电源具有相同的电动势和内阻时,可以将它们简化为一个电源,并将电动势和内阻相加。
例如,当电路中有两个电源,电动势分别为E1、E2,内阻分别为r1、r2时,可以将它们简化为一个等效电源,电动势为E1+E2,内阻为r1+r2以上所述是初中物理复杂电路的简化方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理辅导 复杂电阻网络的处理方法.
复杂电路经过Y ……Δ变换,可以变成简单电路。
如图13和14所示分别为Δ网络和Y 网络,两个网络中得6个电阻满足怎样的关系才能使这两个网络完全等效呢 ?
所谓完全等效,就是要求: U ab =U ab ,U bc =U bc ,U ca =U ca I a =I A,I b =I B,I c =I C 在Y 网络中有:I a R a -I b R b =U ab I c R c -I a R a =U ca I a +I b +I c =0
解得I a =R c U ab /(R a R b +R b R c +R c R a )+ R b U ca /(R a R b +R b R c +R c R a ) 在Δ网络中有: I AB =U AB /R AB I CA =U CA /R CA I A =I AB -I CA 解得I A = (U AB /R AB )-( U CA /R CA ) 因为要求I a =I A ,所以
R c U ab /(R a R b +R b R c +R c R a )+ R b U ca /(R a R b +R b R c +R c R a )= (U AB /R AB )-( U CA /R CA ) 又因为要求U ab = U AB ,U ca = U CA 所以要求上示中对应项系数相等,即 R AB =(R a R b +R b R c +R c R a )/ R c -----------------(1) R CA =(R a R b +R b R c +R c R a )/ R b ------------------(2) 用类似的方法可以解得
R BC =(R a R b +R b R c +R c R a )/ R a --------------------(3)
(1)、(2)、(3)三式是将Y 网络变换到Δ网络的一组变换式。
在(1)、(2)、(3)三式中将R AB 、R BC 、R CA 作为已知量解出R a 、R b 、R c 即可得到 R a =R AB *R CA /(R AB +R BC +R CA )-----------------(4) R b =R AB *R BC /(R AB +R BC +R CA ) -----------------(5)
R c =R
BC
*R
CA
/(R
AB
+R
BC
+R
CA
) -----------------(6)
(4)、(5)、(6)三式是将Δ网络变换到Y网络的一组变换式。
例1求如图所示双T桥网络的等效电阻R
AB。
分析:此题无法直接用串、并联规律求解,需要将双T桥网络中两个小的Y网络元变换成两个小的Δ网络元,再直接用串、并联规律求解即可。
解:原网络等效为所示的网络,由此可以算得
R
AB
=118/93Ω
1.有7个电阻同为R的网络如图所示,试求A、B间的等效电阻R AB。
2:有如图12所示的电阻网络,求A、B之间的电阻R AB
一:无限电阻网络
无限电阻网络分为线型无限网络和面型无限网络,下面我们就这两个方面展开讨论
1:线型无限网络
所谓“线型”就是一字排开的无限网络,既然研究对象是无限的,就可以利用“无限”这个条件,再结合我们以上讲的求电阻的方法就可以解决这类问题。
例(1)如图所示的电路是一个单边的线型无限网络,每个电阻的阻值都是R,求A、B之间的等效电阻R
AB
.
解:因为是“无限”的,所以去掉一个单元或增加一个单元不影响等效电阻即
R AB 应该等于从CD往右看的电阻R
CD
R
AB
=2R+R*R
CD
/(R+R
CD
)=R
CD
整理得 R
CD 2-2RR
CD
-2R2=0
解得:R
CD =(1+31/2)R= R
AB
1.一两端无穷的电路如图22所示,其中每个电阻均为r求a、b两点之间的电阻。
2.电阻丝无限网络如图所示,每一段金属丝的电阻均为r,求A、B之间的等效电阻R
AB
.
2:面型无限网络
解线性无限网络的指导思想是利用网络的重复性,而解面型无限网络的指导思想是利用四个方向的对称性。
例(1)如图27所示是一个无穷方格电阻丝网络的一部分,其中每一小段电阻丝的阻值都是R求相邻的两个结点A、B之间的等效电阻。
分析:假设电流I从A点流入,向四面八方流到无穷远处,根据对称性,有I/4电流由A点流到B点。
假设电流I经过无限长时间稳定后再由四面八方汇集到B
点后流出,根据对称性,同样有I/4电流经A点流到B点。
解:从以上分析看出,AB段的电流便由两个I/4叠加而成,为I/2因此
U
AB
=(I/2)*r
A、B之间的等效电阻R
AB =U
AB
/I=r/2
1.有一无限平面导体网络,它有大小相同的正六边型网眼组成,如图28所示。
所有正六边型每边的电阻均为R
,求结点a、b间的电阻。