大学物理第十四章波动光学讲义概论
大学物理第十四章波动光学课后习题答案及复习内容

第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
大学物理波动光学课件

麦克斯韦电磁理论:19 世纪中叶,英国物理学 家麦克斯韦建立了电磁 理论,揭示了光是一种 电磁波,为波动光学提 供了更加深入的理论根 据。
在这些重要人物和理论 的推动下,波动光学逐 渐发展成为物理学的一 个重要分支,并在现代 光学、光电子学等领域 中发挥了重要作用。
02 光的干涉
干涉的定义与分类
定义 分类 分波前干涉 分振幅干涉
干涉是指两个或多个相干光波在空间某一点叠加产生加强或减 弱的现象。
根据光源的性质,干涉可分为两类,分别是ห้องสมุดไป่ตู้波前干涉和分振 幅干涉。
波前上不同部位发出的子波在空间某点相遇叠加产生的干涉。 如杨氏双缝干涉、洛埃镜、菲涅尔双面镜以及菲涅尔双棱镜等
。
一束光的振幅分成两部分(或以上)在空间某点相遇时产生的 干涉。例如薄膜干涉、等倾干涉、等厚干涉以及迈克耳孙干涉
波动光学与几何光学的比较
几何光学
几何光学是研究光线在介质中传播的光学分支,它主要关注 光线的方向、成像等,基于光的直线传播和反射、折射定律 。
波动光学与几何光学的区分
波动光学更加关注光的波动性质,如光的干涉、衍射等现象 ,而几何光学则更加关注光线传播的几何特性。两者在研究 对象和方法上存在差异,但彼此相互补充,构成了光学的完 整体系。
VS
马吕斯定律
当一束光线通过两个偏振片时,只有当两 个偏振片的透振方向夹角为特定值时,光 线才能通过。这就是马吕斯定律,它描述 了光线通过偏振片时的透射情况。这两个 定律在光学和物理学中都有着广泛的应用 。
THANKS
感谢观看
分类
根据障碍物的大小和光波波长的相对 关系,衍射可分为菲涅尔衍射和夫琅 禾费衍射。
单缝衍射与双缝衍射
单缝衍射
大学物理物理学波动光学PPT课件

一束光分解为振动面垂直的两束光。
S2
E
2、杨氏双缝干涉实验装置
1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个 波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现 象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了 光的波长,为光的波动学说的确立奠定了基础。
3、双缝干涉的光程差
两光波在P点的光程差为 = r2-r1
?人的眼睛不能区分自然光与偏振光用于鉴别光的偏振状态的器件称为检偏器2偏振片是一种人工膜片对不同方向的光振动有选择吸收的性能从而使膜片中有一个特殊的方向当一束自然光射到膜片上时与此方向垂直的光振动分量完全被吸收只让平行于该方向的光振动分量通过即只允许沿某一特定方向的光通过的光学器件叫做偏振片
绪言
一、光学的研究内容 二、光的两种学说
薄膜干涉属于分振幅法
1、等倾干涉:
实验装置
在空气(或真空)中放入上
下表面平行,厚度为 e 的均 匀介质 n
光a与光 b的光程差为:
n(AB BC) (AD / 2)
光a有半波损失。
a
iD
b
n
A r
C e
B
由折射定律和几何关系可得出:
sin i nsin
AD ACsin i AC 2e tan n AB BC e / cos 代入 n(AB BC) (AD / 2)
光的干涉和衍射现象表明了光的波动性, 而光的偏振现象则显示了光是横波。光波作为 一种电磁波也包含两种矢量的振动,即电矢量 E和磁矢量H,引起感光作用和生理作用的是其 中的电矢量E,所以通常把E矢量称为光矢量, 把E振动称为光振动。
§8-1 光波及其相干条件
一、光波
1.光波的概念:
大学物理CH14(波动光学)资料

]
cos[(1
2
)t
(1
2
)
பைடு நூலகம்1r1
c
2r2
]}dt
0
即 E1 E2 0
(3) ω1 ω2 , (1 2 ) 不恒定(随机变化)
E1 E2 0
非相干叠加时 相干叠加
IP I1 I2
1
2T
t T t
E01
E02{cos[(1
2
)
1r1
c
2r2
]
E1
E2
1 2T
tT t E01 E02{cos[(1
w 1 E2 1 H2
2
2
能流密度 S(坡印亭矢量)
S dA udt w uw dA dt
E H
(1 E2 1 H 2) 1
2
2
EH
坡印亭矢量
S EH
u
S
dA
udt
波的强度
I S S 1
t T
Sdt
Tt
1 T
t T t
E0 H 0cos 2(t
r )dt u
1 2
E0 H 0
1 2
E02
结论:I 正比于 E02 或 H02,
通常用其相对强度
I
1 2
E02
表示
二. 光是电磁波
可见光七彩颜色的波长和频率范围
光色 波长(nm) 红 760~622 橙 622~597 黄 597~577 绿 577~492 青 492~470 兰 470~455 紫 455~400
如果 I1 I2 I0
I 0
k 0,1,2,3...
§14.3 获得相干光的方法 杨氏实验
大学物理波动光学知识点总结.doc

大学物理波动光学知识点总结.doc波动光学是物理学中的重要分支,涉及到光的反射、折射、干涉、衍射等现象。
作为大学物理中的一门必修课程,波动光学是大学物理知识体系重要的组成部分。
以下是相关的知识点总结:1. 光的波动性光可以被看作是一种电磁波。
根据电磁波的性质,光具有波动性,即能够表现出干涉、衍射等现象。
光的波长决定了其在物质中能否传播和被发现。
2. 光的反射光在与物体接触时会发生反射。
根据反射定律,发射角等于入射角。
反射给人们带来很多视觉上的感受和体验,如反光镜、镜子等。
当光从一种介质向另一种介质传播时,光的速度和方向都会发生改变,这个现象称为折射。
光在空气、玻璃、水等介质中的折射现象被广泛应用到光学、通信等领域中。
4. 光的干涉当两束光相遇时,它们会相互干涉,产生干涉条纹。
这是因为两束光的干涉条件不同,它们之间产生了相位差,导致干涉现象。
干涉可以分为光程干涉和振幅干涉。
光经过狭缝或小孔时,其波动性会导致光将会分散成多个波阵面。
这种现象称为衍射。
衍射可以改变光的方向和能量分布,被广泛应用于成像和光谱分析等领域。
6. 偏振偏振是光波沿着一个方向振动的现象,产生偏振的方式可以通过折射、反射、散射等途径实现。
光的偏振性质在光学通信、材料研究等领域有着广泛的应用。
总结波动光学是大学物理学知识体系不可或缺的一部分,它涉及到光的波动性、光的反射、折射、干涉、衍射等现象。
对于工程、光学、材料等领域的学生和研究者来说,深入了解波动光学的基本原理和理论,都有助于提高知识和技术水平。
波动光学讲课课件

结论:
h E2 E1
h
诱发光子
E2
受激辐射光子
h
h
诱发光子
E1
受激辐射过程所发出的光是相干光.
2021/2/20
4. 相干光的获得方法
(1) 分波前法(分波面干涉法) 当从同一个点光源或线光源发出的光波到达某平面时,
由该平面(即波前)上分离出两部分.
(2) 分振幅法(分振幅干涉法) 利用透明薄膜的上下两个表面对入射光进行反射,产生
中央明纹上移
2021/2/20
例: 用折射率 n =1.58 的很薄的云母片覆盖在双缝实验中的一条 缝上,这时屏上的第七级亮条纹移到原来的零级亮条纹的 位置上. 如果入射光波长为 550 nm.
求: 此云母片的厚度.
解: 设云母片厚度为 d. 无云母片时, 零级亮纹在屏上 P 点, 则到 达 P 点的两束光的光程差为零. 加上云母片后, 到达P点的两 光束的光程差为:
如果
I Imin I1 I2 2 I1I2
I1 I2 I0
I 0
2021/2/20
3. 非相干叠加 若 在时间τ内等概率地分布在0 ~ 2π, 则干涉项:
cos 0
I I1 I2
如果
I1 I2 I0
I 2I0
4.相干条件、相干光源
(1)频率相同
相干条件 (2)相位差恒定
x
0.065
2021/2/20
例: 用白光 (400~760nm) 作光源观察杨氏双缝干涉. 设缝间距为d, 缝与屏距离为 D.
求: 能观察到的清晰可见光谱的级次. 解: 在 400 ~ 760 nm 范围内, 明纹条件为:
xd k
D 最先发生重叠的是某一级次的红光和高一级次的紫光
大学物理第14章-波动光学

(2) 若入射光的波长为600nm,求相邻两暗纹中心间的
距离. 解:(1)
xk
d k,
d
k 0,1,2,
x14 x4 x1 dk4 k1 d
x14d [dk4 k1] 500 nm
(2) x d d 30 mm
第十四章 波动光学
14 – 1 相干光
二 光程和光程差 ➢ 光在真空中的速度 ➢ 光在介质中的速度
14 – 1 相干光
物理学教程 (第二版)
一 光是一种电磁波
平面电磁波方程
E
E0
cos (t
r u
)
光矢量 用 E矢量表H示光H矢0 量co,s它 (在t 引ur起)人眼视
觉和底片感光上起主要作用 .
真空中的光速
c 1
00
可见光的范围
: 400 ~ 760nm : 7.51014 ~ 4.31014 Hz
第十四章 波动光学
14 – 1 相干光
物理学教程 (第二版)
例: 如图双缝,已知入射光波长为 , 将折射率为
n 的劈尖缓慢插入光线 2 中 , 在劈尖移动过程中 ,
问 1)干涉条纹间距是否变化? 2)条纹如何移动?
解:1)条 纹间距不变.
无劈尖时
r1 r2
r2 r1 0
s1
S
s2
r1 r1
立,各波列互不相干.
14 – 1 相干光 2)相干光的产生
振幅分割法
物理学教程 (第二版)
波阵面分割法
s1
光源 *
s2
第十四章 波动光学
14 – 1 相干光
物理学教程 (第二版)
➢ 单色激光光源不同原子所发的光具有相干性
激光束干涉实验
大学物理波动光学章节,布儒斯特定律 双折射现象

e光
e 光的 主平面
Байду номын сангаас
(e 光振动在e 光主平面内)
e 光:
ne
c ( e 光主折射率) ve
光轴
光轴 v o t
v e t
正晶体
vo ve no ne
负晶体
光轴
vo ve no ne
光轴
v o t
v e t
( 过光轴截面 )
( 过光轴截面 )
ve
vo
( 垂直光轴截面 )
ve
vo
( 垂直光轴截面 )
二. 单轴晶体中的波面 ( 惠更斯作图法(ve>vo) )
1.自然光垂直入射
光轴垂直晶体表面
光轴平行晶体表面
光轴平行入射面
2.自然光斜入射
三. 晶体偏振器
1. 尼科耳棱镜 2. 渥拉斯顿棱镜
(1.5159) no (1.6584) n(1.55) ne
光轴
光轴
(o光振动垂直o 光主平面)
光轴在入射面时,o 光主平面和e 光主平面重合,此时o 光振动和e 光 振动相互垂直。一般情况下,两个主平面夹角很小,故可认为o 光振 动和e 光振动仍然相互垂直。
5. 正晶体、负晶体 o 光:
no c ( o 光折射率) vo
v o t
·
· o光
o 光的 主平面
§14.13 晶体的双折射现象
一. 双折射现象
1.双折射
方解石
R2 R1
双折射现象
一束光入射
到各向异性的介质后出现 两束折射光线的现象。
s
2. 寻常光和非寻常光
大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)contents•波动光学基本概念与原理•干涉理论与应用目录•衍射理论与应用•偏振光理论与应用•现代光学技术发展动态简介波动光学基本概念与原理01光波是一种电磁波,具有横波性质,其振动方向与传播方向垂直。
描述光波的物理量包括振幅、频率、波长、波速等,其中波长和频率决定了光的颜色。
光波的传播遵循波动方程,可以通过解波动方程得到光波在不同介质中的传播规律。
光波性质及描述方法干涉现象是指两列或多列光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。
产生干涉的条件包括:两列光波的频率相同、振动方向相同、相位差恒定。
常见的干涉现象有双缝干涉、薄膜干涉等,可以通过干涉条纹的形状和间距等信息来推断光源和介质的性质。
干涉现象及其条件衍射现象及其分类衍射现象是指光波在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。
衍射现象可以分为菲涅尔衍射和夫琅禾费衍射两种类型,其中菲涅尔衍射适用于障碍物尺寸与波长相当或更小的情况,而夫琅禾费衍射适用于障碍物尺寸远大于波长的情况。
常见的衍射现象有单缝衍射、圆孔衍射等,可以通过衍射图案的形状和强度分布等信息来研究光波的传播规律和介质的性质。
偏振现象与双折射偏振现象是指光波在传播过程中,振动方向受到限制的现象。
根据振动方向的不同,光波可以分为横波和纵波两种类型,其中只有横波才能发生偏振现象。
双折射现象是指某些晶体在特定方向上对光波产生不同的折射率,使得入射光波被分解成两束振动方向相互垂直的偏振光的现象。
这种现象在光学器件如偏振片、偏振棱镜等中有重要应用。
通过研究偏振现象和双折射现象,可以深入了解光与物质相互作用的基本规律,以及开发新型光学器件和技术的可能性。
干涉理论与应用02杨氏双缝干涉实验原理及结果分析实验原理杨氏双缝干涉实验是基于光的波动性,通过双缝产生的相干光波在空间叠加形成明暗相间的干涉条纹。
结果分析实验结果表明,光波通过双缝后会在屏幕上产生明暗相间的干涉条纹,条纹间距与光波长、双缝间距及屏幕到双缝的距离有关。
大学物理-第十四章-波动光学

x d ;
x d :
缝间距越小, 屏越远, 干涉越显著 在D、d 不变时, 条纹疏密与λ正比
(iii)白光干涉条纹的特点: (iv) 中央为白色明纹,其它级次出现彩色条纹( x
)。 (v) 叠k。=每-1级条纹有一k定=0的宽度,相k=邻1 两级条纹k=可2 能会k发=3生重
对相干光源来说, 能量只不过是在屏幕上的重新分布。因为
均可,
符号不同,k 取值不同,对问题实质无影响.
30
§14-3 薄膜干涉
所谓薄膜干涉, 指扩展光源投射到透明薄膜上, 其反射光或 透射光的干涉。
薄膜干涉的实例: 阳光下肥皂泡的彩纹,马路上油膜的彩纹。
一、薄膜干涉
1、分振幅(能量)方法
获得相干光。
S1为扩展光源上任一点光源, 其 投射到介面上的A点的光线, 一部 分反射回原介质即光线a1, 另一部 分折入另一介质, 其中一部分又在 C点反射到B点然后又折回原介 质, 即光线a2。因a1,a2是从同一光 线S1A分出的两束, 故满足相干条 件。
干涉过程既不能创造能量, 也不能消灭能量。
18
习题14-9: 在双缝干涉实验中,用波长λ=546.1 nm 的单 色光照射,双缝与屏的距离d′=300mm.测得中央明纹 两侧的两个第五级明条纹的间距为12.2 mm,求双缝间 的距离.
分析 双缝干涉在屏上形成的条纹是上下对称且等间 隔的. 如果设两明纹间隔为Δx,则
觉和底片感光上起主要作用 .
•光振动指的是电场强度随时间周期性地变化。
E
E0
cos [(2 t
2
r
)
0 ]
•光的强度(即平均能流密度) I∝E02
8
三、光的相干性
大学物理(波动光学)辅导讲义与经典例题解析汇编

大学物理(波动光学)辅导讲义与经典例题解析汇编一.光的干涉1.光波光波是某一波段的电磁波,是电磁量E和H的空间的传播.理解与拓展:⑴在电磁波中能为人眼所感受的电磁波称为可见光,其波长范围是400760nm,在可见光的范围内,不同波长的光波引起不同的颜色感觉,波长单一的光波称为单色光.⑵由于对人眼和光学仪器感光起主要作用的是E矢量,故称E为光矢量,习惯上,我们一般用E矢量表示光波的振动.⑶光波的传播总是伴随着能量的传播,这个过程可以用平均能流密度(在一个周期内的平均值)来描述,称为光波的强度,根据电磁波理论,光波的强度可以表示为I??2E ?1?2E0 2?式中?、?为光波传播空间介质的介电常数和磁导率,对于平面光波,其强度表示式是I?通常我们关心的是光波强度的相对分布,这时上述关系式中的比例系数可以取为1。
2.光的干涉满足一定条件的两束(或多束)光波相遇时,在光波重叠区域内,某些点合光强大于分光强之和,在另一些点合光强小于分光强之和,因而合成光波的光强在空间形成强弱相间的稳定分布,称为光的干涉现象,光波的这种叠加称为相干叠加,合成光波的光强在空间形成强弱相间的稳定分布称为干涉条纹,其中强度极大值的分布称为明条纹,强度极小值的分布称为暗条纹.理解与拓展:⑴干涉现象的出现,无可辩驳的表明光具有波动性,这个结论可以推广到其他现象:凡有强弱按一定分布的干涉花样出现的现象,都可作为该现象具有波动本性的实验证据.⑵普通光源发光的特点决定了在现实生活中无法观察到两个普通光源发出的光相遇而产生干涉的现象,必须采用特殊的方法来实现光的干涉,实现相干光的基本思想是将光源发出的各个光波列分别分解成两个子光波列,然后让两个子光波列在同一区域相遇而发生干涉,由于在相遇区域内的两个子光波列是从同一光波列分解出来的,他们的频率和偏振方向完全相同.而在相遇地点的相位差取决于两个子光波列在分开后路程和介质环境,在保证路程和介质环境不变的前提下,在光波相遇处形成稳定的干涉图样,可概括为:同出一点,一分为二,各行其路,合二为一.⑶获得相干光的一种基本方法称作分阵面法,如图16-1所示的杨氏双缝干涉,双缝S1和S2取自同一个波阵面上的两点,这样入射波的中的任何相位变化都同时传给S1和S2,S1和S2在相遇点的相位要变一起变,于是可以保证相位差恒定,因而能产生干涉.⑷获得相干光的另一种基本方法称分振幅法,如图16-2所示的薄膜干涉,是把同一光1感谢您的阅读,祝您生活愉快。
大学物理下册课件第十四章 波动光学

S 和 S’相当于两个相干光源
实验结果表明: 反射光的相位 光源
接收屏
此 处 出 现
改变了 π,称为半
暗 条
波损失
纹
干涉条纹与杨
氏实验结果的类似
MM’中镜像
整理课件
小平面镜
13
理论和实验证明:
▪ 光从光疏介质(折射率较小)向光密介质(折射
率大)表面入射时,如果入射角接近90( 掠入射)
或为 0(正入射),则反射光的相位改变 π,即出
D2
2d
整理课件
16
第一级明纹位置 x1=0.225mm<OB,在干涉区外, 观察不到;
将 OB=0.333mm代入,得
k(D dx2)11.24
将 OA=3mm代入,得 k =7.17
所以在屏上可以看到2,3,4,5,6和7级,共6条 干涉明纹。
整理课件
17
四. 相位差与光程差
频率为 初相相同的两相干光源S1、S2 的振动
方程可写为
E 1 E 1 c 0 2 π o t s E 2 E 2 c 0 2 π o t ns 1
两列波在P点引起的振动为
P
E1E1co2sπ([tr11)] E2 E2co2sπ[(tr22)]
这两列波在P点的相位差为
S1 S2
r1
n2
r2
光程差
2πr22整r理11 课件 2πn2r2 n1r1
氖激光器产生的激光相干长度可达几千米,再加 上良好的单色性和方向性等,能产生易于观察和 测量的干涉现象。
一个正在辐射激光的激光器 激光产生的全息图像
整理课件
8
§14-7 由分波阵面法产生的光的干涉
一. 杨氏双缝实验
大学物理(波动光学知识点总结)

01
圆孔、屏幕和光源。
实验现象
02
在屏幕上观察到明暗相间的圆环,中心为亮斑。
结论
03
圆孔衍射同样体现了光的波动性,中心亮斑是光线汇聚的结果。
光栅衍射实验
实验装置
光栅、屏幕和光源。
实验现象
在屏幕上观察到多条明暗相间的条纹,每条条纹都有自己的位置 和宽度。
结论
光栅衍射是由于光在光栅上发生反射和折射后相互干涉的结果, 形成多条明暗相间的条纹。
02
光的干涉
干涉现象与干涉条件
干涉现象
当两束或多束相干光波在空间某一点 叠加时,光波的振幅会发生变化,产 生明暗相间的干涉条纹。
干涉条件
要产生干涉现象,光波必须具有相同 的频率、相同的振动方向、相位差恒 定以及有稳定的能量分布。
干涉原理
光的波动性
光波在传播过程中,遇到障碍物或孔洞时,会产生衍射现象。衍射光波在空间 相遇时,会因相位差而产生干涉现象。
利用光纤的干涉、折射等光学效应,检测温度、压力、位移等物理量。
表面等离子体共振传感器
利用表面等离子体的共振效应,检测生物分子、化学物质等。
光学信息处理
全息成像
利用干涉和衍射原理,记录并再现物 体的三维信息。
光计算
利用光学器件实现高速并行计算,具 有速度快、功耗低等优点。
THANKS
感谢观看
大学物理(波动光学知识 点总结)
• 波动光学概述 • 光的干涉 • 光的衍射 • 光的偏振 • 波动光学的应用实例
01
波动光学概述
光的波动性质
01
02
03
光的干涉
当两束或多束相干光波相 遇时,它们会相互叠加, 形成明暗相间的干涉条纹。
大学物理波动光学

大学物理波动光学摘要:波动光学是大学物理课程中重要的组成部分,主要研究光的波动性质及其在介质中的传播规律。
本文主要介绍了波动光学的基本概念、波动方程、干涉现象、衍射现象、偏振现象以及光学仪器等,旨在为读者提供系统的波动光学知识,为进一步学习和研究打下基础。
一、引言波动光学是研究光波在传播过程中所表现出的波动性质的科学。
光波是一种电磁波,具有波动性、粒子性和量子性。
波动光学主要关注光的波动性质,研究光波在介质中的传播、反射、折射、干涉、衍射、偏振等现象。
波动光学在科学技术、工程应用、日常生活等领域具有广泛的应用,如光纤通信、激光技术、光学仪器等。
二、波动方程波动方程是描述波动现象的基本方程。
光波在真空中的传播速度为c,介质中的传播速度为v。
波动方程可以表示为:∇^2E(1/c^2)∂^2E/∂t^2=0其中,E表示电场强度,∇^2表示拉普拉斯算子,t表示时间。
该方程描述了光波在空间和时间上的传播规律。
三、干涉现象1.极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向相同,相互加强,形成明条纹;当电场矢量方向相反,相互抵消,形成暗条纹。
2.非极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向垂直,相互叠加,形成干涉条纹。
四、衍射现象衍射现象是光波传播过程中遇到障碍物或通过狭缝时产生的现象。
衍射现象的本质是光波的传播方向发生改变,使得光波在空间中形成干涉图样。
衍射现象可以分为菲涅耳衍射和夫琅禾费衍射两种:1.菲涅耳衍射:当光波通过狭缝或障碍物时,光波在衍射角较小的情况下发生的衍射现象。
菲涅耳衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。
2.夫琅禾费衍射:当光波通过狭缝或障碍物时,光波在衍射角较大的情况下发生的衍射现象。
夫琅禾费衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。
五、偏振现象偏振现象是光波在传播过程中,电场矢量在空间某一方向上振动的现象。
偏振光具有方向性,其电场矢量只在一个特定方向上振动。
大学物理之波动光学讲解

晶体衍射在材料科学、化学、生物学等领域有广泛应用。例如,通过X射线晶体 衍射可以确定物质的晶体结构、化学成分等信息。
04
傅里叶光学基础知识
傅里叶变换在波动光学中应用
描述光波传播
通过傅里叶变换,可以将光波分 解为不同频率的平面波分量,从 而更直观地描述光波在空间中的
传播。
分析光学系统
利用傅里叶变换,可以对光学系统 的传递函数进行分析,进而研究光 学系统对光波的传播和变换特性。
04
振幅、频率与相位关系
对于同一光源发出的光波,其 频率相同,但振幅和相位可能 不同。当两束或多束光波叠加 时,它们的振幅和相位会影响 干涉条纹的分布和明暗程度。
偏振现象及偏振光类型
偏振现象
光波在传播过程中,其振动方向对于传播方向的不对称性叫做偏振。只有横波才能发生偏 振现象。
偏振光类型
根据光波振动方向与传播方向的关系,可将偏振光分为线偏振光、圆偏振光和椭圆偏振光 。其中,线偏振光的振动方向与传播方向垂直;圆偏振光的振动方向与传播方向成螺旋状 ;椭圆偏振光的振动方向与传播方向成椭圆形。
偏振光的产生与检测
偏振光可以通过反射、折射或特定晶体等产生。检测偏振光的方法包括使用偏振片、尼科 耳棱镜等。
02
干涉现象与原理
双缝干涉实验及结果分析
03
实验装置与步骤
结果分析
干涉条件
使用激光作为光源,通过双缝装置,在屏 幕上观察到明暗相间的干涉条纹。
双缝干涉实验结果表明光具有波动性,明 暗相间的干涉条纹是光波叠加的结果。
空间频率域与时间频率域的联系
光波作为一种电磁波,其空间频率和时间频率之间存在内在联系。在波动光学中,可以通过傅里叶变换将光 波从空间域转换到频率域,或从时间域转换到频率域,从而揭示光波在不同域中的传播和变换特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即介质中某一几何路程的光程,等于光在与走这段 路程相同时间内在真空中走过的路程。
光程是一个折合量,在相位改变相同的条件下, 把光在介质中传播的路程折合为光在真空中传播的 相应路程。
2、光程差 n2r2 n1r1
➢ 相位差与光程差的关系: 2 n2r2 n1r1 2
d、 D一定时,x随 的变化
用白光做光源时,除中央明纹是白光外,其它各级
条纹是彩色的,紫在内红在外;不同级次的条纹可能 发生重叠。
二、劳埃德镜
P'
P
s1
d
s2
M L 在L处为一暗纹
D
结论: 当光波由光疏介质(折射率较小)射向光密介质(折射
率较大)时,被光密介质反射的光在反射点有相位 的
跃变,这一跃变相当于反射光与入射光这间附加了半 个波长的波程差,故称作半波损失。
介质中的波长
n
n
S1
r1
S1
r1 n1
P
S2
r2
Δ
2
(r2
r1 )
P
S2
r2 n2
Δ
2
(
r 2
r 1
)
2
nr 22
nr 11
2
1
1、光程:光在某一介质中行进的几何路程 r与该介 质的折射率 n 的乘积 nr 叫做光程。
➢ 光程的意义:
设光在介质n中的传播速度为v ,在此种介质中走
过 r 的路程所需的时间为 r / v,在相同的时间内光在 真空中传播走过的路程为:
一、薄膜干涉
1、2光的光程差:
n2 ( AC CB)
n1AD 2
n2 n1
L
1
P
iD
2
M1 n1
i
AC CB e cos r AD ABsini
n2
Ar
r
B
e
2e tan r sini
M2 n1
C
E
1' 2'
2n2e cos r
2n1e
sin cos
r r
sin i
2
sin i n2
方向垂直。
光矢量
• 能够引起视觉的是 E 矢量。
• 真空中电磁波的传播速度(光速)
c 1 2.998108 m/s
00
二、光的相干性 干涉现象是一切波动所具有的共同特性。 ➢ 两列光的相干条件 1) 频率相同 2) 存在平行的光振动分量 3) 在相遇点相位差恒定 ➢ 两列光相干叠加时干涉加强与减弱的条件
➢ 干涉加强: k, k 0,1, 2,
➢ 干涉减弱: (2k 1) , k 0,1, 2,
2
3、透镜不引起附加的平面
B
焦平面
14-2 杨氏双缝干涉 一、杨氏双缝实验
实验现象
明条纹
S1 S
S2
明条纹 明条纹 明条纹 明条纹
理论分析
B
r
S1
1
x
r
S
d
2
O
S2
D
2e cos r
n2
1 sin2 r
2
2n2e cos r 2
sin r n1
2n2e cos r
2
2e
n22
n22
sin2
例1 如图双缝,已知入射光波长为,将折射率为
n 的劈尖缓慢插入光线 2 中,在劈尖移动过程中,问
1)干涉条纹间距是否变化? 2)条纹如何移动?
解:1)条纹 间距不变。
2)无劈尖时
r1 r2 r2 r1 0
s1
S
s2
r1 r1
r2 r2
o o
e
O点为零级明纹位置
有劈尖时 (r2 e) ne r1
第十四章
波动光学
14-1 光的相干性 一、光的电磁理论
光是频率在一定范
围电内磁,波对谱人眼能产
生视觉的电磁波。
可见光的范围 : 400 ~ 760 nm
电磁波谱
• 电磁波是电场强度 E 与磁场强度 H 的矢量波
y
E
O
z
H
u
x
平面简谐 电磁波
• 电磁波是横波,E 和 H 互相垂直,且与波的传播
零级明纹位置下移
r1 (r2 e) ne
例2 在双缝实验中,入射光的波长为550nm,用一厚 e =2.85×10-4cm的透明薄片盖着S1缝,结果中央明纹移 到原来第三条明纹处,求透明薄片的折射率。
解:加透明薄片后,①光路的光程为
r e ne r (n 1)e
1
1
P点是中央明纹,两
相位差 2k 时,干涉加强
相位差 (2k 1) 时,干涉减弱
三、普通光源发光微观机制的特点 普通光源的发光机制——自发辐射
激
En
发
态
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
1
2
P
t : 108 ~ 1010 s
➢ 普通光源发光特点: 原子发光是断续的,
每次发光形成一长度
有限的波列, 各原子 各次发光相互独立,
由S1、S2发出的光波到B点的光程差为:
r2 r1 d sin
由图可知:x D tan 当 很小时 : sin tan
r2
r1
d
tan
xd D
1、在B点发生干涉加强的条件为
r2 r1 k k 0, 1, 2,
xd
D
x k D
d
k 0, 1, 2,
——B点处出现明条纹。k = 0的明纹称为中央明纹,
k = 1,2,3,……对应明纹为第一级,第二级,第三
级,……明纹。
2、在B点发生干涉减弱的条件为
r2
r1
(2k
1)
2
k 1, 2, 3,
x (2k 1) D k 1, 2, 3,
2d
——B点处出现暗条纹。k = 1,2,……对应暗纹为
第一级,第二级,……暗纹。
3、光程差为其它值的点,光强介于最明与最暗之间。 因此上述两条纹分别是明纹中心和暗纹中心。
S1
光路的光程差应等于0
S
d
r2 r1 (n 1)e 0
S2
r r (n 1)e
2
1
r①
P
1
r2 ②
O
D
不加透明薄片时,在P点处有: r2 r1 3
由以上两式可得: n 3 1 1.58 是云母片。
e
14-3 薄膜干涉
薄膜 — 油膜、肥皂膜、透明的电介质薄板、夹在两 块玻璃板之间的空气薄层或其它流体薄层。
4、相邻两明纹(或暗纹)中心间的距离为:
Δx D
说明
d
1) 干涉条纹是等距分布的,且各级明、暗条纹对称 分布在中央明纹两侧。
2) 当D、 一定时,x与d成反比,d 越小,条纹分
辨越清。
3) 当D 、d 一定时,x与 成正比,波长大的相邻
条纹间距大,波长小的相邻条纹间距小。
、 D一定时条纹间距 x与 d 的关系
各波列互不相干。
获取相干光的方法:把光源上同一点发出的光设法 分成两部分,然后再使这两部分叠加起来。
分波面干涉法
分振幅干涉法
s1
光源 *
s2
杨氏双缝干涉
薄膜干涉
四、光程和光程差
在设折光射的率频为率n的为介,质在中真的空速中度的为速v真,度空波为长c,为波'长,为则,
c v
n c
➢
v