防止硫化氢应力腐蚀的热喷涂技术研究
硫化氢应力腐蚀原理与防护措施
炼油与化工REFINING AND CHEMICAL INDUSTRY第20卷碳钢及低合金钢在湿度较大的硫化氢环境中易发生硫化物应力腐蚀(SSC),对石油、石化工业装备的安全运行构成很大的威胁。
对低浓度硫化氢环境,可通过净化材质、大幅降低S、P含量、改善材料组织结构等措施,对应力腐蚀起到有效抑制作用。
大庆石化公司ATK-101B天然气液体球罐(1500m3)在进行全面检验时,采用内表面磁粉检测发现27处焊缝纵向裂纹,最长的为1.6m,深度为6mm,见图1。
文中以ATK-101B天然气液体球罐为对象,对其基础材料分别进行硫化氢应力腐蚀性能试验和机理分析,并提出防护措施。
1硫化氢腐蚀机理1.1硫化氢的特性H2S在水中的溶解度很大,水溶液具有弱酸性,如在0.1MPa、30℃水溶液中H2S饱和浓度为300mg/L,溶液的pH值为4。
H2S不仅对钢材具有强烈的腐蚀性,而且对人体的健康和生命安全也有很大的危害性[1]。
H2S应力腐蚀的基本类型可分为应力腐蚀开裂、氢诱导裂纹、氢鼓泡等。
在ATK-101B天然气液体球罐的检测中发现,根据裂纹的宏观和微观形貌特征,可以判定裂纹为应力腐蚀开裂,见图2~5。
图2裂纹穿晶扩展图3裂纹台阶穿接特征图4裂纹两侧马氏体组织图5裂纹内腐蚀产物1.2硫化氢腐蚀规律石油加工过程中的H2S主要来源于含硫原油中的有机硫化物,如硫醇和硫醚等。
这些有机硫化物在原油加工过程中受热会分解出H2S。
干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中,才具有腐蚀性。
在ATK-101B 天然气液体球罐的检测中发现,应力腐蚀不同于一般性腐蚀引起的机械破损,也不是整个储罐的大面积减薄,而是发生在局部的罐体区域,具有较大的突然性[2]。
1.3腐蚀条件(1)腐蚀环境。
①介质中含有液相水和H2S,且H2S浓度越高,应力腐蚀引起的破裂越可能发生。
②一般只发生在酸性溶液中,pH小于6容易发生应力腐蚀破裂;pH大于6时,硫化铁和硫化亚铁所形成的膜有较好的保护性能,不易发生应力腐蚀破裂。
化工设备在湿硫化氢环境中的腐蚀问题及防护方式研究
Internal Combustion Engine & Parts• 129 •化工设备在湿硫化氢环境中的腐蚀问题及防护方式研究袁景(济钢集团检修工程公司,济南250100)摘要:本文首先针对化工设备在湿硫化氢环境中产生腐蚀和损坏的原因进行论述,并从科学的角度,分析了造成化工设备腐蚀 现象的机理,并对其中影响化工设备腐蚀程度的因素进行论述,最后结合工作经验,建设性地提出了化工设备在湿硫化氢环境中的有 效防腐措施。
关键词:化工设备;腐蚀原因;因素;防范措施1化工设备在湿硫化氢环境中的腐蚀原因分析以济钢化工厂作为例子,经检测,在该企业所使用的 焦炉煤气中,硫元素含量相对较高。
从企业对化工设备的 使用数据分析后可以发现,发生腐蚀现象的化工设备介质 当中,都或多或少含有硫元素。
尽管焦炉煤气在提炼环节 已经进行过脱硫处理,但是整体效果并不显著。
所以,湿硫 化氢环境(即硫化氢和水融合型腐蚀环境)大量存在于该 化工厂的回收车间、焦油车间等区域。
按照相关资料并综 合该化工企业的实际状况,可以分析出在设备介质当中,大量含有硫化氢分子是造成以上化工设备极易发生腐蚀 现象的主要原因。
同时,在这些化工设备使用过程当中,还存在有很多 导致局部应力加大的因素,涵盖物理损伤(例如磨损、磨蚀 等)、化学损伤(例如晶间腐蚀、电池腐蚀、缝隙腐蚀等);化 工设备部件各部分温度存在较大差异而产生温度应力;含作者简介:袁景(1987-)男,山东菏泽人,中级职称,本科,研究 方向为钢铁化工企业的设备维修与管理。
务器往上一层提供调用数据,向用户反馈信息,并显示在 Web浏览器上。
各层之间不具有依赖性,各模块相对独立,每层实现的功能不同,应用方法也存在差异。
B/S结构的 安全性高,节约系统开发成本,方便系统和软件的更新与 升级,提升系统整体性能。
并且还可以实现远程访问,大大 便利了实验室管理和教学工作。
3.5系统的数据库设计由于实验室自动管理系统中需要存储大量的信息,因此,应该设计系统数据库,要求该数据库具有人机对话简 易、操作简便、功能完备、安全性强的特点。
硫化氢-H2S的腐蚀原理与防护技术的研究
硫化氢-H2S的腐蚀原理与防护技术的研究(特别是对金属材料)文金属腐蚀基础知识1.腐蚀的定义金属与周围介质发生化学或电化学作用而导致的变质和破坏。
金属材料和环境介质共同作用的体系。
腐蚀速度的定义:单位时间内单位质量的物质金属腐蚀的分类2.1 按腐蚀机理:(1) 化学腐蚀—金属与周围介质直接发生化学反应而引起的变质和损坏的现象。
如钢铁在高温下的氧化脱皮现象。
这是一种氧化-还原的纯化学变化过程,即腐蚀介质中的氧化剂直接同金属表面的原子相互作用而形成腐蚀产物。
腐蚀过程中,电子的传递是在金属与介质间直接进行的,因而没有腐蚀微电流的产生。
按腐蚀形态:钢材1. 全面腐蚀:腐蚀作用发生在整个金属表面上,它可能是均匀的,也可能是不均匀的。
其特征是腐蚀分布在整个金属表面,结果使金属构件截面尺寸减小,直至完全破坏。
2.局部腐蚀: 腐蚀集中在金属的局部区域,而其它部分几乎没有腐蚀或腐蚀很轻微。
局部腐蚀是设备腐蚀破坏的一种重要形式,工程中的重大突发腐蚀事故多是由于局部腐蚀造成的。
8种腐蚀形态即:电偶腐蚀、孔蚀(点蚀)、缝隙腐蚀、沿晶腐蚀、选择性腐蚀、应力腐蚀开裂、腐蚀疲劳、磨损腐蚀。
三、硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。
而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。
H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。
3. 石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。
干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。
五、硫化氢引起氢损伤的腐蚀类型反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤1. 。
炼油装置湿硫化氢应力腐蚀分析详解
炼油装置湿硫化氢应力腐蚀分析中国石化茂名分公司吕运容摘要:本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,指出了炼油装置湿硫化氢应力腐蚀环境的部位,提出了防范措施。
关键词:硫化氢;应力腐蚀近年来,沿海和沿江炼油厂加工进口中东高含硫原油的比例不断增加,设备腐蚀日益加重,设备腐蚀问题已经成为影响装置安全、长周期运行的关键因素之一,炼没装置湿硫化氢应力腐蚀问题时有发生,应引起广大技术人员和防腐工作者的关注。
本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,提出了防范措施。
一、腐蚀案例1、加氢装置(1)茂名石化一加氢装置汽提塔顶回流罐(容104)器壁97年查出60多个鼓泡。
容器材质为A3F沸腾钢,钢的纯净度不够,钢内夹杂物多,GB150-1998已不允许用沸腾钢制造成压力容器,更不能用于有应力腐蚀开裂敏感性的介质。
(2)茂名石化三加氢装置循环氢压缩机C1101、四加氢装置循环氢压缩机C301气体引压阀阀盖螺纹连接处断裂(见图1),阀杆与阀盖飞出,大量氢气喷出,车间发现并处理及时,未发生恶性事故。
断口为典型脆性断口,判定为湿硫化氢应力腐蚀断裂。
该阀为上海某阀门厂制造,阀体材质为18-8奥氏体不锈钢(含Cr18.2、Ni8.62),硬度HRC56,断裂六角螺母材质为Cr13(含Cr14.8),硬度HRC70,金相组织为马氏体,对SSCC最敏感,这样高硬度(远高于HB235)与敏感的马氏体组织的螺栓在H2S+H2O的作用下,在应力集中的螺纹尾部产生应力腐蚀断裂。
(3)茂名石化三加氢装置干气冷却器(E1110)小浮头螺栓断裂,材质为1Cr13 、35CrMoA使用约一周时间,均断裂,后改用Q235,使用良好。
1Cr13金相组织为马氏体,对SSCC最敏感,且硬度高,在H2S+H2O的作用下,易产生应力腐蚀断裂。
2、催化装置(1)茂名石化二催化装置冷305/1、2小浮头螺栓断裂,材质为2Cr13,后改用Q235,使用良好。
预防炼油设备的湿硫化氢腐蚀
预防炼油设备的湿硫化氢腐蚀腐蚀与防护石油化工设备技术,2004,25(3)?I?Petro—ChemicalEquipmentTechnology预防炼油设备的湿硫化氢腐蚀李兆斌(中国石化股份有限公司炼油事业部,北京100029)摘要:从国内外炼油厂设备发生的湿硫化氢应力腐蚀事故和设备失效事例,说明必须采取措施预防该种腐蚀的发生.结合近年加_T-高硫原油的情况,分析了炼油生产中易发生该种腐蚀的装置和设备,并提出了从控制介质中硫化氢浓度,设备材料的质量,设备制造安装工艺以及使用管理等四个方面综合采取措施,预防湿硫化氢应力腐蚀的产生.关键词:湿硫化氢腐蚀;工艺防腐措施;设备选材;设备制造安装;设备管理中图分类号:TE969文献标识码:B文章编号:1006—8805(2004)03—0001一O41前言中国石化集团公司近年加工含硫,高含硫原油的数量大幅度增加,对炼油设备的腐蚀大大加重.在各种腐蚀中,高温硫腐蚀和湿硫化氢腐蚀尤为严重.应对高温硫腐蚀主要是通过采用耐高温硫腐蚀的材料.经过近3年的工作,凡是按有关技术文件要求更换耐腐蚀材料的,高温硫腐蚀就大大减轻.而湿硫化氢腐蚀涉及的装置和设备数量更多,预防难度较大.本文就这一问题提出一些看法.2湿硫化氢应力腐蚀开裂与低合金高强度钢钢在某些介质环境下使用时会产生应力腐蚀开裂(即SCC).一般说,钢的强度越高,对应力腐蚀越敏感.生产中常见的应力腐蚀环境主要有湿硫化氢,无水液氨,硝酸盐,碳酸盐,氢氧化物,氰化物,氯化物和二氧化碳等8类.在炼油生产中,特别是近年来随着炼制含硫原油量的增加,湿硫化氢应力腐蚀开裂问题尤为突出_】].我国压力容器用钢相当多数采用的是低合金高强度钢,目前,对低合金高强度钢尚无统一定义.一般认为在低碳钢的基础上添加合金元素总量不超过5的为低合金钢.1997年原中国石化总公司生产部对压力容器使用情况进行调查时,经征求专业单位意见,确定高强度钢的范围是材料标准抗拉强度值下限不小于540MPa,因此本文将满足上述两要求的压力容器用钢,称之为低合金高强度钢.就中国石化集团公司实际情况而言,低合金高强度钢主要包含两大类:一类是cr—Mo钢,主要用于锅炉蒸汽系统设备,炼油临氢设备和作为耐温耐蚀材料;另一类是C—Mn系列加入少量微合金元素或合金元素的低合金高强度钢,如15MnV(15MnVR,15MnVg),15MnNbR,18MnMoNbR,14MnMoNbB,20MnMo,07MnCrMoVR,07MnNiCrMoVDR以及FG43,CF62,SPV450,SPV490等.16MnR是目前国内应用最多的压力容器用钢,按技术标准其抗拉强度下限在540MPa以下,但实际产品常常会超过540MPa,而且在生产中16MnR钢制压力容器也多次发生应力腐蚀开裂,所以在讨论低合金高强度钢的应力腐蚀时也常常把16MnR以及日本的SPV355,美国的ASTMA516Gr70等钢种列入这一范围.湿硫化氢环境下的应力腐蚀开裂是指水相或含水物质在露点以下形成的水相与硫化氢共存时,在介质与外力(含内部组织应力及残余应力)协同作用下所发生的开裂.美国腐蚀工程师协会(NACE)T一8—16工作组对湿硫化氢应力腐蚀开裂的机理分为五类,即硫化物应力腐蚀开裂(SS—CC),氢鼓泡(HB),氢致开裂(HIC),应力导向氢致开裂(SOHIC)和碱性应力腐蚀开裂(ASCC).湿硫化氢应力腐蚀开裂较早见于油田设备,收稿日期:2004—03—17作者简介:李兆斌(1942一),男,河北省人.1967年毕业于清华大学精密仪器及机械制造系精密仪器专业,高级工程师.原中国石化股份有限公司炼油事业部副主任,从事石油化工设备管理工作多年.石油化工设备技术管道,在炼油厂和石油化工厂压力容器,工业管道中也多有发生,近年的几起重大事故引起了人们对湿硫化氢应力腐蚀开裂的进一步重视.1984年7月23日美国Unocal公司雷蒙特3号炼油厂的胺吸收塔因硫化氢引起开裂而发生重大爆炸事故,18.8m高的塔上部14m长的一节飞出约lkm,当场死亡17人.该塔材料为ASTMA一516Gr70,事故后分析其含Mn量为1.02~1.1,含碳量为0.22~0.24.该塔设计压力为1.6MPa,设计温度60℃,壁厚25mm,直径2600mm,1970年投用.失效分析中发现含有较多的SOHIC.该塔投用后每两年检查一次, 1974,1976年曾因发生氢鼓泡和分层,分别更换第二圈板并对局部衬蒙乃尔.爆炸后检查在临近修复环焊缝,在容器内表面的硬度达HRC29,靠近熔合线的显微硬度峰值为HRC40~,48,存在对裂纹敏感的显微组织马氏体.在做了大量分析试验后,认为正是在这些”硬的对裂纹敏感的显微组织”处,在操作过程中产生了裂纹,其原因可能是氢应力开裂,并在氢的诱导下裂纹扩展,直到裂纹周向长度达到800mm,发生灾难性爆裂为止.我国近年来在炼油生产中因为硫化氢浓度超标造成压力容器过早报废或被迫降低使用压力的事例时有发生.如某炼油厂4台16MnR制400m.LPG球罐分别在使用了5~6年后被迫报废.该4台球罐由于LPG中硫化氢浓度平均5000ffg/g,致使球罐产生大量裂纹,夹层,鼓泡,腐蚀十分严重. 某公司两台1000m.储存轻烃的球罐,其材质为N—TUF50,操作压力1.7MPa,操作温度20~40.C,规定介质中硫化氢浓度应小于50ffg/g,但抽查中发现超标,多次开罐检查发现大量裂纹, 1997年被迫申请停止储存轻烃.某公司主体材质为07MnCrMoVR制1000m.丙烯球罐,1996年1月投用.1998年5月因该罐混装H.S严重超标的粗丙烯,在很短的时间内,上温带纵缝出现穿透性裂纹而泄漏.开罐检查发现,内壁有数百条典型的应力腐蚀裂纹瞳].NACET一8—11工作组对4987台压力容器的检测结果进行了统计分析,几乎所有与湿硫化氢有关的压力容器都有开裂的可能.在炼油生产中与湿硫化氢有关的工艺设备开裂数量比例如表1 所示.雷蒙特3号炼油厂发生事故后,EXXON公司对美国,加拿大,日本189台压力容器进行了检验,存在裂纹的容器58台,占30.7,裂纹深度大于腐蚀裕度的容器37台,占被检容器的19.6(其中裂纹深度大于容器壁厚1/4的30 台).绝大多数裂纹靠近焊缝,而不在焊缝内.在被检验的容器中的介质有一半不知道硫化氢含量,另一半在200~10000ffg/g之间,介质中有60存在氰化物.表1湿硫化氢环境下炼油装置中设备开裂比例焦化催化裂化催化裂化液化轻烃装置名称烃回收分馏分馏装置石油气回收装置开裂比例,18~1945414138中国石化集团公司炼油厂压力容器的湿硫化氢应力腐蚀主要可能发生的部位是常减压装置的三顶,冷凝器,回流罐;催化裂化装置,焦化装置的分馏塔顶冷却器,回流罐,吸收稳定系统无内衬的设备;催化重整装置的汽提塔回流罐,预加氢产物分离器.力Ⅱ氢裂化装置的高分,低分,脱丁烷塔,脱乙烷塔顶设备,渣油加氢的冷高分,冷低分及分馏塔顶设备;汽,煤,柴油加氢精制装置的汽提塔回流罐;脱硫装置的脱硫塔,再生塔及塔顶设备;含硫污水汽提以及LPG和轻油的储罐等.湿硫化氢应力腐蚀涉及的装置多,设备多,开裂的危害极大,必须引起高度重视.3防止湿硫化氢应力腐蚀开裂的一些措施根据湿硫化氢应力腐蚀开裂机理和工程实践,应从介质环境,设备材料纯净度,性能,质量,设备制造安装的工艺及使用管理四方面采取综合预防措施.3.1严格控制介质中的硫化氢含量《压力容器安全技术监察规程》中对湿H.S应力腐蚀环境作如下界定_3]:”当化工容器接触的介质同时符合下列各项条件时,即湿HS应力腐蚀环境:a.温度≤(60+2P).C,P为压力(表),MPa;b.H2S分压≥0.00035MPa即相当于常温在水中H.S溶解度≥10;C.介质中含有液相水或处于水的露点温度以下;d.pH<9或有氰化物(HCN)存在.”目前首先要控制硫化氢浓度.因为在其他条件相同时,硫化氢浓度越高,产生应力腐蚀的敏感性越大,容器开裂的时间越短.国内负责材料和压力容器研究的科研单位及第25卷第3期李兆斌.预防炼油设备的湿硫化氢腐蚀高等院校的不少专家都倾向于要求低合金高强度钢容器储存的介质中,硫化氢浓度不得大于50f~g/g.国外工业界持这一观点的也很多.不少公司把湿HS浓度的危险性分为三级:HS小于50f~g/g时不开裂;H2S大于50f~g/g开裂;H2S大于50~g/g-F氰化物大于20f~g/g时为易开裂.日本早在1980年就专门对高强度钢球罐作了相应规定,如表2所示.表2含硫化氢的液化石油气球形容器的材料限制高强度钢板硫化氢含tR/~g?g的强度级别>10~≤50>50~≤100as~450MPa无要求热处理aS≥490MPa无要求热处理aS≥685MPa不能用不能用由表2可见:(1)不小于685MPa时,只要硫化氢含量大于10f~g/g,即不能采用,说明在湿硫化氢环境下,对钢材强度有限制;(2)硫化氢含量高,对材料以及热处理要求严格,硫化氢含量大于50f~g/g时必须进行热处理才能使用.以上可以看出硫化氢浓度是必须高度重视的参数.硫化氢含量低于50f~g/g仅能作为一个经验数据或者是目前应当高度重视的一个数据,但不能作为极限浓度,目前也尚未作为统一的压力容器设计的标准,笔者分析,主要有以下原因:(1)有资料报道,对于硫化氢含量小于5O~g/g的水相工艺环境中的压力容器,也还有17的开裂率;(2)湿硫化氢应力腐蚀开裂除与硫化氢含量有关外,还与介质的pH值,其他介质含量(如HCN,C1一,O2,CO2,HC1,H2,S,SO2等)有关; (3)不同材料对湿硫化氢环境下的应力腐蚀开裂敏感性不同,即使同种钢材由于不同生产厂家,不同批次,某些元素成分的实际含量的差异(如Mn,S,P含量),或材料制造过程不同其表现也不相同;(4)压力容器的结构,制造工艺,应力水平不同也对湿硫化氢环境的应力腐蚀开裂有不同的影响;(5)由于装置和设备的大型化,被迫在硫化氢含量较高的情况下采用高强度钢,所以有的设计单位对严格控制硫化氢含量大于50f~g/g时不能应用低合金高强度钢也提出异议.基于以上原因,谨提下述建议:(1)凡工艺技术和产品质量要求介质中硫化氢含量低于压力容器设计中所要求的,应严格按工艺技术和产品质量要求值控制;(2)其他情况下,介质中硫化氢含量应按压力容器设计中的规定值严格控制;(3)压力容器储存介质内硫化氢含量一般不得超过50f~g/g,个别超过50tzg/g而又需采用低合金高强度钢时,必须在设计中提出相应防止硫化氢应力腐蚀的技术要求,如相应的材料洁净度,相应的容器制造,安装工艺和检验技术.3.2严格压力容器用材质量管理钢材中的Ni,S,P,Mn,N,H等对低合金高强度钢抗SSCC性能不利,而Mn,N等是低合金高强度钢中的重要元素,S,P作为杂质应尽量除去l4].国外试验表明,如果能将P,S分别控制在0.008,0.001,则会大大降低湿硫化氢应力腐蚀开裂的可能性.美国开发的抗HIC的A516一Gr70钢,S不大于0.002.法国1990年版压力容器标准附录中对湿硫化氢环境下的碳钢及低合金钢除要求限制焊缝区的硬度和进行PWHT外,还提出如下要求:(1)为减少夹杂物,应限制钢中的硫含量,例如S含量不大于0.002,如能达到0.001则更好,并通过加钙处理使夹杂物成球状.还应限制钢中氧含量,例~nJJ,于0.002;(2)由于磷会促进偏析,引起开裂,应限制钢中磷含量,例如降到0.008;(3)在满足钢的力学性能的条件下,应尽可能降低钢的碳当量.上述(1),(2)要求远高于我国现行普通压力容器用钢标准,我国标准GB6654—1996<<压力容器用钢板》虽经修订,但16MnR的S,P含量仍较高,分别为不大于0.020和不大于0.030.但目前不少企业在控制钢中S,P含量上已取得较大进展,如上海宝钢生产的STE355(DIN1702)钢板,其S,P含量分别为0.003和0.012.我国舞阳钢厂制订了抗硫化氢腐蚀的16MnR(HIC)钢标准,其化学成分中要求P不大于0.015,S石油化工设备技术不大于0.005.并列出了抗硫化氢腐蚀的要求,规定了生产工艺流程.应当重视Mn在钢中的含量.Mn作为提高钢的强度的重要元素在低合金钢中被广泛应用(其他强化元素,如C,V,Nb等),由于该元素的存在使钢材在焊接时易淬硬,从而对氢致开裂很敏感,如焊接工艺不当易产生冷裂纹.有报道16MnR中Mn元素在湿硫化氢应力腐蚀开裂方面是极其有害的,特别是当Mn含量大于1.3时,其危害急剧增加.因此在订货时对16MnR的Mn含量应提出相应要求.钢材强度,硬度增大,硫化氢应力腐蚀敏感性增大,对应用于湿硫化氢环境下的钢板要求其硬度HB不大于200.材料试验可按NACETM0284标准要求进行.SH/T3096~2001《加工高硫原油重点装置主要设备设计选材导则》中已对三类装置15种设备提出采用抗HIC钢].并明确”抗氢致开裂钢是指具有低硫,磷含量,按NACETM0284~压力容器及管线钢抗氢致开裂的评定》方法进行试验,其结果符合规定的裂纹率要求的碳钢或碳一锰钢”.3.3容器的制造安装要从容器成形开始严格控制制造安装质量.其中把好焊接质量关尤为重要.要着力防止焊接冷裂纹和再热裂纹的产生.由于低合金高强度钢中强化元素的存在,焊接时易淬硬,若成形不好,刚性较大,拘束力较高时,焊接工艺不当极易产生冷裂纹.要合理控制线能量防止焊缝和热影响区脆化.降低残余应力对防止湿硫化氢应力腐蚀开裂也很重要.焊后热处理(PWHT)不仅降低残余应力,同时降低硬度.对焊缝金属(WM)和热影响区(HAZ)的硬度各国都很重视.美国对wM硬度在抗SCC时要求HB不大于200,日本要求HB不大于235,我国要求wM,HAZ的HB不大于200.07MnCrMoVR有一定的再热裂纹敏感性,应在PWHT时避开再热裂纹的敏感区.3.4严格管理,认真检验,确保安全(1)严格生产技术工艺管理,确保中间产品,产品的质量,使介质中的H.S含量不超标.原料等发生变化时,必须采取相应的措施.如加氢裂化原料中硫含量上升后,应视情况对循环氢采取脱硫措施;(2)凡在湿硫化氢环境下工作的压力容器,管道必须按规定定期检验.尤其要注意检查储存液态烃压力容器的汽液分界面处,油品储罐的水相部分,轻油储罐的罐顶部位.采用无损探伤检查时,宜采用超声波检查和荧光磁粉检查的方法; (3)当压力容器采用焊接修复时,一定要制订完善的焊接工艺并严格执行;(4)各使用单位必须把储存介质中含有湿硫化氢的压力容器专门列出,对其介质建立定期分析的制度,不得超标.对这些容器的初次开罐检查时间,发现缺陷后的再次开罐检查时间都应按从严的原则确定;尤其要重视LPG和轻烃球形储罐的管理.3结束语(1)湿硫化氢应力腐蚀开裂对炼油厂压力容器危害极大,随着加工含硫原油比例增加,其影响范围将更大,必须高度重视;(2)在诸多措施中,控制介质中硫化氢含量是防止湿硫化氢应力腐蚀开裂的首要措施;(3)对在湿硫化氢环境中工作的压力容器用材应加以限制,应提高钢材的纯净度;(4)严格制造安装工艺是防止湿硫化氢应力腐蚀开裂的重要保证,主要是精确成形,合理的焊接工艺,以防止焊接冷裂纹和再热裂纹的产生,采用PWHT消除或降低残余应力,合理控制线能量以防止焊缝金属和热影响区脆化.严格保证焊缝及热影响区硬度不超过规定值;(5)加强湿硫化氢环境下压力容器的管理.参考文献:1柳曾典.湿硫化氢环境用低合金高强度钢[j].石油化工设备技术,1998,19(5)2王正则.炼油设备中的湿硫化氢腐蚀[J].炼油设计,l994,24(6)3袁榕等.对某些CF一62钢制压力容器中的裂纹分析与防止措施的建议[j].压力容器,2003,(2)4SH/T3O96—2001加工高硫原油重点装置主要设备设计选材导则[S]5国家质量技术监督局.压力容器安全技术监察规程[S].北京:中国劳动社会保障出版社,1999。
硫化氢腐蚀机理和防护的研究现状及进展
硫化氢腐蚀机理和防护的研究现状及进展陈明;崔琦【摘要】在石油、天然气、煤化工及其他一些工业中广泛存在硫化氢腐蚀问题,硫化氢的存在不仅会造成全面腐蚀和局部腐蚀,而且还会导致硫化物应力腐蚀开裂(SSCC)和氢致开裂(HIC)等脆性断裂事故,一旦发生这种事故,往往会造成重大经济损失和灾难性后果,因此研究硫化氢的腐蚀机理、影响因素及防腐措施,无论对防止事故发生,还是对提高经济效益都有十分重要的意义.文章阐述了硫化氢的腐蚀机理,探讨了硫化氢腐蚀的影响因素,提出了防止硫化氢腐蚀的技术和工艺措施.【期刊名称】《石油工程建设》【年(卷),期】2010(036)005【总页数】5页(P1-5)【关键词】硫化氢腐蚀;腐蚀机理;影响因素;防腐技术【作者】陈明;崔琦【作者单位】西南石油大学,四川成都,610500;西南石油大学,四川成都,610500【正文语种】中文【中图分类】TE988.2在石油、天然气、煤化工及其他一些工业中广泛存在硫化氢腐蚀问题。
一般都认为金属材料在含硫化氢环境中可能出现三类腐蚀:硫化物应力开裂(SSCC)、氢致开裂(HIC)和电化学腐蚀,其中SSCC危害最大,可在一个月、几天、甚至更短的时间内引起金属材料在较低的工作应力下发生断裂。
且各种腐蚀形式相互促进,最终导致材料开裂并引发大量恶性事故。
弄清硫化氢的腐蚀机理、影响因素及防腐措施,无论对于抑制硫化氢腐蚀,防止事故发生,还是提高经济效益都有着十分重要的意义。
目前主要防腐蚀措施有以下5种:添加缓蚀剂、合理选择材质、使用涂镀层管材、阴极保护、防腐措施和设计,其中采用加注缓蚀剂的方法来抑制腐蚀是最经济也是最简便的方法。
H2S是弱酸,在水溶液中会电离出H+、HS-和S2-,它们对金属的腐蚀是氢去极化过程。
在溶液中H2S首先吸附在铁表面,铁经过一系列阴离子的吸附和脱附、阳极氧化反应、水解等过程生成铁离子或者硫化铁[1]:在弱酸溶液中,铁的阳极电化学反应产生的FeH也可能脱附H+直接转变为FeS[2]。
湿硫化氢环境中设备应力腐蚀分析及控制
物 力 蚀 裂 利 元 有i nPs 。 当 料 受 超 屈 极 值 , 会 腐 应 腐 开 不 的 素 N M、和 等 因 材 所 譬 值 过 服 限 时 才 对 蚀 、
e v r n n , d i i w ft e e f c o s p t o wa d a n m b ro c n l g n r c s a u e o n io me t a v e o s a t r u r r u e ft h o o y a d p o e s me s r st n n h f e
全面 腐 蚀 控 制
第2 卷第9 0 月 6 期2 1 年9 2
豳 豹
3 1材 料控 制 _ 要严格控制工作环境中的H S 含量 ,按 照有关标
( )选择 合适强度和硬度的材料 。随着材料强 准的规定 ,使硫化氢分压小 于30 a 1 5 P ,另外也可以加
度 的提 高 ,应力 腐蚀破 裂的敏感 性也提 高 ,破 裂临 入一定的缓蚀剂来延缓其腐蚀速率。
会 造成 其化学成 分 、显 微组织 、强度 、硬度 、韧性 在水 中的H s z溶解度大于等于1 0 ; 0×1~ 等不 同 ,因此 ,影响硫 化氢应 力腐蚀 的程 度也会 不 同。硫化氢应 力腐蚀开裂的影响因素主要有 :
, ( )冶金 因素 :金相组织 、化学成分 、强度、 1 硬度 、夹杂和缺 陷 ;
a d d s u so fte i f e c n a t r fs l d y r g n sr s or so n we u fd y r g n n ic si n o h n l n ig fco so u f e h d o e te sc ro i n i ts l e h d o e u i i
防硫化氢腐蚀表面喷涂技术
西安石油大学硕士学位论文防硫化氢腐蚀表面喷涂技术姓名:罗兴申请学位级别:硕士专业:材料加工工程指导教师:石凯20060515第一章研究概述下的弹性、弹力元件或750。
C以下工作的倒热构件以及石油开采中耐H2S腐蚀部件。
…法国主要采用铬一钼一铝系和铬一钼~钒系,新日铁采用铬一钼一铌系,川崎制铁则采用铬一钼一铌——硼系等等.㈣1,1.2热喷涂技术对于低浓度的H2SOJ2S分压≤lkPa)环境,只要在设备选材上使用小于600MPa级别的耐硫化氢应力腐蚀的碳钢或优质低合金高强钢,~般可以达到防止硫化氢应力腐蚀的目的.而对于像四川罗家寨中高浓度H2S(H2S分压>ll(Pa)的情况,除了所选钢材需对H2S低敏感以外还必须同时采取其它防范措施萁中包括添加缓蚀剂和施加防腐涂料,有的还采用了近年来应用逐渐广泛的热喷涂技术,热喷涂法自从20年代初期研制成功并发展至今,不论在技术上还是在应用上都有了重大的突破,现己在城市建设、海洋工程、石化设备等众多领域都得到了广泛应用.但将热喷涂技术应用到有严重酸性腐蚀环境并承受高应力的压力容器和压力管道等设备还不多见;特别是对能否具有防止应力腐蚀开裂的作用,研究和实践的成果更少,只是最近几年,才有少数报道。
报道中初步显示了热喷涂技术应用于防止硫化氢应力腐蚀是可行的,有发展前景的.126,271热喷涂技术就是用火焰、等离子射流、电弧等热源将粉末状(或丝状、或棒状)材料加热至熔融或半熔融状态,并加速(或雾化后加速)形成高速熔滴,以高速撞击基体,经过扁平化、快速冷却凝固沉积在基体表面形成覆盖层的方法。
【28]如图1—1所示,图1—1热喷涂原理示意图典型的热喷涂涂层结构如图1.2所示:t.基体粗糙度;2.硬质相粒子;3.空隙或空洞;4.颗粒间的粘结:5.扁平颗粒6.基体粗糙度:7.对基体的粘结力:图卜2典型热喷涂涂层硬安石油大学硕士学位论文,。
一:?曩:.,…..:.:.··.0j。
湿硫化氢环境中承压特种设备应力腐蚀研究与防治措施
湿硫化氢环境中承压特种设备应力腐蚀研究与防治措施摘要承压特种设备中有相当一部分要在湿硫化氢环境下工作,这些设备难免被应力腐蚀所侵袭。
因此本文将探究具体的腐蚀机理和影响因素,并以此拟定腐蚀的防治措施。
关键词湿硫化氢环境;承压特种设备;应力腐蚀承压特种设备属于较为特殊的工业设备,由于经常在高温、高压等特殊环境下工作,所以一旦出现破损、开裂等现象就很可能引发灾难性事故。
但许多承压特种设备的工作环境属于湿硫化氢环境,在应力腐蚀的作用下极易发生腐蚀开裂,对安全性有很大威胁。
因此,针对这些设备的腐蚀机理采取防腐措施是必不可少的。
1 承压特种设备在湿硫化氢环境下的应力腐蚀特征1.1 油气田的承压特种设备所发生的硫化氢应力腐蚀在油气田中,湿硫化氢环境主要形成于钻井液体系,这其中的硫化氢有多种来源,常见的包括以下几种:地层流体中原本就含有硫化氢;磺化酚醛树脂之类的含硫添加剂在钻井液中发生分解;接头丝扣所用润滑剂中含有硫元素,因化学反应生成硫化氢;钻井液里含有硫酸盐在细菌的作用下生成硫化氢等。
对油气田来说,硫化物应力开裂这种腐蚀形式在承压特种设备上最为常见,因为这种腐蚀形式的高发部位是高内应力的构件、高硬度焊缝、高强度钢,正与承压特种设备的构造特征相符。
因为该腐蚀形式的应力值比钢材抗拉强度低出许多,所以归类为低应力破裂,其断口形貌呈现出脆性特征。
需要注意的是,这种破坏形式的突发性很强,部分敏感材料如果暴露在硫化氢环境中,长则三个月,短则数小时就会产生裂纹并迅速扩展。
1.2 石化生产的承压特种设备所发生的硫化氢应力腐蚀石化生产设备中的硫化氢应力腐蚀最大特点是种类繁多,视腐蚀物质的不同会形成不同的腐蚀体系,常见的包括只由硫化氢和水构成的腐蚀体系,特点是在低温状态下就会发生腐蚀;由氯化氢、硫化氢、水构成的腐蚀体系,其特点是液相部位的腐蚀比气相部位严重许多,而且氯化氢和硫化氢共同作用显著加快了腐蚀速度;由氰化氢、硫化氢、水构成的腐蚀体系,特点是多种应力腐蚀形式并存,而且其中的氰离子能破坏硫化亚铁保护膜,加剧腐蚀作用;由硫醇、硫化氢、水构成的腐蚀体系,特点是分活性腐蚀和非活性腐蚀两种,其中分解形成的活性硫在前期的腐蚀极快、极激烈,远胜普通硫化氢;由硫化氢、氰化氢、氨气、水共同构成的腐蚀体系,特点是危害范围广,对多种设备都会造成腐蚀,包括酸性水罐、冷凝器外壳、换热器筒体等。
热喷涂技术在防腐工程中的应用和研究进展
技术热喷涂技术在防腐工程中的应用和研究进展张婧1 姜源庆2 孔祥峰1 王芳1(1. 山东省科学院海洋仪器仪表研究所,山东青岛266001;2. 国家海洋局烟台海洋环境监测中心站,山东烟台264006)摘要:本文简要介绍了热喷涂技术的工艺原理及技术特点,分析了热喷涂涂层的防腐机理,并对近年来我国热喷涂防腐材料的研究进展做了总结。
最后详细介绍了热喷涂在国内防腐工程中的实际应用情况。
关键词:热喷涂防腐喷涂材料中图分类号:TG174.44 文献标识码:A 文章编号:10.13726/ki.11-2706/tq.2014.09.016.05Application and Research Progress of Thermal SprayingTechniques in Anti-corrosion EngineeringZHANG Jing1, JIANG Yuan-qing2, KONG Xiang-feng1, Wang Fang1(1. Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266100, China;2. Yantai Oceanic Environmental Monitoring Central Station of State Oceanic Administration, Yantai264006, China)Abstract: The process principle and technical characteristics of thermal spraying techniques were briefly reviewed, the antiseptic mechanism of thermal spraying techniques was analyzed, and the research progress of the thermal spraying anti-corrosion materials in recent years in China was summarized. The practical application situation of thermal spraying techniques in domestic anticorrosive engineering was detailed introduced.Key words: thermal spraying techniques; anti-corrosion engineering; spraying material0 引言 1 热喷涂简介二十世纪初瑞士人M.U . S c h o o p发明了一种火热喷涂是利用某种热源,将粉末状或丝状的焰喷涂技术并首次在金属表面喷涂锌生成涂层,发金属或者非金属材料加热、熔化或软化,以一定速现锌涂层比油漆具有更好的防腐效果。
化工设备H2S 应力腐蚀破坏及其预防
化工设备H2S 应力腐蚀破坏及其预防作者:丁文溪来源:《科技视界》2016年第01期【摘要】对化工设备H2S应力腐蚀破坏破裂状态破裂机理进行研究、试验和检验,提出了确保设备运行质量行之有效的预防措施方案,取得了良好的实际效果。
【关键词】化工设备;应力腐蚀;预防0 前言在石油化工行业,设备的腐蚀一直是影响生产装置正常运行的重要问题。
由于石油化工工艺形成的特殊工况条件,设备承受着高温、高压下腐蚀性介质的侵蚀,尤其是近年来原油含硫高、酸值高的趋势,原油性质的劣化更加重了石油化工装置设备的腐蚀。
因此,采取有效的防护措施来解决石油化工生产中的设备腐蚀问题,石油工业生产中原油内含硫物质的增多,氢损伤对石油化工设备的破坏越来越严重,实现生产安全与设备长周期运行,防止湿硫化氢应力腐蚀的是设备防腐的重中之重。
人们为提高钢材防腐品质进行了大量研究和开发. 但迄今为止,在世界范围内,还没有一种钢在硫化氢环境中对硫化氢应力腐蚀是完全免疫的. 应力腐蚀不同于一般性腐蚀而引起的机械破损,也不是使设备大面积减薄,而是在设备的某一局部区域产生,其破坏过程遵循下述规律:潜伏期——裂纹出现期——裂纹扩展期——直至断裂,这种破坏带有较大的突然性,较难预测。
应力腐蚀的产生,必须具备以下条件:(1)存在腐蚀环境:介质中含有液相水和H2S,且H2S浓度越高,应力腐蚀引起的破裂倾向越大;H2S应力腐蚀破裂一般只发生在酸性溶液中,pH(2)结构材料中(管壁及其焊缝、接头等)必须存在应力。
(3)材料同腐蚀环境的相互搭配,如湿H2S对高强度钢的应力腐蚀。
1 H2S对设备的应力腐蚀我国油气资源多数具有高硫、高H2S 的特征,一些油气的H2S 含量在1.2-7.8g/m3,还含有CO2在1.25-4.57g/m3,设备运行中主要的破坏是氢致开裂和H2S应力腐蚀断裂,这是两种最基本的“氢脆”形式在酸性环境中,腐蚀的产生往往伴随有原子氢,当阴极反应是析氢反应时,可以用这个现象来测量腐蚀速度。
湿硫化氢环境下金属材料的应力腐蚀原因分析与预防
所 以其 腐 蚀 机 理 必 然 与 腐 蚀 过 程 中 的 阳极 反 应 和 阴 极 反 应 有 关 , 因 此 应 力 腐 蚀 机 理 可 分 为 两 大 类 :阳极 溶 解 型机理 和 氢致 开裂 型机 理 。 j
从 断 裂 螺 栓 上 ,取 横 向剖 面 的 金 相 样 品 ,经 预 磨抛光 后 ,用4 %硝 酸 酒 精 溶 液 腐 刻 ,观 察 其 金 相 组 织 。从 螺栓 的 横 向剖 面 上 可 见 ,有 一 条 明 显 的裂 纹 由螺 栓 的外 表 面 产 生 并 向螺 栓 的 中心 延 伸 ,见 图4 。在 金 相 显微 镜 下 观 察 ,螺 栓 的裂 纹 有 如 下 特 征 : 除主 干 外 还 有 分 叉 , 具 有 应 力 腐 蚀 的 特 征 ; 螺栓 的金 相 组织 是 回火 索 氏体 ,为3 Cr 5 Mo 钢 的 淬火 回火 组织 [。见 图4 2 】 。 223扫 描 电镜分 析 ..
1硫 化 氢 应 力腐 蚀机 理
应 力 腐 蚀 破 裂 ( CC)是 指 受 拉 伸 应 力 作 用 S 的 金 属材 料 在 某 些 特 定 介 质 中 , 由于腐 蚀 介 质 与 应 力 协 同作 用 而 发 生 的脆 性 断 裂 现 象 。在 腐 蚀 环 境 中 ,金 属 受 到 应 力 作 用 会 使 腐 蚀 加 速 , 不 仅 是 环 境 与 应 力 的 叠 加 ,而 是 一 种 更 为 复 杂 的现 象 , 即 在 某 一 特 定 介 质 中 , 材 料 不 受 应 力 作 用 时 腐 蚀 很 小 ,而 受 到 远 低 于 材 料 的 屈服 极 限 拉伸 应 力 时 , 经 过 … 段 时 间甚 至 延 性 很 好 的金 属 也会 发 生 脆性 断裂 。 应 力 腐 蚀 机 理 目前 还 没 有 完 整 统 一 的 说 法 , 比 较 流 行 的看 法 有 :活 性 通 路 一 电化 理 论 ; 膜 破 裂 理 论 ; 氢 脆 理 论 ; “ 学 脆 变 一 脆 性 破 裂 ” 两 化 阶段 理 论 ; 腐 蚀 产 物 楔 入 理 论 ; 隧洞 形 蚀 孔 撕 裂 理 论 ; 应 力 吸 附 破 裂 理 论 ;快 速 溶 解 理 论 等 。 理 论 虽 多 ,但 由于 应 力 腐 蚀 破 裂 是 一 种 腐 蚀 形 式 ,
热喷涂铝技术在加氢车间的应用
热喷涂铝技术在加氢车间的应用作者:王军辉来源:《中国新技术新产品》2013年第12期摘要:介绍硫化氢的产生及腐蚀特点,采用热喷涂铝层防硫化氢腐蚀的依据,热喷涂的优点和工艺过程。
关键词:硫化氢;腐蚀容器;热喷涂中图分类号:TM923.59 文献标识码:A1 概述碳钢及低合金钢压力容器是炼厂装置的主要组成部分,如果发生腐蚀破坏,将给炼厂带来极大的经济损失,甚至发生安全事故。
加氢脱酸装置在生产过程中伴随有大量硫化氢存在,尤其是在反应器下游,由于生产需要硫化氢浓度高,在接近常温的容器里,有水分存在的情况下硫化氢腐蚀性极强,对装置容器的安全使用构成严重威胁,因此为了抗硫化氢腐蚀延长容器安全使用寿命,加氢脱酸装置部分容器在停工检修阶段,采用了热喷涂铝涂层技术来延缓硫化氢的腐蚀。
2 硫化氢的产生及腐蚀类型在蒸馏产品中都含有一定量的硫化物(硫化物种类见表1),而加氢的原料正是蒸馏的产品,在对它们加工过程中硫化物分解产生具有活性的硫化氢,它对钢铁的腐蚀性极强。
在加工的原料及产品中除了含硫化物杂质外还含有氮化物、环烷酸、水等,它们相互影响,相互促进,不利于其硫化氢的有效应用,导致其原材料加工过程中的麻烦,不利于其腐蚀环节的控制,导致了工作成本提升。
在其工作过程中,由于其硫化氢的腐蚀作用,不能保证容器材质的质量的保障。
在实际工作中,影响其腐蚀破坏现象的因素是比较多的,其腐蚀破坏的形式也是比较多的,比如其坑蚀、全面腐蚀等。
表13 采用热喷涂铝技术依据和工艺过程3.1 热喷涂层技术应用于防止金属腐蚀已有多年历史,现在随着科技进步已经比较成熟。
近几年来国内国外不断有采用热喷涂层技术防止硫化氢腐蚀的报道。
我们根据《防止硫化氢应力腐蚀的热喷涂技术研究》(作者:王慕张秀英孙耀峰郝晓华张亦良,单位:北京工业大学)的论文结论知道,热喷涂铝涂层与钢铁基体具有较高的结合强度,完全能胜任条件较为恶劣且承受一定工作应力或残余应力的石油设备。
油田硫化氢腐蚀机理及防护的研究现状及进展
油田硫化氢腐蚀机理及防护的研究现状及进展【摘要】油田硫化氢的腐蚀不仅对人们的安全造成威胁和损害,而且开发的过程中,亦会对管道、各种油田开采以及地面造成相当程度的破坏,从而导致一些安全事故的发生,因此,有必要加强对油田硫化氢腐蚀机理及防护的研究。
【关键词】油田硫化氢,腐蚀机理,防护,现状,发展一、前言油田硫化氢的腐蚀已经对人们的生活造成了一定程度的破坏,如何对油田进行安全且合理的开采,已成为专业人士所重视的课题。
二、油田硫化氢腐蚀概况油气井开发过程中,从钻杆到套管、油管、井口装置、井下工具、输气管道,都存在不同情况的腐蚀。
研究如何安全高效地防止硫化氢腐蚀成为勘探和开发硫化氢气藏的一个重要课题。
1.对金属的腐蚀在绝大多数油田井腐蚀中,产出液含水量及其组成对腐蚀起着决定性作用。
油田开发初期含水率较低,腐蚀并不严重。
但随着含水率的升高,井下管柱的腐蚀变得日益严重。
2.对水泥环的腐蚀硫化氢能破坏水泥石的所有成分,水泥石所有水化产物都呈碱性,硫化氢与水泥石水化产物反应生成CaS、FeS、Al2S3,硫化氢含量大时生成Ca(HS)2,其中FeS、Al2S3等是没有胶结性的物质。
如果水泥环耐硫化氢腐蚀,则可以阻挡硫化氢对套管的腐蚀。
而溶于潮气中的硫化氢腐蚀性更强。
三、防硫化氢完井工艺现状1.选择耐腐蚀材质井下管柱、井下工具以及井口装置,是油井生产的关键设备,若出现腐蚀破坏会危害油井安全生产,不同腐蚀介质对不同材质的腐蚀程度存在很大差异,为了延长设备的使用寿命,保证生产和作业安全,节约成本,需要合理选择材质。
井口装置、井下工具及完井工具配套设备的材质选用抗硫材质;油套管可选用防硫或既抗硫化氢又抗CO2腐蚀的管材或内衬油管;井下油管柱包括入井工具的连接,丝扣宜采用金属对金属密封扣。
主要还是应根据油井腐蚀环境,确定合适的管材。
但在耐腐蚀的材质选择上还存在一些不足。
井口装置、井下工具及完井工具配套设备的材质选用抗硫材质,如使用35CrMo、13Cr、AISI4140(18-22Cr)等或合金钢;油套管可选用防硫或既抗H2S又抗CO2腐蚀的管材或内衬油管,在管柱结构上,为保证井口安全、减缓套管、油管的腐蚀,一般多采用了封隔器完井。
化工设备H2S应力腐蚀破坏及其预防
科技视界Science&Technology VisionScience&Technology Vision科技视界0前言在石油化工行业,设备的腐蚀一直是影响生产装置正常运行的重要问题。
由于石油化工工艺形成的特殊工况条件,设备承受着高温、高压下腐蚀性介质的侵蚀,尤其是近年来原油含硫高、酸值高的趋势,原油性质的劣化更加重了石油化工装置设备的腐蚀。
因此,采取有效的防护措施来解决石油化工生产中的设备腐蚀问题,石油工业生产中原油内含硫物质的增多,氢损伤对石油化工设备的破坏越来越严重,实现生产安全与设备长周期运行,防止湿硫化氢应力腐蚀的是设备防腐的重中之重。
人们为提高钢材防腐品质进行了大量研究和开发.但迄今为止,在世界范围内,还没有一种钢在硫化氢环境中对硫化氢应力腐蚀是完全免疫的.应力腐蚀不同于一般性腐蚀而引起的机械破损,也不是使设备大面积减薄,而是在设备的某一局部区域产生,其破坏过程遵循下述规律:潜伏期———裂纹出现期———裂纹扩展期———直至断裂,这种破坏带有较大的突然性,较难预测。
应力腐蚀的产生,必须具备以下条件:(1)存在腐蚀环境:介质中含有液相水和H2S,且H2S浓度越高,应力腐蚀引起的破裂倾向越大;H2S应力腐蚀破裂一般只发生在酸性溶液中,pH<6容易发生应力腐蚀破裂;温度为0~65℃。
(2)结构材料中(管壁及其焊缝、接头等)必须存在应力。
(3)材料同腐蚀环境的相互搭配,如湿H2S对高强度钢的应力腐蚀。
1H2S对设备的应力腐蚀我国油气资源多数具有高硫、高H2S的特征,一些油气的H2S含量在1.2-7.8g/m3,还含有CO2在1.25-4.57g/m3,设备运行中主要的破坏是氢致开裂和H2S应力腐蚀断裂,这是两种最基本的“氢脆”形式在酸性环境中,腐蚀的产生往往伴随有原子氢,当阴极反应是析氢反应时,可以用这个现象来测量腐蚀速度。
此外,阴极反应产生的氢本身能引起生产设备的破坏,析氢产生的问题包括氢脆、应力破裂和氢鼓泡,在集输管线以及某些化工过程装置会发生这类问题。
防止硫化氢应力腐蚀的热喷涂技术研究
防止硫化氢应力腐蚀的热喷涂技术研究2007-8-23 摘 要:对压力容器用钢WH530及其用铝及锌铝复合涂层实行热喷涂的试样进行了涂层结合强度及H2S应力腐蚀试验。
结果表明,铝涂层可显著提高抗H2S应力腐蚀能力,锌铝复合涂层较差;文中同时对锌铝涂层的失效机理进行了探讨。
关键词:压力容器 硫化氢应力腐蚀 热喷涂技术1 引言碳钢及低合金钢在湿硫化氢环境中发生的硫化物应力腐蚀开裂(SSC)是石油化工设备安全隐患之一。
国内外最新研究结果表明:对低浓度硫化氢环境,可通过净化材质、大幅降低S、P含量、改善材料组织结构等措施对SSC加以防护;但对于高浓度的硫化氢环境,就目前的钢材冶炼水平,即使钢材纯净度达到S含量在0 002%以下的超低水平,仍难以避免发生SSC[1]。
因此,近年来有采用热喷涂技术防止发生H2S应力腐蚀的报道[2、3]。
热喷涂技术用于防止金属一般腐蚀已有多年历史,技术上也较成熟;但用于防止H2S应力腐蚀尚属新课题。
从技术和经济角度考虑,对大型设备,热喷涂材料采用铝及锌铝合金较为普遍。
为探讨对防止H2S应力腐蚀的效果,本文以武钢压力容器用钢WH530为对象,对其基材及其用铝涂层及锌铝复合涂层热喷涂的试样分别进行了涂层结合强度及应力腐蚀性能试验。
并对试验结果进行了机理分析。
2 试验材料喷涂试验基材采用由武汉钢铁(集团)公司提供的WH530高强度低合金钢,其化学成分及力学性能见表1(略)及表2(略)。
涂层采用24目刚玉砂进行喷砂处理,压力为5~6kg;随后进行电弧喷涂,电弧喷涂工艺参数见表3(略)。
底锌面铝复合涂层中锌铝层各厚100μm,热喷涂铝层厚度200μm。
3 试验结果3.1 涂层结合强度试验本试验按GB8642—88[4]进行。
试验在CSS-1110型电子万能试验机上进行,加载速度为3mm/min,试件直径 25mm,试验结果见表4(略)。
试验结果表明,铝涂层与钢铁基体的结合强度是底锌面铝复合涂层与钢铁基体结合强度的5倍。
换热器硫化氢腐蚀的防护
2.1 实验室试验结果(见表3)
20# 碳钢、16MnR 两种钢出现的 裂纹均在焊缝热影响区处,裂纹平 行于焊缝。腐蚀失效属H2S应力腐蚀
图3 列管式换热器U形应力腐蚀试样挂片位置
1—封头;2—法兰;3—壳体;4—换热管;5 —折流板或支撑板; 6 — U形弯曲试样挂片位置;7—管板;8—隔板
原油-常渣 20#碳钢 油换热器
未有裂纹
已开裂
裂纹在热影响区, 平行于焊缝
16MnR
未有裂纹
已开裂,有轻微裂纹 裂纹平行于焊缝
渗铝钢
未有裂纹
未有开裂裂纹
无明显腐蚀
初馏塔底-
20#碳钢
未有裂纹
已开裂
裂纹在热影响区, 平行于焊缝
常二中换热器 1 6 M n R
未有裂纹
已开裂,有轻微裂纹 裂纹平行于焊缝
应用广场版 Application
换热器硫化氢腐蚀的防护
马贵文 (锦州石油化工公司,辽宁 锦州 121001)
针对炼油装置常减压换热器的硫化氢应力腐蚀开裂,本文采用双U形恒应变实 验方法,研究了20#碳钢、16MnR、碳钢渗铝基材及焊接材料浸泡在试验介质中的开 裂 敏 感性。结果表明,焊接材料更 易 于 发 生 湿 H2S 应 力 腐 蚀 开 裂;渗 铝 钢 有 更 低 的 H2S 开 裂 敏 感 性 ,适 宜 在 常 减 压 换 热 器 上 应 用 。
渗铝钢0.1970. Nhomakorabea350.336
0.036
0.583
20#碳钢
0.213
0.032
0.325
0.034
0.572
16MnR
0.162
0.0262
0.385
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防止硫化氢应力腐蚀的热喷涂技术研究
2007-8-23 摘 要:对压力容器用钢WH530及其用铝及锌铝复合涂层实行热喷涂的试样进行了涂层结合强度及
H2S应力腐蚀试验。
结果表明,铝涂层可显著提高抗H2S应力腐蚀能力,锌铝复合涂层较差;文中同时对锌铝涂层的失效机理进行了探讨。
关键词:压力容器 硫化氢应力腐蚀 热喷涂技术
1 引言
碳钢及低合金钢在湿硫化氢环境中发生的硫化物应力腐蚀开裂(SSC)是石油化工设备安全隐患之一。
国内外最新研究结果表明:对低浓度硫化氢环境,可通过净化材质、大幅降低S、P含量、改善材料组织结构等措施对SSC加以防护;但对于高浓度的硫化氢环境,就目前的钢材冶炼水平,即使钢材纯净度达到S含量在0 002%以下的超低水平,仍难以避免发生SSC[1]。
因此,近年来有采用热喷涂技术防止发生H2S应力腐蚀的报道[2、3]。
热喷涂技术用于防止金属一般腐蚀已有多年历史,技术上也较成熟;但用于防止H2S应力腐蚀尚属新课题。
从技术和经济角度考虑,对大型设备,热喷涂材料采用铝及锌铝合金较为普遍。
为探讨对防止H2S应力腐蚀的效果,本文以武钢压力容器用钢WH530为对象,对其基材及其用铝涂层及锌铝复合涂层热喷涂的试样分别进行了涂层结合强度及应力腐蚀性能试验。
并对试验结果进行了机理分析。
2 试验材料
喷涂试验基材采用由武汉钢铁(集团)公司提供的WH530高强度低合金钢,其化学成分及力学性能见
表1(略)及表2(略)。
涂层采用24目刚玉砂进行喷砂处理,压力为5~6kg;随后进行电弧喷涂,电弧喷涂工艺参数见表3(略)。
底锌面铝复合涂层中锌铝层各厚100μm,热喷涂铝层厚度200μm。
3 试验结果
3.1 涂层结合强度试验
本试验按GB8642—88[4]进行。
试验在CSS-1110型电子万能试验机上进行,加载速度为3mm/min,试件直径 25mm,试验结果见表4(略)。
试验结果表明,铝涂层与钢铁基体的结合强度是底锌面铝复合涂层与钢铁基体结合强度的5倍。
3.2 恒负荷拉伸试验
本试验执行GB4157—84[5]并参照美国腐蚀工程师协会NACETMO177—96[6]。
试验在P1500应力腐蚀横负荷拉伸试验机上进行。
试件为 5mm圆截面光滑试件。
将基材试件及涂层试件浸入NACE标准饱和H2S溶液中进行恒负荷拉伸试验,其试验结果见表5(略)。
取出在恒负荷试验1100小
时后断裂的锌铝复合层试件,发现浸入腐蚀溶液中的锌铝复合层全部溶解,靠近腐蚀溶液界面的锌铝复合层中的面铝层剥开,剥开的铝层下面是锌的腐蚀产物。
而同时取出铝涂层试件,发现铝层完好。
3.3 简支梁应力腐蚀试验
本试验参照NACETMO177—96的标准[6]进行。
试件为80mm×6mm×2mm的小试件,并在试片中部开有两个 Φ0.8mm应力提升孔。
将承受一定挠度的简支梁试片浸入NACE的标准饱和H2S溶液中15天,试验结果见表6(略)。
4 对试验结果的机理分析
由表5可知,未喷涂的试件,在σ=0.8σs时,只承受47小时即行断裂;而热喷涂铝或锌铝复合涂层后,可承受1100小时以上。
这说明热喷涂可显著提高抗H2S应力腐蚀性能。
同时,就铝涂层同锌铝复合涂层比较而言,从表4可知,铝涂层与钢铁基本的结合强度比锌铝复合涂层要高约5倍;从表5可知,在σ=0.8σs承受1100小时后锌铝涂层试件发生断裂;而铝涂层试件未断,尚可继续承载。
因此铝涂层比锌铝负荷涂层具有更好的抗H2S应力腐蚀能力。
铝涂层之所以具有较强的抗应力腐蚀能力,无疑是由于它腐蚀电位较基体(钢材)为低,能起到牺牲阳极(涂层)保护阴极(基材)的作用。
从试验过程的观察推知,底锌面铝复合涂层的失效大致经历如下过程:首先是涂层浸泡一段时间以后,腐蚀介质穿透表面的铝涂层进入锌涂层,腐蚀介质中大量的氯离子溶解锌表面的保护膜,并且氯离子与锌反应,形成可溶性盐,松散的堆积在锌表面,致使上面的铝层失去了与底面锌层的结合力,失去附着力的铝涂层很快开裂,而锌涂层将以更快的腐蚀速度溶解,又促进面铝层的开裂脱落,最终导致整个锌铝复合层完全溶解。
锌铝复合涂层的失效本质上是在偏酸性的复合介质环境下,由于保护膜的生成,导致锌的腐蚀电位要比铝的腐蚀电位低,从而导致锌的优先溶解。
即便是锌铝合金涂层,也存在富锌相的优先溶解(即选择性腐蚀)[7],由此得知,在腐蚀试验的初期,即当腐蚀介质还未渗透到底锌涂层时,底锌面铝复合涂层的防腐机理实际就是面铝涂层的防腐机理,底锌涂层没有参与阴极保护作用;而当腐蚀试验的时间足够长,一旦腐蚀介质渗透到底锌涂层,就会发生锌的优先溶解,致使面铝涂层开裂脱落,这时面铝涂层良好的耐蚀性也表现不出来。
钢材H2S应力腐蚀开裂一般认为是氢致开裂机制控制,故不论是铝涂层或铝锌涂层,在长时间腐蚀介质作用下,氢离子均有可能穿过涂层孔隙渗入到基体金属中诱发应力腐蚀开裂。
因此,任何涂层的防护H2S应力腐蚀功能并不会是绝对长效的;但从本文恒负荷拉伸试验结果看,有涂层的试件寿命比无涂层的试件寿命至少已超过20倍以上,而且需要指出,由于本文各项试验是为了着重考察涂层本身的性能,都是在没有对涂层表面封孔的情况下进行的;而工程上完整的热喷涂工艺都包括对涂层进行表面
封孔,以期得到最大的防护效果。
因此,在实际工程应用中,还要进行表面封孔,涂层的实际防护寿命应比本文试验寿命还要高出更多。
5 结论
WH530钢经热喷涂后可显著提高抗H2S应力腐蚀能力;热喷涂铝涂层较锌铝复合涂层更适于抗H2S应力腐蚀。