路面不平度的统计特性

合集下载

路面不平度研究综述

路面不平度研究综述

2、不平度建模方法
目前常用的不平度建模方法包括神经网络、支持向量机、回归分析等。这些 方法在不同程度和角度上对不平度进行了建模和预测,取得了一定的成果。例如, 神经网络方法能够模拟人脑对于路面不平度的识别过程,支持向量机则能够有效 地处理小样本数据等。
3、不平度预测精度评估
为了评价建模方法的优劣,需要对不平度预测精度进行评估。精度评估的指 标包括平均绝对误差、均方根误差等。在实际应用中,应根据具体需求选择合适 的评估指标,并对建模方法进行优化以提高预测精度。
结论
本次演示对路面功率谱密度换算及不平度建模理论进行了研究。首先,分析 了路面材料参数、厚度以及维护情况对路面功率谱密度的影响;其次,介绍了不 平度的定义及其影响因素,并探讨了不平度建模的常用方法;最后,针对不同建 模方法进行了精度评估并提出改进意见。
感谢观看
(3)耐久性:路面不平度可能导致车辆颠簸、磨损等问题,缩短车辆的使 用寿命,增加维修费用。
3、路面不平度的测量方法和技 术
为了准确评估路面不平度,需要采用合适的测量方法和技术。目前常用的路 面不平度测量方法包括:
(1)水准测量法:通过水准仪测量路面标高差,从而计算路面不平度。该 方法精度较高,但效率较低。
2、路面不平度的影响和危害
路面不平度对于车辆的行驶性能、安全性和舒适性具有重要影响。主要表现 在以下几个方面:
(1)安全性:路面不平度可能导致车辆颠簸、失控等问题,影响驾驶员的 视线和操控稳定性,增加交通事故的风险。
(2)舒适性:路面不平度可能导致车辆振动、噪音等问题,影响乘客的舒 适度,降低道路的使用体验。
路面厚度是影响路面功率谱密度的另一个重要因素。随着路面厚度的增加, 路面对车辆的冲击和振动能量的吸收能力也会增强,从而使路面功率谱密度减小。 因此,在路面设计和维护中,需要考虑路面厚度对功率谱密度的影响。

汽车理论思考题及其部分答案

汽车理论思考题及其部分答案

汽车理论考虑题 20211. 汽车动力性的评价指标及定义【定义:汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的,所能到达的平均行驶速度。

评价指标:最高车速 加速时间 最大爬坡度】2. 应用汽车的行驶方程求取动力性指标的方法。

3. 比较三种不同形式的汽车行驶方程的异同。

4. 汽车的驱动力图,驱动力—行驶阻力平衡图,动力特性图及功率平衡图的绘制方法。

5. 发动机特性曲线有哪几种?[部分负荷特性曲线 速度特性曲线]6. 汽车的驱动附着条件。

[作用在驱动轮上的转矩产生的地面切向反作用不能大于附着力]7. 滚动阻力产生的原因。

【轮胎与路面接触区域产生的法向、切向互相作用力】8. 空气阻力由哪几部分组成?【压力阻力:形状阻力、干扰阻力、内循环阻力、诱导阻力 摩擦阻力】9. 不同驱动形式汽车由地面决定的最大等效坡度。

[后驱L h L a q g -=ϕ 前驱 L h L b q g +=ϕ ]10. 在加速上坡时,四轮驱动汽车前、后轮的转矩如何分配,才能充分利用地面附着条件?【后轴转矩分配系数t2 t1t2T T T +=ψ】11. 画出驱动轮在匀速和加速运开工况下的受力图,并推导地面切向力的表达式。

12. 汽车燃油经济性的评价指标。

【汽车行驶百公里的燃油消耗量、一定燃油量能使汽车行驶的里程。

】13. 汽车等速百公里油耗的计算方法。

【Qs= P e U a ρg 】14. 发动机负荷率与汽车燃油经济性的关系。

【负荷率越高,燃油经济性越高】15. 我国规定商用车、城市客车以及轻型汽车测定燃油经济性分别采用哪种循环行驶工况?16. 要节省燃油消耗,应如何选择行驶车速和挡位,为什么?【接近低俗的中等车速 高档位】17. 什么是发动机的负荷特性曲线?万有特性曲线?【发动机的转速不变时,其性能指标随负荷的变化关系18. 利用发动机最小燃油消耗特性分析无级变速器省油的原因。

【〔1〕把各功率下最经济工况运转的转速与负荷率标明在外特性曲线图上便得到最小燃油消耗特性 〔2〕无级变速器应有的传动比i 与发动机转速n 及汽车行驶车速关系如下其中A 为常数,根据Pe=〔Pf+Pw 〕/T 由最小燃油消耗曲线可以求出发动机经济的工作转速ne ,将ua 、ne 带入上式,就得到无级变速器应有的传动比i 在同一值的路面上,不同车速时无级变速器应有的i 连成曲线就得到无级变速器的调节特性】19.混合动力电动汽车节油的主要原因?【①为了满足急加速、以很高车速行驶行驶与快速上坡对驱动功率的要求,传统的内燃机汽车所装备的发动机功率往往相当很大②在汽车停车等候或低速滑行的等工况下关闭内燃机,几月燃油③利用发电机回收部分制动能量】20.确定传动系最大传动比主要考虑哪些因素?【最大爬坡度,附着率及汽车最低稳定车速】21.确定货车的功率与轿车的功率的方法有什么不同?22.为什么减小最小传动比可以进步汽车的燃油经济性?23.传动系各挡传动比理论上应怎样分配?实际上又是按什么原那么分配的,为什么?【按等比级数分配传动比1〕保证换挡平顺,无冲击2〕充分发挥发动机功率,功率利用区域大3〕有利于进步汽车的动力性。

5.4 路面不平度统计特性

5.4 路面不平度统计特性

其中: 、输出谱矩阵的对角线元素为输出信号的自功率谱。 其中:1、输出谱矩阵的对角线元素为输出信号的自功率谱。对 输出信号的自功率谱进行积分才能得到输出信号的均方值。 输出信号的自功率谱进行积分才能得到输出信号的均方值。 2、频率响应函数的谱矩阵中,各元素分别为单输入系统的频响函 、频率响应函数的谱矩阵中,各元素分别为单输入系统的频响函 单输入系统 求解此频响函数时,可令其它输入信号为0。 数,例如 H z ~ q ( f ) ,求解此频响函数时,可令其它输入信号为 。
5.4 路面不平度统计特性
(一)路面不平度定义 路面不平度函数是指路面相对于基准水平面的高度 路面不平度函数是指路面相对于基准水平面的高度 q , 沿道路走向长度I 沿道路走向长度I的变化 q ( I ) ,也称为路面纵断面曲线。 也称为路面纵断面曲线。 也称为路面纵断面曲线
q
q3 ( I )
q2 ( I )
双对数坐标系
2)空间频率下路面不平度的速度功率谱和加速度功率谱 空间频率下路面不平度的速度功率谱和加速度功率谱 由不平度函数q(I 对纵向长度 对纵向长度I 由不平度函数 I)对纵向长度I的一阶导数和二阶导 可得空间频率的速度功率谱和加速度功率谱。 空间频率的速度功率谱和加速度功率谱 数,可得空间频率的速度功率谱和加速度功率谱。
∆f = u∆n
对车辆平顺性有效的路面波长 通常在 0.35m < λ < 91m
−1 0.011 −1 即频率: m < n < 2.83m 即频率:
思考:有效的路面波长如何确定? 思考:有效的路面波长如何确定? 常用车速:36~ 常用车速:36~108km/h u=10~ 即u=10~30m/s 所以,可以保证时间频率范围 所以,可以保证时间频率范围 保证 0.33~28.3Hz, 0.33~28.3Hz,其覆盖车身质量部 分的固有频率1 2Hz和车轮质量部 分的固有频率1~2Hz和车轮质量部 分固有频率10~15Hz。 分固有频率10~15Hz。 10

路面不平度的统计特性-

路面不平度的统计特性-

G42 n G2*4 n Gyx n
16
第二节 路面不平度得统计特性
左、右轮迹间得互谱可以表示为
Gxy n Gxy n e jxy n
两个轮迹得相关函数为
coh
2 xy
n
Gxy n 2 Gxx nGyy n
侧倾角位移功率谱密度Gθ(n)与垂直位移功率谱密度 Gq 得n
比值与相干函数 cohxy n得 关系为
路面不平度的统计特性
第二节 路面不平度得统计特性
一、路面不平度得功率谱密度
1.路面不平度函数
➢路面相对基准平面得高度 q ,沿道路走向长度 I 得变化 q(I)称为路面不平度函数。
➢用水准仪或路面计可以得到路面不平度函数。
2
第二节 路面不平度得统计特性
2.路面不平度得功率谱密度 Gq (n)
1) Gq (n得) 拟合公式
Gq f 2πf 2 Gq f 4π2Gq n0 n02u
Gq f 2πf 4 Gq f 16π4Gq n0 n02uf 2
10
第二节 路面不平度得统计特性
Gq f Gq n0 n02
u f2
对上式得等 式两边取对数 后作图,得到位 移功率谱密度。
u Gq(n0)
Gxy n Gyx n cohxy nGq n
路面对四轮汽车输入得谱矩阵最后可以表示为
1
Gik
n
Gq
n
e j2πnL
coh n
coh
n
e
j2πnL
e j2πnL
1
coh n e j2πnL coh n
coh n coh n e j2πnL
1 e j2πnL
coh n e j2πnL

路面谱

路面谱
0.01m1 n 2.83m1
几何平 均值 上限
A B C D E F G H
8 32 128 512 2048 8192 32768 131072
16 64 256 1024 4096 16384 65536 262144
32 128 512 2048 8192 32768 131072 524288
表8-1列出了各组路面不平度系数 Gq (n0 ) 的范 围及其几何平均值,表上还列出了 0.001m1 n 2.83m1 范围路面不平度相应的均方根值的数值。
路面 等级
Gq (n)(106 m 2 / m 1 ) n0 0.1m 1
下限 几何平 均值 上限 下限
q (103 m)
Gq ( f ) Cn1 v 此式说明,车速提高后Gq ( f ) 值变小,激励变弱,
在 n1 n n2 主频带区(波长小于0.3m),由式(8-4) 和式(8-3)得 1 2 1 f 2 Cv (8-5) Gq ( f ) Cn C ( ) 2 v v v f 此式说明,在一定频率时 Gq ( f )随车速而增大,激励强 度也增大,故在主频带区,车速不宜高,由此可见, 不同频区车速的影响是不同的,随着频率的提高,激 励的作用将逐步减小,国外学者提议研究汽车振动的 1 路面激励频率定在 n 0.01 ~ 10m 范围内。上面只讨 论了一个车轮的自谱,如果考虑前,后轮两个输入时 还要考虑两个输入之间的互谱问题,假定前,后车轮 同走一个车辙,则后轮只是比前轮滞后一段长度(轴 距),而左,右两轮迹之间不平度的统计特性,用它 们之间的互功率谱密度函数或相干函数来描述。
1984年国际标准协会在文件ISO/TC108/SC2N67中提出 的“路面不平度表示方法草案”和我国国标都采用路 面功率谱密度描述其不平度的统计特性,而且建议路 面功率谱密度用下式表示: n (8-1) Gq (n) Gq (n0 )( ) n0 1 m ; 式中 n ——空间频率,它是波长 的倒数, 1 m n0 ——参考空间频率, n0 =0.1 ; Gq (n0 ) ——在 n0 频率时的路面谱值,称路面不平度 2 1 系数,m / m ; ——频率指数, =2 。

路面不平度数值模拟研究报告

路面不平度数值模拟研究报告

路面不平度的数值模拟研究[摘要]在汽车设计开发过程中,常需要预测、研究汽车零部件在时域内振动响应,于是在系统参数已知的情况下,需要即需有公路路面的随机不平度数据。

本文研究了一种公路路面不平度的数值模拟新方法,即直接对已知路面不平度的功率谱密度经过一系列处理获得路面的不平度值,研究表明所得路面不平度数据的功率谱密度与所要求的准确一致,并且这种方法简洁实用、便于操作。

关键词:功率谱密度;路面不平度;傅立叶变换;采样1、引言汽车以一定的速度行驶时,路面的随机不平度通过轮胎、悬架等传递到车身上,并通过座椅将振动传递到人体。

当把汽车近似为线性系统处理时,得到了路面不平度功率谱以及车辆系统的频响函数,就可以求出各响应物理量的功率谱,从而可分析车辆振动系统参数对各响应物理量的影响和评价平顺性。

然而,汽车振动系统中包括许多非线性元件,如轮胎(有可能离地>、渐变刚度悬架、液力减振器、橡胶减振块及悬架的干摩擦阻尼等。

为获得更准确的结果,特别是在进行振动幅度较大的汽车可靠性等研究时,需采用非线性振动模型⑴。

对于非线性系统,线性系统中熟知的叠加原理不再成立,不能直接采用频域方法进行研究,只能在时域中进行研究。

另外,最近主动、半主动控制悬架的研究已经了人们充分重视,控制系统的反馈信号是时域信号,所以在进行控制策略研究时,也只能在时域中进行。

对于这两类问题,所需的路面激励是时域或空间域信号,而非频域信号。

获得路面随机不平度的方法有两种,一种是实验测试,一种是将路面不平度的功率谱密度变换为空间域激励函数,近年来受到了广泛重视[1-4]。

1984年国际标准化组织在文件ISO/TC108/SC2N67中提出了路面不平度的功率谱密度表达式模型和分等方法。

1986年,中国学者在进行了大量研究的基础上,也提出了类似的表达式和分等方法,制订了相应的国家标准,即GB7031- 86《车辆振动输入一路面平度表示方法》。

对于路面不平度空间域(或时域>内的问题,各国学者进行了大量研究,早期的研究方法有谐波叠加法(或称三角级数合成法>,该方法的基本思想是将路面不平度表示成大量具有随机相位的正弦或余弦之和。

汽车理论第六章答案

汽车理论第六章答案

6-1 人体对振动的反应和平顺性的评价
一、人体对振动的反应
97标准用加速度均方根值给出了1~80Hz振 动频率范围内人体对振动反应的三个不同 界限。反应界限(疲劳、不舒服)都是由 人体感觉到的振动强度大小和暴露时间长 短综合作用的结果。
暴露界限 疲劳-工效降低界限 舒适降低界限
6-1 人体对振动的反应和平顺性的评价

2)均方值
T 2 T − 2
q (t )dt
T 2 T − 2
1 2 E q (t ) = μ q = lim T →∞ T 3)方差
[
]

q 2 (t )dt
σ q2
1 = lim T →∞ T
∫ [q(t ) − μ ] dt
T 2 T − 2 2 q
随机过程统计基础知识
q(t)的5种数字特征: 4)自相关函数 1 Rq (t ) = lim T →∞ T 5)谱密度函数
⎡ T a 4 (t )dt ⎤ VDV= ∫ w ⎢0 ⎥ ⎣ ⎦
1 4
ms
−1.75
第六章 汽车的平顺性
§6-2 路面不平度的统计特性
主要内容:
1. 功率谱密度(PSD)-平均能量的谱分布。 2. 空间频率与时间频率的关系。 利用输入的路面不平度功率谱以及车辆系统的频 响函数,可以求出各响应物理量的功率谱,用 来分析振动系统参数对各响应物理量的影响和 评价平顺性。
§6-3 汽车振动系统的简化,单 质量系统的振动
一、汽车振动系统的简化 1.四轮汽车简化的立体模型
汽车的悬挂质量为:m2(车身、车架等) 汽车的非悬挂质量:m1(车轮、车轴) 汽车共7个自由度:
车身垂直、俯仰、侧倾3个自由度 车轮4个垂直自由度

汽车理论 路面不平度的统计特性

汽车理论 路面不平度的统计特性

速度功率谱密度 Gq(n) (2πn)2Gq(n) 加速度功率谱密度
Gq (n) (2πn)4Gq (n)
当W=2时
Gq(n) (2πn0 )2Gq(n0 )
与n无关——“白噪声”
7
第二节 路面不平度的统计特性
二、空间频率功率谱密度Gq (n)化为时间频率功率谱密度Gq (f )
车速
Gq (n) Gq (f )
16384 65536 262144
σq /(10-3m) 0.011m-1<n<2.83m-1
几何平均值 3.81 7.61 15.23 30.45 60.90 121.80 243.61 487.22
5
第二节 路面不平度的统计特性
路面不平度分级图
6
第二节 路面不平度的统计特性
3)速度功率谱密度和加速度功率谱密度
lim Gq
f
2 q ~Δn
Δf 0 Δf
将f un 代入
Gq
பைடு நூலகம்
f
lim
2 q~Δn
Δn0 uΔn
1 u
Gq
n
9
第二节 路面不平度的统计特性
空间频率和时间频率谱密度的关系
f 1 n 2
2
Gq(f)
时间频率谱密 度Gq(f)
1 1 2
Gq (n) 1
f n
f 2n
f
Δn n
空间频率谱 密度Gq(n)
对上式的等 式两边取对数 后作图,得到 速度功率谱密 度。
u
Gq(n0)
13
第二节 路面不平度的统计特性
Gq f 16π4Gq n0 n02uf 2
对上式的等 式两边取对数 后作图,得到 加速度功率谱 密度。

路谱

路谱

路谱为本词条添加义项名道路谱,指道路路面谱,简称路谱,指的是路面不平度的功率谱密度曲线。

作为汽车振动输入的路面不平度,主要采用位移功率谱密度描述其统计特性,路面不平度的时间历程可以视作平稳随机过程处理。

目录1路谱定义2路谱的采集与测量3路谱采集的意义展开1路谱定义道路谱,指道路路面谱,简称路谱,指的是路面不平度的功率谱密度曲线。

作为汽车振动输入的路面不平度,主要采用位移功率谱密度描述其统计特性,路面不平度的时间历程可以视作平稳随机过程处理。

1.1路面不平度路面不平度,是车辆工程常用的名词,道路工程则常用路面平整度。

路面不平度指的是道路表面对于理想平面的偏离,它具有影响车辆动力性、行驶质量和路面动力载荷三者的数值特征。

路面不平度曲线的纵坐标是路面的纵向位移变化值,横坐标表示道路的长度,是时间域的一种,在应用上称为长度域或空间域。

路面不平度根据波长可分为长波、短波和粗糙纹理三种类型。

其中长波引起车辆的低频振动,短波引起车辆的高频振动,而粗糙纹理则引起轮胎的行驶噪音。

1.2道路谱的数学模型在实际的工程应用中,由于目前没有形成比较完整的道路谱数据库,因此在很多设计开发试验中,使用的道路模型都是虚拟生成的。

由于应用的需要这方面的研究有很多,例如功率谱模型、时间序列模型、小波模型、分形模型等。

2路谱的采集与测量路谱的测量主要分为接触式和非接触式两种。

真实路形测量技术,可以认作独立的一类测量方法。

2.1接触式道路谱测量具体方式有:水平仪和标杆,直梁基准仪器,三米直尺,多轮仪,颠簸累积仪,递推式路面计结2.2接触式道路谱测量具体方式有:车载式颠簸累积仪,惯性基准的加速度测量路谱方法,惯性基准的激光断面仪,纵向分布多个位移传感器的测量方法2.3真实路形测量技术具体方式有:拖车式的真实路形计,可精确修正车身姿态的测量方法。

3路谱采集的意义汽车的许多构件上都产生动态应力,引起疲劳损伤,其最终破坏形式是疲劳断裂。

路谱的采集,尤其是载荷谱的采集,其意义就是为随后的实验室台架试验或者多体动力学仿真分析提供可靠地数据支持,从而使工程师对汽车各构建的疲劳寿命能够做出准确的预测与判断。

汽车理论教程第六章汽车的平顺性

汽车理论教程第六章汽车的平顺性

➢ xs、ys 最敏感的频率范
围是0.5~2Hz。大约在3Hz 以下,人体对水平振动比对 垂直振动更敏感,且汽车车 身部分系统在此频率范围内 产生共振,故应对水平振动 给予充分重视。
10
第一节 人体对振动的反应和平顺性的评价
各轴向的频率加权函数(渐近线)
频率加权函数
0.5 0.5Hz f 2Hz
wk
f
f / 4 2Hz f 4Hz 1 4Hz f 12.5Hz
12.5 / f 12.5Hz f 80Hz
wd
f
1 2 /
f
(0.5Hz f 2Hz)
2Hz f 80Hz
wc
f
8
1 /
f
(0.5Hz f 8Hz)
8Hz f 80Hz
we
f
1 1/
f
(0.5Hz f 1Hz)
靠背
xb yb
wc
wd
0.80 0.50
0.212
4.3
0.087
4.4
zb
wd
0.40
0.140
4.9
xf

yf
wk
0.25
wk
0.25
0.090
5.4
0.093
5.1
zf
wk
0.40
0.319
6.2
1
av
a2 2 vj
0.628
16
第一节 人体对振动的反应和平顺性的评价
2.辅助评价法
➢当峰值系数 > 9时,ISO 2631-1:1997(E)标准规定用 加权加速度4次方根值评价。它能更好地估计偶尔遇到过大 的脉冲引起的高峰值系数振动对人体的影响。此时采用辅助 评价方法 —— 振动剂量值。

关于路面不平度的理论研究和工程应用的现状综述

关于路面不平度的理论研究和工程应用的现状综述

关于路面不平度的理论研究和工程应用的现状综述路面不平度是汽车行驶时的主要激励源,研究探讨能精确模拟实际路面状况的数学模型是建立汽车虚拟仿真平台的一个重要部分,是进行道理模拟试验首要解决的关键问题,具有重要的理论价值和广阔的工程应用前景。

1.路面不平度对汽车运行状态的影响1.1 对轮胎与地面的接触状态的影响轮胎是连接汽车车身与道路的唯一部件, 车辆的支承、导向和操纵要通过轮胎与路面之间的相互作用才能实现。

在轮胎与路面的相互作用过程中, 路面不平度对轮胎胎面与路面的接触状态会产生影响,进而影响两者之间的载荷传递特性, 以及轮胎的磨损与寿命。

1.2 对汽车平顺性与操纵稳定性的影响路面不平度是引起汽车在运行时产生振动的一个主要激励源,当路面不平度激起的振动达到一定程度时,将使乘客及驾驶员感到不舒适和疲劳, 直接影响了车辆的平顺性、乘坐舒适性以及承载系的可靠性和寿命, 或使运载的货物损坏。

车轮与路面之间载荷的波动还影响到它们的附着效果, 路面不平使车辆在行驶中产生行驶阻力和振动。

附着效果、行驶阻力和振动都会对车速和操纵稳定性产生影响。

附着效果影响汽车制动性和行驶稳定性,行驶阻力消耗车辆的功率并且影响车辆动力系统和传动系统的寿命。

1.3 对乘员和环境的影响路面不平度在激起汽车各部件发生振动的同时,也会产生车内车外噪声,对乘员和周围的环境造成一定的影响。

由于车身和车地板都是形状比较复杂的板结构件,在发生振动时,均会辐射出噪声,已有研究发现:通过这种板结构辐射出的噪声对于汽车车内的噪声贡献较大,是汽车行驶时车内噪声的一个主要来源。

因此在对汽车进行低噪声设计时,路面不平度也是一个关键的考虑因素。

2.路面不平度的数学描述2.1 路面不平度的定义道路表面对于理想平面的偏离程度, 会影响车辆动力性、行驶质量和路面动力载荷。

通常把路面相对基准平面的高度, 沿道路走向q I长度的变化称为q I()路面纵端面曲线或路面不平度函数。

汽车理论课件:路面不平度的统计特性

汽车理论课件:路面不平度的统计特性
1
第二節 路面不平度的統計特性
單位頻帶內的“功率”(均方值)即為功率譜密度。 空間頻率的功率譜密度
lim Gq
n
σ2 q ~Δn
Δn0 Δn
2 q~n
—路面功率譜密度在頻帶Δn內包含的“功率”。
lim Gq
f
2 q ~Δn
Δf 0 Δf
將f un 代入
Gq f
lim
2 q~Δn
Δn0 uΔn
汽車的平順性
路面不平度的統計特性
➢本節將介紹路面空間頻率的功率譜密度,路面 等級,空間頻率的功率譜密度化為時間頻率的功率 譜密度,位移譜、速度譜和加速度譜的概念等。
返回目錄 1
第二節 路面不平度的統計特性
一、路面不平度的功率譜密度
1.路面不平度函數
➢路面相對基準平面的高度 q ,沿道路走向長度 I 的變化 q(I)稱為路面不平度函數。
第二節 路面不平度的統計特性
Gq f 16π4Gq n0 n02uf 2
對上式的等 式兩邊取對數 後作圖,得到 加速度功率譜 密度。
u Gq(n0)
1
1
第二節 路面不平度的統計特性
Gq f Gq n0 n02
u f2
對上式的等 式兩邊取對數 後作圖,得到 位移功率譜密 度。
u Gq(n0)
1
第二節 路面不平度的統計特性
Gq f 4π2Gq n0 n02u
對上式的等 式兩邊取對數 後作圖,得到 速度功率譜密 度。
u
Gq(n0)
1
W—頻率指數。
1
第二節 路面不平度的統計特性
2)路面不平度8級分類標準
路面等級
A B C D E F G H
Gq(n0)/(10-6m3) (n0=0.1m-1)

大学_汽车理论第四版(余志生著)课后答案下载

大学_汽车理论第四版(余志生著)课后答案下载

汽车理论第四版(余志生著)课后答案下载汽车理论第四版(余志生著)课后答案下载本书为全国高等学校机电类专业教学指导委员会汽车与拖拉机专业小组制订的规划教材,并于“九五”期间被教育部立项为“普通高等教育九五部级重点教材”和“面向21世纪课程教材”,于“十五”期间被教育部立项为“普通高等教育十五国家级规划教材”。

本书根据作用于汽车上的外力特性,分析了与汽车动力学有关的汽车各主要使用性能:动力性、燃油经济性、制动性、操纵稳定性、行驶平顺性及通过性。

各章分别介绍了各使用性能的评价指标与评价方法,建立了有关的动力学方程,分析了汽车及其部件的结构形式与结构参数对各使用性能的影响,阐述了进行性能预测的基本计算方法。

各章还对性能试验方法作了简要介绍。

另外,还介绍了近年来高效节能汽车技术方面的新发展。

本书为学生提供了进行汽车设计、试验及使用所必需的专业基础知识。

汽车理论第四版(余志生著):推荐理由点击此处下载汽车理论第四版(余志生著)课后答案汽车理论第四版(余志生著):书籍目录第4版前言第3版前言第2版前言第1版前言常用符号表第一章汽车的动力性第一节汽车的动力性指标。

第二节汽车的驱动力与行驶阻力一、汽车的驱动力二、汽车的行驶阻力三、汽车行驶方程式第三节汽车的驱动力,行驶阻力平衡图与动力特性图一、驱动力一行驶阻力平衡图二、动力特性图第四节汽车行驶的附着条件与汽车的附着率一、汽车行驶的附着条件二、汽车的附着力与地面法向反作用力三、作用在驱动轮上的地面切向反作用力四、附着率第五节汽车的功率平衡第六节装有液力变矩器汽车的动力性参考文献第二章汽车的燃油经济性第一节汽车燃油经济性的评价指标第二节汽车燃油经济性的计算第三节影响汽车燃油经济性的因素一、使用方面二、汽车结构方面第四节装有液力变矩器汽车的燃油经济性计算第五节电动汽车的研究一、混合动力电动汽车的特点二、混合动力电动汽车的结构三、混合动力电动汽车的节油原理四、能量管理策略五、实例分析一一丰田混合动力电动汽车Prius六、电动汽车的动力性计算第六节汽车动力性、燃油经济性试验一、路上试验二、室内试验参考文献第三章汽车动力装置参数的选定第一节发动机功率的选择第二节最小传动比的选择第三节最大传动比的选择第四节传动系挡数与各挡传动比的选择第五节利用燃油经济性-加速时间曲线确定动力装置参数一、主减速器传动比的确定二、变速器与主减速器传动比的确定三、发动机、变速器与主减速器传动比的确定参考文献第四章汽车的制动性第一节制动性的评价指标第二节制动时车轮的受力一、地面制动力二、制动器制动力三、地面制动力、制动器制动力与附着力之间的关系四、硬路面上的附着系数第三节汽车的制动效能及其恒定性一、制动距离与制动减速度二、制动距离的分析三、制动效能的恒定性第四节制动时汽车的方向稳定性一、汽车的制动跑偏二、制动时后轴侧滑与前轴转向能力的丧失第五节前、后制动器制动力的比例关系一、地面对前、后车轮的法向反作用力二、理想的前、后制动器制动力分配曲线三、具有固定比值的前、后制动器制动力与同步附着系数四、前、后制动器制动力具有固定比值的汽车在各种路面上制动过程的分析五、利用附着系数与制动效率六、对前、后制动器制动力分配的要求七、辅助制动器和发动机制动对制动力分配和制动效能的影响八、制动防抱装置第六节汽车制动性的试验参考文献第五章汽车的操纵稳定性第一节概述一、汽车操纵稳定性包含的内容二、车辆坐标系与转向盘角阶跃输入下的时域响应三、人一汽车闭路系统四、汽车试验的两种评价方法第二节轮胎的侧偏特性一、轮胎的坐标系二、轮胎的侧偏现象和侧偏力-侧偏角曲线三、轮胎的结构、工作条件对侧偏特性的影响四、回正力矩一一绕OZ轴的力矩五、有外倾角肘轮胎的滚动第三节线性二自由度汽车模型对前轮角输入的响应一、线性二自由度汽车模型的运动微分方程二、前轮角阶跃输入下进入的汽车稳态响应一一等速圆周行驶三、前轮角阶跃输入下的瞬态响应四、横摆角速度频率响应特性第四节汽车操纵稳定性与悬架的关系一、汽车的侧倾二、侧倾时垂直载荷在左、右侧车轮上的'重新分配及其对稳态响应的影响三、侧倾外倾一一侧倾时车轮外倾角的变化四、侧倾转向五、变形转向一一悬架导向装置变形引起的车轮转向角六、变形外倾一一悬架导向装置变形引起的外倾角的变化第五节汽车操纵稳定性与转向系的关系一、转向系的功能与转向盘力特性二、不同工况下对操纵稳定性的要求三、评价高速公路行驶操纵稳定性的试验一一转向盘中间位置操纵稳定性试验四、转向系与汽车横摆角速度稳态响应的关系第六节汽车操纵稳定性与传动系的关系一、地面切向反作用力与“不足-过多转向特性”的关系二、地面切向反作用力控制转向特性的基本概念简介第七节提高操纵稳定性的电子控制系统一、极限工况下前轴侧滑与后轴侧滑的特点二、横摆力偶矩及制动力的控制效果三、各个车轮制动力控制的效果四、四个车轮主动制动的控制效果五、VSC系统的构成六、装有VSC系统汽车的试验结果第八节汽车的侧翻一、刚性汽车的准静态侧翻二、带悬架汽车的准静态侧翻三、汽车的瞬态侧翻第九节汽车操纵稳定性的路上试验一、低速行驶转向轻便性试验二、稳态转向特性试验三、瞬态横摆响应试验四、汽车回正能力试验五、转向盘角脉冲试验六、转向盘中间位置操纵稳定性试验参考文献第六章汽车的平顺性第一节人体对振动的反应和平顺性的评价一、人体对振动的反应二、平顺性的评价方法第二节路面不平度的统计特性一、路面不平度的功率谱密度二、空间频率功率谱密度C。

路面统计特性(教案)

路面统计特性(教案)

第二节 路面不平度特性 把汽车振动系统视为线性时,若已知输入的路面不平度功率谱以及车辆系统的频率响应函数,就能求出各响应物理量的功率谱,从而分析汽车振动系统参数对各响应物理量的影响以及评价汽车平顺性。

一、路面不平度功率谱密度路面相对基准平面的高度q ,沿着道路走向长度l 的变化)(l q ,称为路面纵断面曲线或不平度函数,如图6-2所示。

通过水准仪或路面谱计来得到路面纵断面上的不平度值。

应用计算机软件对测量得的路面不平度随机数据进行处理,获得路面不平度的功率谱密度)(q n G 或方差2q 等统计特性参数。

车辆振动输入的路面不平度的统计特性主要采用路面功率谱密度描述,这反映在ISO/TC lO8/SC2N67提出“路面不平度表示方法草案”和GB 7031《车辆振动输入——路面平度表示》中,功率谱密度函数)(0q n G可表示为图6-2 路面纵断面不平度函数曲线1000q q m 1.0)()(--=⎪⎪⎭⎫ ⎝⎛=n nnn G n G w, (6-4)式中:n 为空间频率(m -1),是波长λ的倒数,即每米长度中的波动次数;0n 为参考空间频率,1.00=n m (m -1); )(0q n G 为参考空间频率1.00=n (m -1)时的路面功率谱密度值,称为路面不平度系数,单位为m 3;2≈w 为频率指数,决定路面功率谱密度的频率结构。

式(6-3)在双对数坐标上表示为斜线。

为了减少误差,对拟合路面功率谱密度函数时,在不同空间频率范围选用不同的拟合系数分段进行拟合。

路面功率谱密度按路面的不平程度被分为8级。

表6-3规定了各等级路面的不平度系数)(0q n G 的几何平均值,同时画出0.01<<n 2.83m -1范围路面不平度对应的均方根值)(q rms σq 的几何平均值。

从图6-3可见,路面功率谱密度)(q n G 随空间频率的增加或波长λ的减小而变小。

当w =2时,)(q n G 与2λ成正比,是不平度幅值的均方值谱密度,故)(q n G 又与不平度幅值的平方成正比,所以不平度幅值0q 与波长λ约成正比。

汽车理论

汽车理论

第一章1.汽车的动力性系指汽车在良好路年上直线行驶时由汽车收到的纵向外力决定的,所能达到的平均行驶速度。

2.汽车的动力性指标;①汽车的最高车速Uamax②汽车的加速时间t③汽车的最大爬坡度Imax,轿车无爬坡度要求3.最高车速是指在水平良好的路面(混凝土或沥青)上汽车所能达到的最高行驶车速4.货车;Imax在30%即16.7°左右,越野车;Imax在60%即31°左右5.汽车行驶方程式Ft=Ff+Fw+Fi+Fj(滚动,空气,坡度,加速阻力)还有一公式自己看书6.将发动机的功率Pe,转矩Ftq以及燃油消耗率b与发动机曲轴转速n之间的函数关系以曲线表示,则此曲线称为发动机(转速)特性曲线。

如果发动机节气门全开(或高压油泵在最大供油量位置),则此特性曲线称为发动机外特性曲线,如果节气门部分开启(或部分供油)则称发动机部分负荷特性曲线。

带上全部附件设备时的发动机特性曲线称为使用外特性曲线7.传动系功率损失可分为机械损失和液力损失两类。

机械损失是指齿轮传动副,轴承,油封等处的摩擦损失。

机械损失与啮合齿轮的对数,传递转矩等因素有关,液力损失指消耗于润滑油的损失,润滑油与旋转零件之间的表面摩擦等功率损失。

液力损失与润滑油的品种温度,箱体内的油面高度以及齿轮等旋转零件的转速有关8.车轮处于无载时的半径称为自由半径。

汽车静止时,车轮中心至轮胎与路面接触间的距离称为静力半径r s。

滚动半径r r=s/(2πn w)=Fd/(2π) r s<r。

9.一般根据发动机外特性确定的驱动力与车速之间的函数关系曲线Ft-u a来全面表示汽车的驱动力,称为汽车的驱动力图。

10.车轮滚动时,轮胎与路面的接触区域产生法向、切向的相互作用力以及相应的轮胎和支承路面的变形,称为滚动阻力,由于轮胎有内部摩擦产生弹性迟滞损失使轮胎变形时对它作用的功不能全部回收。

11.驻波现象:车速达到某一临界车速左右时,滚动阻力迅速增大,此时轮胎产生驻波现象,轮胎周缘不再是圆形而成明显的波浪状。

汽车理论__第6章汽车的平顺性

汽车理论__第6章汽车的平顺性
从1985年开始进行全面修订,于1997年公布了ISO2631—l 1997(E)《人体承受全身振动评价——第一部分:一般要求》
第二节 路面不平度的统计特性
把汽车近似作为线性系统处理时,掌握了输人的路 面不平度功率谱以及车辆系统的频响函数,就可以 求出各响应物理量的功率谱,用来分析振动系统参 数对各响应物理量的影响和评价平顺性。
第二节 路面不平度的统计特性
当W=2时,q(n)与l成正比, Gq(n) 是不平度幅值的 均方值谱密度,故Gq(n)又与不平度幅值的平方成正 比,所以不平度幅值q0大致与波长l成正比。
图上影线面积为原联邦德国1983年公路路面谱分布 范围,可以看出主要集中在A级,部分延伸到B、C 级之内。
到路面不平度的功率谱密度Gq(n)或方差d2q等统计特性参数。
作为车辆振动输入的路面不平度,主要采用路面功率谱密度描述其统 计特性
1984年国际标准化组织在文件ISO/TCl08/SC2N67中提出的“路面不平 度表示方法草案”
国内由长春汽车研究所起草制定的GB7031《车辆振动输入——路面平度 表示》标准
引言
研究平顺性的主要目的就是控制汽车振动系统的动 态特性,使振动的“输出”在给定工“输入”下不 超过一定界限,以保持乘员的舒适性。本章的基本 内容为:
1)人体对振动的反应和平顺性的评价。 2)振动“输入”——路面不平度的统计特性。 3)汽车振动系统的简化,系统频响特性和系统参数对 4)汽车平顺性的测试。
第二节 路面不平度的统计特性
第二节 路面不平度的统计特性
第二节 路面不平度的统计特性
第三节 汽车振动系统的简化, 单质量系统的振动
汽车振动系统的简化
第三节 汽车振动系统的简化, 单质量系统的振动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档