C51单片机的基本结构及工作原理
第4章 单片机的C51语言
4.1 C51的程序结构 4.2 C51的数据结构 4.3 C51与汇编语言的混合编程 4.4 C51仿真开发环境 4.5 C51初步应用编程
第4章单片机的C51语言
51汇编语言能直接操作单片机的系统硬件,指令执行速度 快。但其程序可读性差,且编写、移植困难。
第4章单片机的C51语言
数据类型
【存储类型】
变量名
51单片机的 三个逻辑存储空间:
片内数据存储器,片外数据存储器和程序存储器。
建立C51存储类型与存储空间的对应关系
code区
xdata区
idata区
data区
bdata区
pdata 区
第4章单片机的C51语言
C51的存储类型与存储空间对应关系表
编译模式
SMALL系统
COMPACT系统 LARGE系统
注意:SFR字节地址变量的物理地址是由MCU资源决定的
第4章单片机的C51语言
sbit型
部分SFR具有位地址,如何定义与这些位地址相关的变量?
D0^7
PSW D7H
D0^6
AC
D0^5
D0^4
RS1
D0^3
RS0
D0^2
D0^1
D1H
D0^0
P
相对位地址
D0H 字节地址 绝对位地址
CY
CY
D6H
AC
32
对于“/”和“%”往往会有疑问。这两个符号都涉
及除法运算,但“/”运算是取商,而“%” 运算为取余 数。例如“5/3”的结果(商)为1,而“5%3”的结果 为2(余数)。 表3-3中的自增和自减运算符是使变量自动加1或减1, 自增和自减运算符放在变量前和变量之后是不同的。 ++i,--i:在使用i之前,先使i值加(减)1。
单片机原理与应用及c51程序设计(第3版)
【单片机原理与应用及C51程序设计(第3版)】文章内容内容包括:一、引言二、单片机原理1. 什么是单片机2. 单片机的基本组成3. 单片机的工作原理4. 单片机的应用领域三、C51程序设计1. C51程序设计的基本概念2. C51程序设计的语法和规则3. C51程序设计的应用示例四、单片机原理与C51程序设计的结合应用1. 如何将单片机原理与C51程序设计结合起来2. 结合应用的案例分析五、总结与展望【单片机原理与应用及C51程序设计(第3版)】文章主要介绍了单片机的基本原理、应用以及C51程序设计的相关知识。
在引言部分,我们可以简要介绍单片机在现代电子设备中的重要性以及C51程序设计在单片机应用中的作用。
接下来进入主题内容,首先详细讲解单片机的基本组成和工作原理,包括单片机的核心部件、指令集和数据存储等方面的内容,重点强调单片机在各个领域中的广泛应用。
然后深入介绍C51程序设计的基本概念、语法和规则,通过实际案例对C51程序设计进行深入分析,以便读者能够更加深入地理解和掌握相关知识。
在单片机原理与C51程序设计结合应用的部分,我们可以通过具体的案例分析,展示单片机原理与C51程序设计在实际项目中的应用,包括控制系统、嵌入式系统等方面。
通过这些案例,读者可以更加直观地了解单片机原理与C51程序设计的实际应用场景,有助于加深对相关知识的理解和掌握。
我们对整个主题进行总结与展望,通过对文章内容的回顾和归纳,强调单片机原理与C51程序设计的重要性,并展望未来单片机技术的发展方向和趋势。
我们可以共享自己对这个主题的个人观点和理解,以及对读者的建议和思考,为读者提供更多的思路和参考。
通过以上内容的深入探讨和详细解读,《单片机原理与应用及C51程序设计(第3版)》将会为读者带来全面、深刻和灵活的理解,帮助读者更好地掌握相关知识,为实际应用提供有力支持。
一、引言单片机在现代电子设备中扮演着非常重要的角色,它集成了处理器、存储器和各种输入输出接口,可以用来控制各种电子设备。
51单片机的基本结构
51单片机的基本结构51单片机是一种高性能、低功耗的微控制器,是嵌入式系统中常用的一种芯片。
它具有集成度高、易编程、可编程性强等特点,在各种电子设备中广泛应用,包括家电、工业控制、汽车电子、智能仪器等领域。
51单片机的基本结构主要包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分。
1.CPU51单片机的CPU是其核心部分,负责执行指令、进行运算处理。
它通常采用哈佛结构,即指令和数据分开存储。
51单片机的CPU主要由ALU (算术逻辑单元)、寄存器组、指令寄存器、程序计数器等部分组成,能够完成基本的运算和控制功能。
2.存储器51单片机的存储器包括ROM(只读存储器)和RAM(随机存储器)。
ROM用于存储程序代码和常量数据,是只读的;RAM用于存储变量数据和临时结果,是可读写的。
在51单片机中,通常ROM用于存储程序代码和初始化数据,RAM用于存储运行时数据和临时结果。
3.输入输出端口51单片机的输入输出端口用于与外部设备进行数据交换。
它可以通过不同的接口与外部设备连接,比如并行口、串行口、通用输入输出口等。
通过输入输出端口,51单片机可以与外部设备进行数据传输和通信,实现各种功能。
4.定时计数器51单片机的定时计数器可以用于计时和计数,通常用于控制时序和频率。
在51单片机中,定时计数器可以生成各种定时中断,实现定时控制功能。
定时计数器可以根据需要设定不同的时钟源和计数模式,实现灵活的定时控制。
5.串口通信51单片机的串口通信功能可以用于与外部设备进行串行通信,比如与PC机、外围设备等进行数据传输。
串口通信包括串行口和UART(通用异步收发器),可以通过串行口进行双向数据传输。
串口通信在51单片机中广泛应用于各种通信设备和控制系统中。
总的来说,51单片机的基本结构包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分,通过这些部分的组合和协作,可以实现各种功能和应用。
在实际应用中,设计人员可以根据需要对这些部分进行配置和扩展,实现更丰富的功能和性能要求。
第四章 单片机C51简介
五、C51常用运算符
赋值运算符、算数运算符、关系运算符、 逻辑运算符、位运算符、条件运算符….
位运算符 位运算是按位对变量进行运算的,但并不改变参与 运算的变量的值。 C51 中位运算符只能对整数进行操作,不能对浮点 数进行操作。C51中的位运算符有: & 按位与 ︱ 按位或 ∧ 按位异或 ~ 按位取反 << 左移 >> 右移
//声明单个位
2. C51数据存储类型
存储类型 data 与存储空间的对应关系 直接寻址片内数据存储区,访问速度快(128字节) 可位寻址片内数据存储区,允许位与字节混合访问(16字 节) 间接寻址片内数据存储区,可访问片内全部RAM地址空 间(256字节) 分页寻址片外数据存储区(低256字节) 寻址片外数据存储区(64K字节) 寻址代码存储区(64K字节)
bit bdata flags;
float idata x,y,z;
unsigned int pdata dimension; unsigned char xdata vector[10][4][4];
unsigned char code a[]={0x00,0x01};
P78 例4-2、4-3(自行看书)
•sfr16 16位特殊功能寄存器
sfr16占用两个内存单元,值域为 0~65535。sfr16和sfr 一样用于操作特殊功能寄存 器,不同的是它用于操作占两 个字节的寄存器,如定时器T2。 sfr16 T2=0xCC; //定义8052定时器2,低8位地址为
// T2L=CCH,高8位T2H=CDH
指针
当定义一个指针变量时,若未指定它所指向的 对象的存储类型,则该指针变量被认为是一般 指针; 指定了它所指对象的存储类型,则该指针被认 为是基于存储器的指针。
第4章单片机原理及应用(C51编程)
4.3 C51的函数
4.3.1
返回值类型 { 函数体 }
C51函数的定义
函数名(形式参数列表)[编译模式][reentrant][interrupt n][using n]
一般形式:
编译模式为SMALL、COPACT或LARGE reentrant用于定义可重入函数 interrupt n 用于定义中断函数,n为中断号,可以为0~31 using n 确定工作寄存器组,取值为0~3
从而使DBYTE用于以字节形式对data区访问,可以写成:
与此类似: CBYTE用于以字节形式对code区进行访问; PBYTE用于以字节形式对pdata区进行访问; XBYTE用于以字节形式对xdata区进行访问。
CWORD、DWORD、PWORD和XWORD用于以字形式对 code区、data区、pdata区和xdata区进行访问。
4.2.4
C51程序编写示例
C51源程序
C51编译器
浮动目标码模块 系统库 连接器
列表文件 用户库
绝对定位目标码文件
映像文件
软件模拟器
转换器
硬件仿真器
OMF51格式文件 写入程序存储器 编程器
【例4-1】将30H至3FH共16个RAM单元初始化为“55H”。 #include <reg52.h> #include <absacc.h> void main(void) { unsigned char i; for (i=0;i<=15;i++) { DBYTE[0x30+i]=0x55; } while(1); } 编译系统自动连接了 startup.a51生成代码 一是将内部RAM的 00H~7FH清0; 二是设置堆栈指针SP。 有全局变量赋值时 编译系统会自动连接 init.a51生成代码
51单片机原理介绍
51单片机原理介绍单片机是一种控制芯片,一个微型的计算机,而加上晶振,存储器,地址锁存器,逻辑门,七段译码器(显示器),按钮(类似键盘),扩展芯片,接口等那是单片机系统,以下是8051系列单片机原理和内部结构基础介绍外部引脚功能存储空间配置和功能片内RAM结构和功能特殊功能寄存器的用途和功能程序计数器PC的作用和基本工作方式I/O端口结构、工作原理及功能 时钟和时序 复位电路、复位条件和复位后状态 低功耗工作方式的作用和进入退出的方法§2-1 单片机原理简介和引脚功能一、内部结构二、引脚功能40个引脚大致可分为4类:电源、时钟、控制和I/O 引脚。
⒈ 电源: ⑴ VCC - 芯片电源,接+5V;⑵ VSS - 接地端;⒉ 时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。
⒊ 控制线:控制线共有4根,⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲① ALE功能:用来锁存P0口送出的低8位地址② PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。
⑵ PSEN:外ROM读选通信号。
⑶ RST/VPD:复位/备用电源。
① RST(Reset)功能:复位信号输入端。
② VPD功能:在Vcc掉电情况下,接备用电源。
⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。
① EA功能:内外ROM选择端。
② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。
⒋ I/O线80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。
P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。
C51单片机的基本结构及工作原理
• 堆栈是开辟在存储器中的具有“先 进后出”特点的一段缓冲区。 80C51 的 堆栈开辟在内部 RAM 的 08H~7FH 的区 域,考虑工作寄存器区和位寻址区,一 般设在 30H~7FH 范围内。复位后 SP 的 初始值为 07H 。 内部 RAM 低 128B 中,除了作为工 作寄存器、位寻址和堆栈区以外的单元 都可以作为数据缓冲器使用。
I/O口小结(应用功能)
• P0:系统扩展;一般I/O口(输出时,需 接上拉电阻。)
• P1:专供用户使用的I/O口 • P2:系统扩展;通用I/O口 • P3:功能口,每位独立定义;通用I/O口。
整理课件
I/O口小结(负载能力)
• P0驱动8个LSTTL负载 • P1~P3驱动3~4个LSTTL负载
整理课件
I/O口小结(读入方式)
• 每个I/O口均有两种读入方式(用命令区分) – 读锁存器 – 读引脚
• ANL A,#0FH • MOV A,P1 • 注意:读引脚时,需先向锁存器写“1”。
系统复位时,所有口锁存器均置“1”。
整理课件
说明
• 双向口:可使引脚悬浮作高阻输入 • 准双向口:其引脚具有内部拉高电阻,
整理课件
( 2 )位寻址区
• 80C51 位寻址区包括两个部分。 ① 内部 RAM 的 20H ~ 2FH ,共有 16 个 RAM 单元,计 128 位,每一位都赋予一个位 地址,位地址范围 00H ~ 7FH 。 ② 特殊功能寄存器中地址能被 8 整除的单元, 位地址范围 80H ~ FFH ,共 128 位(实际使 用 93 位) 。 80C51 单片机具有布尔处理功能,布尔处理机 的存储空间就是指位寻址区。
待机方式(PCON的IDL=‘1’等中断) 掉电方式(PCON的PD=‘1’保护内RAM)
51单片机结构原理
51单片机结构原理51单片机是一种典型的微控制器,具有由英特尔公司(Intel)设计和生产的基于哈佛结构的原理。
51单片机的基本结构包括中央处理器部分(CPU)、存储器部分、输入/输出(I/O)部分以及定时/计数器(Timer/Counter)等功能模块。
在中央处理器部分,51单片机采用了8位位宽的数据总线和16位位宽的地址总线。
它具有一组通用寄存器,可以用于存储中间数据和运算结果。
另外,还有一个累加器,用于存储加法操作的结果。
CPU还包括一套指令系统,用于控制程序的执行。
存储器部分包括程序存储器ROM(Read-Only Memory)和数据存储器RAM(Random Access Memory)。
ROM用于存储程序代码,RAM用于存储数据和程序的临时变量。
51单片机使用Harvard结构,将程序存储器和数据存储器分开,可以同时访问两个存储器,提高了执行效率。
输入/输出(I/O)部分包括多个通用I/O端口,可以用于连接外部设备。
这些I/O端口可以通过外部扩展器进行扩展,以满足不同应用的需求。
此外,51单片机还提供了串行通信接口、定时器/计数器等特殊功能引脚。
定时/计数器模块是51单片机的重要功能之一。
它可以生成精确的定时信号,并可以用来计数外部事件的频率。
定时/计数器模块可以通过寄存器配置,实现不同的定时和计数功能。
总之,51单片机结构的核心是中央处理器部分、存储器部分、输入/输出部分和定时/计数器模块。
通过这些功能模块的协同工作,51单片机可以实现各种应用需求,如控制、计算、通信等。
第二章.MCS-51单片机结构和原理
* 由于T1的作用,不需外接上拉电阻。
②输入数据
类似于读引线
控制:C=0,MUX下通,与门4输出为0。T1截止,预臵Q=1, T2截止。 P0.X→三态门2→内总线
二、P1口
通用8位准双向端口。 ⑴ 输出:Q→FET(反相)→P1.X
* 有内部上拉电阻,不必外接。
⑵ 输入: 读引线:预臵Q=1,FET截止,P1.X→下三态门→内部总线 读锁存器:Q→上三态门→内部总线
3
ATmega8 RISC,SPEED,power,a/d,spi,i2c,uart,pwm,内时钟 C8051F310 debug,speed,power,ram,外设 PIC16F87X 指令,存储器,外设,a/d
MC68HC908JB16 i/o,usb,mul&div
ADuC812 12bit a/d 凌阳SPCE061A
㈢.P2.0-P2.7:P2端口
⑴.无外存:通用准8位双向I/O口(有内部上拉电阻)
⑵.有外存:地址总线高8位
*EPROM编程时,接收地址高8位
㈣.P3.0-3.7:P3端口
⑴.通用8位准双向I/O口(有内部上拉电阻)
⑵.专用功能:
串行口: P3.0-RXD,接收 P3.1-TXD, 发送 中断申请:P3.2- INT0 P3.3-INT1 CTC: P3.4-T0 , CTC0时钟输入 P3.5-T1 , CTC1时钟输入 读写控制: P3.6- WR, 外部RAM写 P3.7- RD, 外部RAM读.
三. I/O接口电路:
并行口:4个8位端口 P0-P3,32根I/O线 串行口:1个
四.CTC:
16位CTC 2个/3个(52)
五.中断功能:
c51程序的基本结构
c51程序的基本结构一、引言C51是一种常用的单片机,它的程序结构对于初学者来说是非常重要的。
本文将介绍C51程序的基本结构,包括程序头、全局变量区、中断向量表、主函数和其他函数等。
二、程序头程序头是C51程序的第一部分,它包含了一些指令和定义,用于设置单片机的工作环境。
常见的程序头指令包括:1. #include:用于引入外部库文件;2. #define:用于定义常量;3. #pragma:用于设置编译器选项。
三、全局变量区全局变量区是C51程序中存放全局变量的区域。
全局变量在整个程序中都可以被访问,因此需要在此处进行定义。
定义全局变量时需要注意以下几点:1. 定义前需要声明数据类型;2. 变量名需要具有意义;3. 变量名不能与关键字重复。
四、中断向量表中断向量表是C51程序中存放中断服务函数地址的表格。
当单片机接收到一个中断信号时,会跳转到相应的中断服务函数执行。
在编写C51程序时,需要根据实际情况编写相应的中断服务函数,并将其地址存放在中断向量表中。
五、主函数主函数是C51程序的入口,也是程序的核心部分。
主函数包含了程序的执行逻辑和处理流程,常见的主函数结构包括:1. 初始化:设置单片机工作环境;2. 循环:执行程序循环体;3. 结束:清理资源并退出程序。
六、其他函数C51程序中还可以包含其他函数,这些函数可以被主函数或其他函数调用。
在编写其他函数时需要注意以下几点:1. 函数名需要具有意义;2. 函数名不能与关键字重复;3. 函数需要声明返回值类型和参数列表。
七、总结C51程序的基本结构包括程序头、全局变量区、中断向量表、主函数和其他函数等。
在编写C51程序时,需要按照规范进行编写,以确保程序的可读性和可维护性。
C51单片机的结构及原理
编程实例:LED闪烁
LED=0xFF; //LED全亮 delay(1000); //延时
编程实例:LED闪烁
} } ```
编程实例:按键控制LED
目的
通过按键控制LED的亮灭。
实现方法
使用单片机的IO口检测按键状态,根据按键状态控制LED的亮灭。
编程实例:按键控制LED
代码示例 ```c
sbit KEY = P2^0; //定义按键接口
首先检查电源是否正常,确保电源电压稳定 且符合单片机的工作电压范围。其次检查复 位电路是否正常,复位电路中的电容和电阻 值是否正确,以及复位引脚是否连接正确。 最后检查晶振电路是否正常,晶振是否起振, 以及晶振引脚是否连接正确。
程序无法烧录问题排查
总结词
单片机无法正常接收和存储程序,可能是由于编程器与单片机连接不良、编程器驱动程 序未安装、单片机选型不正确等引起的。
感谢您的观看
中断系统
中断系统是C51单片机中用于 实现实时处理和多任务管理的
功能模块。
中断系统能够响应外部事件 或者异常情况,并中断当前 执行的程序,转而执行相应
的中断服务程序。
中断系统包括中断控制器和多 个可编程中断源,可以通过软
件配置和控制。
03 C51单片机工作原理
指令系统与寻址方式
指令系统
C51单片机采用精简指令集结构,包 含一系列基本指令,如算术运算、逻 辑运算、数据传输等。
数据传输方式
01
内部数据传输
C51单片机内部寄存器之间进行 数据传输,通过直接读写寄存器 实现。
02
03
外部数据传输
数据格式
C51单片机与外部设备或存储器 进行数据传输,通过串行或并行 通信接口实现。
51单片机工作原理
51单片机工作原理51单片机是一种常见的微控制器,它在各种电子设备中都有着广泛的应用。
要理解51单片机的工作原理,首先需要了解它的基本结构和工作原理。
51单片机由中央处理器(CPU)、存储器、输入输出端口和定时器等部分组成。
其中,CPU是单片机的核心部分,它负责执行程序指令和控制整个系统的工作。
存储器用于存储程序和数据,输入输出端口用于与外部设备进行通信,定时器用于产生精确的时间基准。
在51单片机工作时,首先需要将程序代码下载到单片机的存储器中。
然后,CPU按照程序指令的顺序逐条执行,完成各种操作。
在执行过程中,CPU会不断地从存储器中读取指令和数据,并根据需要进行运算和逻辑判断。
同时,输入输出端口可以与外部设备进行数据交换,实现与外部世界的通信。
在实际应用中,定时器也扮演着非常重要的角色。
它可以产生各种精确的时间信号,用于控制系统的时序和节拍。
通过定时器,我们可以实现各种精密的定时和计数功能,从而满足不同应用场景的需求。
除了硬件结构外,51单片机的工作原理还与其内部的指令集和编程语言密切相关。
51单片机的指令集非常丰富,可以实现各种复杂的操作和算法。
同时,它支持多种编程语言,如汇编语言和C语言,开发人员可以根据实际需求选择合适的编程方式。
总的来说,51单片机的工作原理涉及到硬件结构、指令集和编程语言等多个方面。
只有深入理解这些内容,才能真正掌握51单片机的工作原理,并能够灵活应用于各种实际项目中。
希望通过本文的介绍,读者能够对51单片机的工作原理有一个初步的了解,同时也能够对其在实际应用中的重要性有所认识。
当然,要真正掌握51单片机,还需要进一步的学习和实践。
希望大家能够在学习和工作中不断积累经验,不断提升自己的技术水平。
这样才能更好地应用51单片机,为电子设备的开发和应用做出更大的贡献。
单片机原理及应用(C51编程)
C51语言继承了标准C语言的语法和结构,同时针对单片机的 特性进行了一些扩展和优化。
03
C51语言支持结构化编程、模块化设计和可重用性,使得程序 更加清晰、易于维护和调试。
C51编程的基本语法
变量声明
C51语言支持多种类型的变量声明,包括整 型、浮点型、字符型等。
条件语句
使用if、else if、else等关键字实现条件判断 和选择执行。
位域
用于表示二进制位,可以用来存储状 态信息或控制位。
C51编程的运算符与表达式
算术运算符
包括加、减、乘、除等基本算术运算。
逻辑运算符
包括与、或、非等逻辑运算,用于实现条 件判断。
位运算符
赋值ห้องสมุดไป่ตู้算符
包括位与、位或、位异或等位运算,可以 用于控制硬件位操作。
包括赋值、自增、自减等赋值运算,用于 修改变量值。
02
单片机具有强大的控制功能,能够实现各种数字信号处理和控制,广泛应用于 工业自动化控制、智能家居、智能仪表等领域。
03
单片机编程语言主要有汇编语言和C语言,其中C语言编程具有易学易用、可读 性强、可移植性好等优点,被广泛应用于单片机开发。
单片机的应用领域
工业自动化控制
01
单片机能够实现各种传感器数据的采集、处理和控制,广泛应
延时函数
在程序中实现一个延时函数,用于控制LED灯的闪烁频率。
按键输入的实现
硬件连接
将按键的一端连接到单片机的某个I/O口,另一端 接地。
编程实现
使用C51编程语言,通过检测I/O口的电平变化来 判断按键是否被按下。
去抖动
为了消除按键抖动对程序的影响,可以在程序中 实现去抖动算法。
零基础学单片机C语言程序设计 第5章 C51的数据结构
5.1 C51的数组
数组是把若干具有相同数据类型的变量按有序的形式组织 起来的集合。其中,数组中的每个变量称为数组元素。数 组属于聚合数据类型。一个数组可以包含多个数组元素, 这些数组元素可以是基本数据类型,也可以是聚合数据类 型。
在C51语言中,按照数组元素所属的基本数据类型,数组 可分为数值数组、字符数组、指针数组、结构数组等。其 中,指针数组将在指针部分再作介绍,结构数组将在结构 部分再作介绍。
1.指向一维数组的指针
2.指向二维数组的指针
3.指向一个由n个元素所组成的数组指针
4.指针和数组的关系
5.2.7 C51的指针数组
指针数组是同一数据类型的指针作为元素构成的数组。指 针数组中的每个数组元素都必须是指针变量。指针数组的 定义格式如下:
类型标识符 *数组名[常量表达式]; 其中,类型标识符是指针数组的类型,“[]”内的常量表
2.指针变量赋值
在C51语言中,变量的首地址是由编译系统自动分配,因此 用户不知道变量在内存中的具体地址。为了获得变量的地 址,C51语言中提供了地址运算符“&”,可以获取变量的 首地址。
&变量名
5.2.3 取址运算符和取值运算符
通过指针变量来访问其所指向的变量,需要首先定义该指
针变量。在程序中使用指针变量时,常有用到与指针变量
定义的一般形式为: 类型说明符 数组名 [常量表达式],……; 2.数组元素表示 数组元素,即数组中的变量,是组成数组的基本单元。在C51中,数组
元素是变量,其标识方法为数组名后跟一个下标。数组元素通常也称 为下标变量。数组元素表示的一般形式为:
数组名[下标]
5.1.2 一维数组
一维数组是指只有一个下标标号的数组。一维数组是一个 由若干同类型变量组成的集合,引用这些变量时可用同一 数组名。一维数组在存放时占用连续的存储单元,最低地 址对应于数组的第一个元素,最高地址对应于最后一个元 素。
C51单片机基本结构和工作原理
程序状态字PSW(Program Status Word)是一个逐位 定义的8位标志寄存器,它保存指令执行结果的特征信息, 以供程序查询和判别。其各位的定义如下:
C51单片机基本结构和工作原理
a. PSW.0(P,奇偶标志位)
每个指令周期由硬件来置位或清零用以表示累加器A 中1的位数的奇偶性,若累加器中1的位数为奇数则P=1, 否则P=0。
b. PSW.2(OV,溢出标志位)
c. PSW.3、PSW.4(RS0、RS1,工作寄存器选择控制 位)
该两位通过软件置“0”或“1”来选择当前工作寄存器 组,具体定义见表2-C151。单片机基本结构和工作原理
表2-1 工作寄存器组选择
RS1
RS0
所选中的寄存器组
0
0
寄存器0组(00H~07H)
图2-3 ALU结构
C51单片机基本结构和工作原理
②累加器ACC
累加器ACC(简称累加器A)为一个8位寄存器,它 是CPU中使用最频繁的寄存器。大部分单操作数指令的操 作数取自累加器A,很多双操作数指令的一个操作数取自 累加器A,加、减、乘和除等算术运算指令的运算结果都 存放在累加器A或AB寄存器中,在变址寻址方式中累加器 被作为变址寄存器使用。
2 80C51单片机的基本结构 和工作原理
C51单片机基本结构和工作原理
2.1 80C51单片机的组成
(1) 中央处理器(CPU)
单片机中央处理器和通用微处理器基本相同,只是增 设了“面向对象”的处理功能。如位处理、查表、多种跳 转、乘除法运算、状态检测、中断处理等,增强了实时性。
(2) 存储器
目前微型计算机和单片机的存储器主要有两种结构, 即哈佛(Harvard)结构和普林斯顿(Princeton)结构。 所谓哈佛结构,是将程序存储器和数据存储器截然分开, 分别寻址的结构;而普林斯顿结构,则是将程序和数据共 用一个存储器空间的结构。80C51系列单片机采用前者。
c51单片机电路原理
c51单片机电路原理
单片机是一种集成电路,它集成了CPU、内存、输入输出接口等组成部分,广泛应用于各种电子设备中。
C51单片机是一种经典且常用的单片机型号,具有强大的处理能力和广泛的应用领域。
C51单片机的电路原理是指将C51单片机与其他组件(如传感器、显示器、电
机等)进行相连的电路。
这些电路包括供电电路、时钟电路、复位电路、引脚连接电路等。
C51单片机需要一个稳定的电源供电。
一般情况下,我们会使用5V直流电源
来供电,通过稳压器和滤波电容确保电压的稳定性。
C51单片机内部需要一个精确的时钟频率来进行工作。
为了提供稳定的时钟信号,我们需要添加一个晶体振荡器电路,通常通过连接一个石英晶体和补偿电容来实现。
晶体振荡器的频率可以根据具体应用需求选择。
C51单片机还需要一个复位电路来确保在上电或其他异常情况下能够正确启动。
复位电路一般由复位电路芯片和电阻电容组成,当电路上电或复位信号触发时,通过自动复位电路将C51单片机复位。
最重要的是,C51单片机的引脚需要连接到其他外部组件,以实现输入输出功能。
引脚连接电路包括输入电路和输出电路。
输入电路可以通过电阻分压、开关电路等方式将外部信号输入C51单片机。
而输出电路一般需要添加电流放大器或者
继电器等元件,以控制外部设备的动作。
C51单片机的电路原理主要包括供电电路、时钟电路、复位电路和引脚连接电路。
这些电路的设计和连接要符合C51单片机的规格要求,以确保其正常运行和
稳定性。
在实际应用中,我们需要根据具体需求进行相应的电路设计和调试。
C51最小系统的电路原理
C51单片机最小系统的电路原理与制作——吴越1 C51单片机最小系统电路图及电路原理单片机最小系统,是指用最少的元件组成并可工作的单片机系统,相关的资料网上或书店都很多。
图1为一个常见的单片机最小系统电路图。
C51最小系统电路由复位电路、时钟电路组成。
另外还需要DC+5V的电源最小系统才能工作。
(1)复位电路:复位电路在单片机系统中很关键,当程序运行不正常或死机时,就需要进行复位,一般有两种复位方式。
①上电复位:由电容C3和电阻R1串联组成,系统一通电,RST脚(9脚)为高电平,这个高电平持续的时间由电路的RC值来决定。
典型的C51单片机当RST脚的高电平持续两个机器周期以上就将复位,适当组合RC的取值就可以保证可靠的复位。
一般C3取10μF、R1取10K。
也有不同取值的,原则是RC组合要在RST脚上产生2个机器周期以上的高电平。
②手动复位:由电阻R2和开关S组成,R2取值没有严格的要求,一般能把复位脚的电压下拉至0.5V以下即可,可以把R2理解为缓冲电阻或与C3、R1组成防抖动电路,也有不用R2的。
单片机通电启动后,电容C3两端的电压持续充电约为5V,此时电阻R1两端的电压接近于0V,RST脚为低电平,系统进入正常工作状态。
当按下开关S时,开关导通,电容被短路,电容释放之存储的电量。
电容两端的电压从5V降到约等于0V,电阻R1两端的电压上升到约等于5V,RST脚为高电平,系统进入复位状态。
(2)时钟电路:时钟电路由晶振CY和C1、C2组成,一般晶振的取值1.2MHz~24MHz。
典型的晶振取11.0592MHz或12MHz,11.0592MHz适用于串口通讯,12MHz适用于定时控制,C1、C2一般取15pF~50pF。
如果要自己设计单片机系统的PCB板,注意,C1、C2要紧靠晶振CY,并且晶振CY和C1、C2要紧靠C51芯片,以保证振荡器可靠的工作。
系统通电后可以检测一下晶振是否起振。
若起振,可以用示波器观察到XTAL2会输出很漂亮的正弦波波型,也可以用万用表测量(用直流档)XTAL2和地之间的电压,可以看到有2V左右的电压(有效电压值)。
c51单片机课程设计
c51单片机课程设计一、课程目标知识目标:1. 理解C51单片机的基本原理与结构,掌握其指令系统及编程方法。
2. 学会使用C51单片机进行简单的电路设计与控制系统实现。
3. 了解C51单片机在嵌入式系统中的应用,掌握相关外围电路的设计与调试。
技能目标:1. 能够运用C语言编写简单的C51单片机程序,完成基础控制功能。
2. 熟练使用Keil、Proteus等软件进行C51单片机程序的编译、仿真与调试。
3. 能够分析并解决C51单片机在实际应用中遇到的问题,具备一定的故障排查能力。
情感态度价值观目标:1. 培养学生对电子技术及嵌入式系统的兴趣,激发其创新意识与探索精神。
2. 强化学生的团队合作意识,培养其在项目实践中的沟通与协作能力。
3. 培养学生严谨、务实的科学态度,使其认识到技术对社会发展的积极作用。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程为电子技术领域的一门实践性课程,旨在培养学生的编程能力、电路设计能力及实际操作能力。
2. 学生特点:学生已具备一定的电子技术基础,具有较强的学习兴趣和动手能力,但对复杂编程及实际应用尚存一定难度。
3. 教学要求:注重理论与实践相结合,充分调动学生的积极性与主动性,提高其在实际项目中的应用能力。
二、教学内容1. C51单片机原理与结构:介绍C51单片机的硬件结构、工作原理及性能特点,对应教材第一章内容。
- 单片机内部结构- 指令系统与执行过程- 性能参数与选型2. C51单片机编程基础:学习C语言编程,掌握C51单片机程序设计方法,对应教材第二章内容。
- 数据类型、运算符与表达式- 控制语句与函数- 汇编与C语言混合编程3. C51单片机外围电路设计:学习常用外围电路的设计方法,如键盘、显示、传感器等,对应教材第三章内容。
- 键盘电路设计- 显示器接口设计- 传感器信号处理4. C51单片机应用实例:通过实际案例,学习C51单片机在嵌入式系统中的应用,对应教材第四章内容。
单片机c51原理及应用
单片机c51原理及应用单片机C51是一种常见的8位微控制器,它采用哈佛架构,由英特尔公司推出。
C51广泛应用于各种嵌入式系统中,具有体积小、功耗低、可编程性强等特点,因此在工业控制、通信、家电、汽车电子等领域有广泛的应用。
单片机C51的原理是基于哈佛架构的,即指令和数据存储在不同的存储体中。
具体来说,C51中的指令存储器称为代码存储器,用于存储程序的指令;数据存储器则用于存储程序中的数据、变量等。
C51一般包含一个中央处理器、存储器、I/O接口和定时器/计数器等功能模块。
C51的应用非常广泛,下面分别介绍其在工业控制、通信、家电和汽车电子领域的应用。
1. 工业控制:C51可用于工业自动化控制系统中。
通过与传感器、执行器等外部设备的连接,C51能够实时监测工业过程的状态,并根据需求来控制执行器的动作。
例如,在自动化流水线上,C51可根据传感器检测到的物料情况来控制传送带的速度和方向。
2. 通信:C51可以用于通信系统中。
通过串口通信模块,C51可以与其他设备进行数据交换。
例如,C51可以实现与计算机的通信,将采集到的数据发送给计算机进行处理;也可以实现与无线通信模块的通信,用于无线数据传输。
3. 家电:C51可以应用于各种家电产品中,如电视、空调、洗衣机等。
通过与传感器和控制器的连接,C51可以实现家电的自动控制和智能化。
例如,C51可以根据温度传感器采集到的数据自动调整空调的工作模式和温度设置,以达到更加舒适的室内环境。
4. 汽车电子:C51也广泛应用于汽车电子领域。
通过与汽车各种传感器和执行器的连接,C51可以实现对汽车的电子控制。
例如,C51可以与车速传感器和制动控制器连接,实现车辆的智能制动系统;也可以与发动机控制器连接,实现发动机的自动控制和故障检测。
除了上述应用领域,C51还可以应用于医疗设备、农业自动化、安防系统等多个领域。
总之,单片机C51由于其体积小、功耗低、可编程性强等特点,在各个领域都有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
5
第二节80C51的结构
一、引脚功能
• 逻辑符号图 • 片外三总线
– AB:P0口经地址锁存后提供低8位地址,P2 口直接提供高8位地址
– DB:P0口提供8位数据 – CB:EA,ALE,PSEN ,RD,WR,RST等
第二章 单片机的基本结构与工作原理
h
1
主要掌握
• 基本组成(内部资源) • 存储器的配置 • 时序及电路 • 工作方式 • I/O口的应用功能(第四章)
h
2
第一节 80C51系列单片机的结构
(以80C51为代表)讲解: 基本组成 内部结构 特殊功能寄存器
h
3
基本组成框图
h
4
第二节80C51的引脚功能
h
11
时序电路及时序
• 时钟电路 – 内部方式 – 外部方式
• 时序:注意ALE的地址锁存 – T机器=12T时钟(6个状态12拍) – 取指令 – 执行指令
h
12
第三节 80C51存储器配置
• 计算机结构分类
• ( 1 )哈佛( Harvard )型结构:哈佛 ( Harvard )型结构是将程序存储器与数据 存储器分开。一般单片机采用这种结构。
h
6
80C51的内部结构
二 、80C51的内部结构(见图P13) • 算术逻辑部件ALU • 定时控制部件 • 寄存器组
h
7
h
8
80C51CPU的结构和特点
• PC:程序地址寄存器,16位,执行指令 后自动加一,常将PC值设置成程序第一 条指令的内存地址。访问范围: 0000H~0FFFFH
• ACC:累加器,8位,特殊用途的寄存器, 专门存放操作数或运算结果。
作寄存器、位寻址和堆栈区以外的单元
都可以作为数据缓冲器使用。
h
18
2 .片内高 128 字节数据存储器 RAM
• 片内高 128 字节 RAM 中离散分布着21 (26)个特殊功能寄存器 SFR 。 如累加器 A 、寄存器 B 、程序状态字寄存 器 PSW 等。 SFR 的地址能被8整除时,可以位寻址 (11个)。
• B :8位,专门为乘除法而设置的寄存器
h
9
常用寄存器(PSW、SP、DPTR)
• PSW:程序状态字,8位,存放指令执行后 的有关状态。(见P17)
• SP:堆栈指针,8位,专门存放堆栈的栈顶 位置。遵循“先进后出”的原则。 注意:禁 止用传送指令存放数据。
• DPTR:数据地址指针,16位,存放程序存 储器的地址和外部数据存储器的地址。
• ( 2 )冯·诺依曼型结构:冯·诺依曼型结构 是对程序存储器和数据存储器不作逻辑上的 区分,共用一个存储器。
h
13
第三节 80C51存储器配置
• 存储空间:物理空间(4) 、逻辑空间(3)
• 片内/片外程序存储器64K (0000~0FFFFH)P22
• 128B的片内数据存储器(00~7FH)
h
17
( 3 )堆栈和数据缓冲区
• 堆栈是开辟在存储器中的具有“先
进后出”特点的一段缓冲区。 80C51 的
堆栈开辟在内部 RAM 的 08H~7FH 的区
域,考虑工作寄存器区和位寻址区,一
般设在 30H~7FH 范围内。复位后 SP 的
初始值为 07H 。
内部 RAM 低 128B 中,除了作为工
h
15
寄存器区的使用
• 内部RAM的00~1FH分为4个区,每个区 有8个单元,分别用R0~R7来表示。
RS1~RS2=00时: R0~R7=00H~07H的地址 RS1~RS2=01时: R0~R7=08H~0FH的地址 RS1~RS2=10时: R0~R7=10H~17H的地址 RS1~RS2=11时: R0~R7=18H~1FH的地址
可 分DPH和DPL两个独立8位寄存器使用。
h
10
程序执行前,PSW中的F0=1,RS0RS1=00 问执行下列指令后PSW中的各位的状态?
• MOV A,#0FH ADD A,#0F8H 00001111
(+) 11111000 —————— 100000111
• CY=1,AC=1,P=1
• OV=CP异或CS=1异 或1=0
h
16
( 2 )位寻址区
• 80C51 位寻址区包括两个部分。 ① 内部 RAM 的 20H ~ 2FH ,共有 16 个 RAM 单元,计 128 位,每一位都赋予一个位 地址,位地址范围 00H ~ 7FH 。 ② 特殊功能寄存器中地址能被 8 整除的单元, 位地址范围 80H ~ FFH ,共 128 位(实际使 用 93 位) 。 80C51 单片机具有布尔处理功能,布尔处理机 的存储空间就是指位寻址区。
h
22
单片机的工作方式
• 复位工作方式 • 正常工作方式 • 编程工作方式:89C51Flash • 低功耗工作方式:
待机方式(PCON的IDL=‘1’等中断) 掉电方式(PCON的PD=‘1’保护内RAM)
• 复位工作方式 • 正常工作方式 • 编程工作方式:89C51Flash • 低功耗工作方式:
待机方式(PCON的IDL=‘1’等中断) 掉电方式(PCON的PD=‘1’保护内RAM)
h
21
复位电路
• RST引脚保持两个机器周期以上的高电平 • 复位电路
– 上电复位电路 – 外部复位电路 – 外部上电复位电路 – 抗干扰复位电路
• 128B特殊功能寄存器SFR(80~0FFH离散 分布)
• 位寻址区(20H~2FH)
• 片外数据存储器64K(0000~0FFFFH)
h
14
( 1 )工作寄存器区
• 工作寄存器区的编址从 00H ~ 1FH ,共 分为四组寄存器。每个组都是 8 个单元, 各组都以 R0~R7 作为寄存器单元编号。 使用时, CPU 只能使用其中一组工作寄 存器,由程序状态字 PSW 中的 RS1 ~ RS0 两位的状态组合来进行选择。
h
19
3、片外数据存储器 RAM
• 在某些应用时,需要存储大量数据, 可扩展片外数据存储器(片外 RAM )。
•
80C51 单片机可扩展 64KB 的片外数
据存储器。其扩展的外部数据存储器与扩
展的外部I/O 口统一编址,都在同一个地
址空间内,采用相同的寻址方式,使用相
同的指令 MOVX 。
h
20
第四节单片机的工作方式