高频电路原理与分析 曾兴雯
高频电路原理与分析(曾兴雯_第四版)课后习题答案
1-3 无线通信为什么要进行凋制?如何进行调制? 答: 因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小 天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的
信号是高频信号,所以也提高了信道利用率,实现了信道复用。 调制方式有模拟调调制和数字调制。 在模拟调制中, 用调制信号去控制高频载波的某个参 数。在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB) 、单边带调幅(SSB) 、残 留单边带调幅(VSSB) ;在调频方式中,有调频(FM)和调相(PM) 。 在数字调制中,一般有频率键控(FSK) 、幅度键控(ASK) 、相位键控(PSK)等调制方法。 1-4 无线电信号的频段或波段是如何划分的?各个频段的传播特性和应用情况如何? 答: 无线电信号的频段或波段的划分和各个频段的传播特性和应用情况如下表
2
由B0.707 QL f0 B0.707
f0 得: QL 465 103 58.125 8 103
1
因为:R0 QL
Q0 100 109 171.22k 0C 2 465 103 200 1012 2 465 2
0C
1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答: 高频信号指的是适合天线发射、 传播和接收的射频信号。 采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间 的干扰; (2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时, 才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可 获得较高的接收灵敏度。
1605 535
第3章(1)《高频电子线路》_(曾兴雯)_版高等教育出版社课后答案
4 −1/2
ξ α = 1+ 4
−nБайду номын сангаас 2
20
第3章 高频谐振放大器 2. 多级双调谐放大器
21
第3章 高频谐振放大器
3. 参差调谐放大器
多级参差调谐放大器, 多级参差调谐放大器, 就是各级的调谐回路和调 谐频率都彼此不同。 谐频率都彼此不同。 目的是增加放大器总的 带宽, 带宽,同时又得到边沿较 陡峭的频率特性。 陡峭的频率特性。
③ 对高频小信号放大器的主要要求
2
第3章 高频谐振放大器
3.1 高频小信号放大器
① 功用 ②分类
③ 主要要求 增益要高,也就是放大量要大。 ☆ 增益要高,也就是放大量要大。 ☆ 频率选择性要好。频带宽度和矩形系数。 频率选择性要好。频带宽度和矩形系数。 工作稳定可靠。 ☆ 工作稳定可靠。 接收机前级放大器内部噪声要小。 ☆ 接收机前级放大器内部噪声要小。
15
第3章 高频谐振放大器 2. 放大器的性能参数 (3) 电压放大倍数
(4) 通频带
& U0 p1p2 Yfe K0 = =− 2 2 & Ub (p1 goe + p2gie + g 0 )
fo B0.707 = QL
其中: 其中:
f o = 1/(2π LC ∑ )
Q L = 1 /( ω 0 Lg ∑ )
②晶体管
是放大器的核心,电流控制和放大作用。 是放大器的核心,电流控制和放大作用。
③输出回路 LC并联谐振回路,输出变压器 及负载 并联谐振回路, 及负载YL 并联谐振回路
5
第3章 高频谐振放大器 二、放大器性能分析 1. 晶体管的高频等效电路 . (1) 混Π等效电路 等效电路
高频电路原理与分析曾兴雯
1010 可见光
X射线 宇宙射线
1020Βιβλιοθήκη 1025f/Hz/m
3×103
3×10-2
3×10-7
(3 .8 ~ 7 .8 )×1 0-7
3×10-12 3×10-17
图 1 — 4 电磁波波谱
第1章 绪论
第1章 绪论
式中: c为光速, f 和λ分别为无线电波的频率和波长, 因此, 无线电波也可以认为是一种频率相对较低的电磁 波。 对频率或波长进行分段, 分别称为频段或波段。 不同频段信号的产生、放大和接收的方法不同, 传播的 能力和方式也不同, 因而它们的分析方法和应用范围也 不同。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。 (2) 按照通信方式来分类, 主要有(全)双工、 半 双工和单工方式。 (3) 按照调制方式的不同来划分, 有调幅、 调频、 调相以及混合调制等。
任何信号都具有一定的频率或波长。 我们这里所
讲的频率特性就是无线电信号的频率或波长。 电磁波
辐射的波谱很宽, 如图 1 — 4 所示。
无线电波只是一种波长比较长的电磁波, 占据的频 率范围很广。 在自由空间中, 波长与频率存在以下关系:
第2章《高频电子线路》_(曾兴雯)_版高等教育出版社课后答案
2.2 高频电路中的基本电路
1、简单振荡回路 (1)并联谐振回路 (2)串联谐振回路
17
第2章 高频电路基础
(1)并联谐振回路 谐振特性:
振荡回路的阻抗在某一特定频率上具 有最大或最小值的特性称为谐振特性。
1 jC Zp 1 r jL j C (当 L r 时) L C 1 r j (L ) 谐振条件: C 当回路总电抗 X=0 时,回路呈谐振状态
Q0
L
r
品质因数 Q
Q 定义:高频电感器的感抗与其串联损耗电阻之比。
Q 值越高,表明该电感器的储能作用越强,损耗越小。
8
第2章 高频电路基础
2.1 高频电路中的元器件
二、高频电路中的有源器件 主要是:
二极管 晶体管
集成电路
完成信号的放大、非线性变换等功能。
9
第2章 高频电路基础
2.1 高频电路中的元器件
第2章 高频电路基础
第2章 高频电路基础
2.1 高频电路中的元器件 2.2 高频电路中的基本电路 2.3 电子噪声及其特性 2.4 噪声系数和噪声温度
1
第2章 高频电路基础
2.1 高频电路中的元器件
一、高频电路中的元件 高频电路中使用的元器件与在低频电路中使 用的元器件基本相同,但要注意它们在高频使用 时的高频特性。
号中心频率fs=10 MHz,回路电容C=50 pF,
试计算所需的线圈电感值。
(1) 若线圈品质因数为Q=100,试计算回路谐振电阻
及回路带宽。 (2) 若放大器所需的带宽B0.7=0.5 MHz,则应在回路 上并联多大电阻才能满足放大器所需带宽要求?
36
第2章 高频电路基础
(2)串联谐振回路 串联谐振回路是与并联谐振回路对偶的电路, 其基本特性与并联谐振回路呈对偶关系,通频带、 矩形系数与并联谐振回路相同。 电路组成: 电抗特性:
高频电路原理与分析(全套课件865P)
– 掌握通信电子线路的基本组成和分析、计算方法;
– 培养通信电子线路的识图、作图和简单设计能力; – 培养分析和解决通信电子线路中实际问题的能力,培养创 新实践精神; – 了解通信电子线路的最新发展动态,为后续电子课程及 电子专业打下基础。
《高频电路原理与分析》
第1章绪论
要求:
1)了解通信电子线路的特点,通信电子信息产生、发射、接收的原理与 方法; 2)熟悉基本通信电子器件的功能特点和用途; 3)掌握基本通信电子线路的电路结构、分析方法和基本设计方法; 4)掌握基本通信电子线路实验技能和安装调试方法。 通过本课程的学习,应达到下列基本要求: (一)掌握以下定义、基本概念和基本原理:串联谐振、关联谐振、接入系 数、频率特性、通频带、选择性、品质因数、松耦合双调谐、参差调谐、 Y参数、截止频率、特征频率、谐振放大倍数、自给偏压、过压状态、欠 压状态、临界状态、阻抗区配、槽路效率、正弦波振荡器、压电效应、晶 体振荡、调幅、检波、抑制载波调幅、同步检波、调频、鉴频、限幅、频 谱图、变容二极管、电抗管、锁相、捕获、锁定、跟踪、变频、混频、干 扰、噪声、输出功率和效率。
第1章绪论
课程名称: 通信电子线路
英文名称:Communication electronic circuit
教材名称及作者:西安电子科技大学出版社 曾兴雯主编《高频电路原理与分析》(第四版) 21世纪高等学校通信类规划教材
《高频电路原理与分析》
第1章绪论
本课程的特点
课程的目的、要求 目的: – 了解通信电子信息产生、发射、接收的原理与方法; – 分析通信电子器件和通信电路的工作原理;
§1-1无线通信系统概述
一、概念 通信:不失真地将信息(消息)从一方传送到另一方。
高频电路原理与分析(曾兴雯)课后习题答案
高频电路原理与分析第五版课后习题答案曾兴雯刘乃安陈健付卫红编[日期]NEUQ西安电子科技大学出版社第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。
答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。
发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。
接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。
由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。
[高频电子线路].曾兴雯第1章绪论
第1章 绪论
3. 频率特性 任何信号都具有一定的频率或波长。我们这里所讲的 频率特性就是无线电信号的频率或波长。电磁波辐射的波 谱很宽,如图 1-6 所示。
第1章 绪论
图 1-6 电磁波波谱
第1章 绪论
无线电波只是一种波长比较长的电磁波,占据的频率范
围很广。在自由空间中,波长与频率存在以下关系:
第1章 绪论
高频电子线路
学时:48+8
第1章 绪论
《高频电子线路》课程的重要性——专业基础课,承前启后 高等数学 电路分析 模电 信号与系统
高频电子线路 通信原理
第1章 绪论
电子线路的分类
工作频率:低频电子线路、高频电子线路、微波电子线路 流通的信号形式:模拟电子线路、数字电子线路 集成度的高低:分立电路和集成电路。 包含的元件性质:线性电子线路和非线性电子线路。
不同的调制信号和不同的调制方式,其调制特性不同。 调制的逆过程称为解调(Demodulation)或检波,其作用是将 已调信号中的原调制信号恢复出来。
第1章 绪论
接收机的结构:
(1)超外差:在接收过程中,将射频输入信号与本地振荡器产生的 信号混频,由混频器后的中频滤波器选出射频信号与本振信号频率 两者的和频或差频。
第1章 绪论
思考题
课后1-1,1-3,1-6
第1章 绪论
应当指出,实际的通信设备比上面所举例子要复杂 得多。比如发射机的振荡器和接收机的本地振荡器就可 以用更复杂的组件——频率合成器(FS)来代替,它可以 产生大量所需频率的信号。
第1章 绪论
在无线通信系统中通常需要某些反馈控制电路,这些反馈控 制电路主要是自动增益控制(AGC) ,自动频率控制(AFC)电路和 自动相位控制(APC)电路(也称锁相环PLL)。此外,还要考虑高频 电路中所用的元件、器件和组件,以及信道或接收机中的干扰与 噪声问题。需要说明的是,虽然许多通信设备可以用集成电路(IC) 来实现,但是上述的单元电路通常都是由有源的和无源的元器件 构成的,既有线性电路,也有非线性电路。这些基本单元电路的 组成、原理及有关技术问题,就是本书的研究对象。
《高频电路原理与分析(曾兴雯_第四版)》课件4-3
频率稳定度的分类
(1)长期稳定度: 一般指一天以上以至几个月的时间间隔内的频率相对 变化,通常是由振荡器中元器件老化而引起的。 (2)短期稳定度:
一般指一天以内,以小时、分钟或秒计时的时间间隔内频
率的相对变化。产生这种频率不稳定的因素有温度、电源电压 等。 (3)瞬时稳定度:
一般指秒或毫秒时间间隔内的频率相对变化。这种频率变
(d) 西勒振荡器
1 0
1 LC
1 LC3
1 0
1 C3
1 LC
1 L(C3 C4 )
1 1 1 1 C C1 C2 C3
C3 C1 ,C2
1 U C2 C1 K F F ( j ) b 1 Uc C2 C1
例:振荡器的电路如图所示已知 C1=100pF,C2=0.0132μF,L1=100μH,L2=300μH
(a) 电容反馈振荡器
(b) 电感反馈振荡器
1 0
1 LC
C
C1C2 C1 C2
1 0
1 LC
L=L1+L2+2M
1 U C2 C1 K F F ( j ) b 1 Uc C2 C1
K F F ( j )
L2 M L1 M
(c) 克拉泼振荡器
一、振荡器电路选择
振荡器线路主要根据工作的频率范围及波段宽 度来选择。 短波范围---电感反馈振荡器、电容反馈振荡器 中、短波收音机---变压器反馈振荡器 短波、超短波波段---电容反馈振荡器 ►在要求波段范围较宽的信号产生器中常用电感反馈 振荡器。 ►当频率稳定度要求较高,波段范围又不很宽的场合, 常用电容反馈振荡器。
1 1 Z e jX e j C 0 02 1 2
《高频电路原理与分析(曾兴雯_第四版)》课件3-4
VT
VT
LB LB
UBB
LB U BB
+
Re -
CE
RB
CB
ube
Eb' Eb
Ub
t
ib
t
ic
icmax
t
ub=Ub cosω t ube=Eb+Ub cosω t
ic=Ic0+Ic1cosωt+Ic2cos2ωt+… +Icn cosnωt+… uo=uc=Ic1RL cosωt=Uc cosωt uce=Ec-uo=Ec-Uc cosωt
3.4.1
直流馈电线路
根据直流电源连接方式的不同,可分为: 串联馈电线路:直流电源、匹配网络和晶体管三者形成串 联连接的方式。 并联馈电线路:直流电源、匹配网络和晶体管三者形成并 联连接的方式。
串联馈电
并联馈电
1.集电极馈电电路:
(1) 集电极馈电电路的组成原则:
① i c 的直流分量 I CO 除晶体 管的内阻外,应予以短路, 以保证 E C 全部加在集电极 上,避免管外电路消耗电源 功率,即 PD I CO E C
复习
1、集电极电压利用系数的定义。 2、波形系数的定义。 3、什么是高频功放的动特性? 4、高频功放有哪几种工作状态?
5、在哪种工作状态下输出功率最大?为什么?
主要内容
3.1 3.2 3.3 3.4 3.5 3.6 高频小信号放大器 高频功率放大器的原理和特性 高频功率放大器的高频效应 高频功率放大器的实际线路 高效功放与功率合成 高频集成功率放大器简介
0r 0 C
2-5
一个5MHz的基频石英晶体谐振器,C0=6pF,
《高频电路原理与分析(曾兴雯_第四版)》课件3-2
1、高频小信号放大器的特点。 2、高频小信号放大器的分类。
3、对高频小信号放大器的主要要求。
4、放大器的主要性能参数有哪些?
5、提高放大器稳定性的方法有哪几种?
6、多级单调谐放大器的性能参数与单级放大器性
能参数之间的关系。
绪论
第三章
高频谐振放大器
主要内容
3.1 3.2 3.3 3.4 3.5 3.6 高频小信号放大器 高频功率放大器的原理和特性 高频功率放大器的高频效应 高频功率放大器的实际线路 高效功放与功率合成 高频集成功率放大器简介
集成放大器应用举例
3.2
高频功率放大器的原理和特性
Hale Waihona Puke ▼高频信号的功率放大,其实质是在输入高频
信号的控制下将电源直流功率转换成高频功率。 -----------------------------------------------------------------
能量转换效率
输出信号功率 η = -----------------电源供给的直流功率
q
q
2 sin nq cosq q cos nq sin q ic cos ntd (t ) ic max n n 2 1 1 cosq
) I cmax n q
ube
Eb' Eb
Ubm
t
ib
t
ic
Icmax
t
回路输出电压: uo=uc=Ic1RL cosωt=Uc cosωt 集电极电压: uce=Ec-uo=Ec-Uc cosωt
线圈品质因数 Q0=100。在工作频率上晶体管的Y参数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任何信号都会占据一定的带宽。 从频谱特性上看, 带宽就是信号能量主要部分(一般为90%以上)所占据 的频率范围或频带宽度。
信号振幅
0
F
3F 5F 7F 9F
F
图 1 — 3 频谱图
3. 频率特性
任何信号都具有一定的频率或波长。 我们这里所
混频器
高频放大
本地 振荡器
图1—1 无线通信系统的基本组成
超外差接收机的主要特点就是由频率固定的中频放 大器来完成对接收信号的选择和放大。 当信号频率改变 时, 只要相应地改变本地振荡信号频率即可。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
(2) 按照通信方式来分类, 主要有(全)双工、 半双工和单工方式。
(3) 按照调制方式的不同来划分, 有调幅、 调频 、 调相以及混合调制等。
(4) 按照传送的消息的类型分类, 有模拟通信和 数字通信, 也可以分为话音通信、 图像通信、 数据通 信和多媒体通信等。
各种不同类型的通信系统, 其系统组成和设备的复 杂程度都有很大不同。 但是组成设备的基本电路及其 原理都是相同的, 遵从同样的规律。 本书将以模拟通 信为重点来研究这些基本电路, 认识其规律。 这些电 路和规律完全可以推广应用到其它类型的通信系统。
讲的频率特性就是无线电信号的频率或波长。 电磁波
辐射的波谱很宽, 如图 1 — 4 所示。
无线电波只是一种波长比较长的电磁波, 占据的频
率范围很广。 在自由空间中, 波长与频率存在以下关 系:
c=fλ
(1—1)
无线电波 105
紫外线
红外线
1015
1010 可见光
X射线 宇宙射线
1020
1025
f/Hz
电磁波从发射天线辐射出去后, 不仅电波的能量会 扩散, 接收机只能收到其中极小的一部分, 而且在传播过 程中, 电波的能量会被地面、 建筑物或高空的电离层吸 收或反射, 或者在大气层中产生折射或散射等现象, 从而 造成到达接收机时的强度大大衰减。 根据无线电波在 传播过程所发生的现象, 电波的传播方式主要有直射( 视距)传播、 绕射(地波)传播、 折射和反射(天波 )传播及散射传播等, 如图 1 — 5 所示。 决定传播方式 和传播特点的关键因素是无线电信号的频率。
信号的时间特性要求传输该信号的电路的时间特性( 如时间常数)与之相适应。
2. 频谱特性 对于较复杂的信号(如话音信号、 图像信号等), 用频谱分析法表示较为方便。
0 t
图 1 — 2 信号分解
信号幅度
对于周期性信号, 可以表示为许多离散的频率分量 (各分量间成谐频关系), 例如图 1 — 3即为图 1 — 2所 示信号的频谱图; 对于非周期性信号, 可以用傅里叶变换 的方法分解为连续谱, 信号为连续谱的积分。
1.1.2 无线通信系统的类型
按照无线通信系统中关键部分的不同特性, 有以下 一些类型:
(1) 按照工作频段或传输手段分类, 有中波通信 、 短波通信、 超短波通信、 微波通信和卫星通信等 。 所谓工作频率, 主要指发射与接收的射频(RF)频 率。 射频实际上就是“高频”的广义语, 它是指适合 无线电发射和传播的频率。 无线通信的一个发展方向 就是开辟更高的频段。
/m
3×10 3
3×10 -2
3×10 -7
(3 .8 ~ 7 .8 )×1 0-7
3×10 -12 3×10 -17
图 1 — 4 电磁波波谱
式中: c为光速, f 和λ分别为无线电波的频率和波 长, 因此, 无线电波也可以认为是一种频率相对较低的 电磁波。 对频率或波长进行分段, 分别称为频段或波 段。 不同频段信号的产生、放大和接收的方法不同, 传播的能力和方式也不同, 因而它们的分析方法和应用 范围也不同。
图中虚线以上部分为发送设备(发信机), 虚线以 下部分为接收设备(收信机), 天线及天线开关为收发 共用设备。 信道为自由空间。 话筒和扬声器属于通信 的终端设备, 分别为信源和信宿。
话 筒
音频 放大器
调制器
变频器
激励放大
输出功 率放大
载波 振荡器
天线开关
扬 声 器
音频 放大器
解调器
中频放大 与滤波
第1章 绪论
➢1.1 无线通信系统概述 ➢1.2 信号、频谱与调制 ➢1.3 本课程的特点 ➢思考题与习题
1.1 无线通信系统概述
高频电路是通信系统, 特别是无线通信系统的基础, 是无线通信设备的重要组成部分。
1.1.1 无线通信系统的组成
无线通信(或称无线电通信)的类型很多, 可以根据传 输方法、 频率范围、 用途等分类。不同的无线通信系 统, 其设备组成和复杂度虽然有较大差异, 但它们的基本 组成不变, 图1 —— 1是无线通信系统基本组成的方框图。
射线
(a) 电离层
ቤተ መጻሕፍቲ ባይዱ
(b) 对流层
(c)
(d)
图1— 5
(a) 直射传播; (b) 地波传播; (c) 天波传播; (d) 散射传播
5. 调制特性
无线电传播一般都要采用高频(射频)的另一个原 因就是高频适于天线辐射和无线传播。 只有当天线的尺 寸到可以与信号波长相比拟时, 天线的辐射效率才会较 高, 从而以较小的信号功率传播较远的距离, 接收天线也 才能有效地接收信号。
应当指出, 不同频段的信号具有不同的分析与实现 方法, 对于米波以上(含米波, λ≥1 m) 用集总(中)参数的方法来分析与实现, 而对于米波以 下(λ<1 m)的信号一般应用分布参数的方法来分析与 实现, 当然, 这也是相对的。
4. 传播特性
传播特性指的是无线电信号的传播方式、 传播距 离、 传播特点等。 无线电信号的传播特性主要根据其 所处的频段或波段来区分。
1.2 信号、 频谱与调制
在高频电路中, 我们要处理的无线电信号主要有三种 : 基带(消息)信号、 高频载波信号和已调信号。 所谓 基带信号, 就是没有进行调制之前的原始信号, 也称调制 信号。
1. 时间特性 一个无线电信号, 可以将它表示为电压或电流的时间 函数, 通常用时域波形或数学表达式来描述。 无线电信号的时间特性就是信号随时间变化快慢的特性。