基于投影法的车牌定位研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于投影法的车牌定位研究

摘要:车牌识别系统是近几年发展起来的基于图像处理和字符识别技术的智能化交通管理系统。车牌定位是车牌识别中的关键步骤。为了能在复杂背景和不同光照条件下快速、准确地定位车牌位置。提出了一种基于投影法的车牌定位方法。该方法首先对车牌图像实施二值化、边缘检测等预处理,然后在此基础上,利用基于双向回溯的投影法确定车牌的上下左右边界。实验结果表明,该方法定位准确。

关键词:车牌定位;行扫描;边缘检测;垂直投影

Research of License Plate Locating Method Based on Projection

Abstract: license plate recognition system is developed in recent years based on image processing and character recognition technologies intelligent traffic management system. License plate location is one of the key steps in the license plate recognition. In order to obtain accurate location of vehicle plate quickly under complicated background and different illumination condition, this paper proposes a kind of locating method based on projection. First, this method carries out preprocessing such as two-valuation and edge detection. Then the projection approach based on two-way back is adopted to examine up-down and left-right boundary of the car license. The experiment results indicate that the presented method is excellent in accuracy.

Key words: license plate location; line scanning; edge detective; vertical projection

0 引言

车牌识别系统作为数字摄像、计算机信息管理、图像分割和图形识别技术在智能交通领域的应用,是智能交通管理系统中重要的组成部分。车牌识别技术可应用于道路交通监控、交通事故现场勘察、交通违章自动记录、高速公路超速管理系统、小区智能化管理等方面[1],为智能交通管理提供了高效、实用的手段。所以对车牌识别技术的研究依然是目前高科技领域的热门课题之一。车牌识别系统的成功设计、开发和应用具有相当大的社会效益、经济效益和学术意义。

基于图像处理的车牌识别系统一般包括以下五个部分:

图1 车牌识别系统

在实际应用中,车牌识别系统必须快速、准确、鲁棒地识别出车牌。因此,在车牌识别过程中,车辆的检测、图像的采集、车牌的识别等都是重要的环节,其中关键的技术有[2]:1)车辆牌照区域定位技术,即把车牌部分的图像从整个图像中切分出来的过程。

2)车辆牌照字符切分技术,即对定位后的车牌区域中的字符进行切分和归一化处理,其中车牌的二值化和倾斜校正对于字符的切分和识别都是非常重要的。

3)车辆牌照字符识别技术,即将切分后的字符识别出来。

车牌定位是车牌识别系统完成图像采集后对图像进行处理的第一步,它的好坏直接关系到整个系统识别率的高低,并且对识别速度有很大的影响。车牌不能准确定位意味着后面的识别过程都是无效的[3]。

由于车牌背景的复杂性与车牌特征的多样性,目前仍没有一个通用的智能化的车牌定位方法。目前主要的车牌定位算法有基于彩色信息的方法、基于扫描行的方法、基于数学形态

学的方法、基于神经网络的方法等几大类,结合这些基本方法与各种优化算法又派生出许多其他定位算法。这些算法尽管在一定的条件下能够分割出车牌,但都有针对性和局限性,适用范围不大。实际应用中车牌识别系统大多安装在室外。受天气、背景、车牌磨损等很多客观的因素的影响,定位往往不理想。

本文提出一种基于投影法的车牌定位方法。该方法首先对车牌图像进行二值化、边缘检测等预处理。然后利用基于双向回溯的投影算法确定车牌的上下、左右边界,取得了良好的定位效果。

1 图像预处理

对于采集的原始彩色图像需要转换成灰度图像。由于噪声、光照等原因还要对图像进行预处理。本文提出了一种灰度化、二值化、边缘检测、图像滤波的预处理过程。

1.1 灰度化

彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。

1.2 二值化

二值图像是指整幅图像画面内仅黑、白二值的图像。在实际的车牌处理系统中,进行图像二值变换的关键是要确定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。阈值处理的操作过程是先由用户指定或通过算法生成一个阈值,如果图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为0或255,否则灰度值设置为255或0。1. 3 边缘检测

两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果,是图像分割、纹理特征提取和形状特征提取等图像分析的基础。为了对有意义的边缘点进行分类,与这个点相联系的灰度级必须比在这一点的背景上变换更有效,我们通过门限方法来决定一个值是否有效。所以,如果一个点的二维一阶导数比指定的门限大,我们就定义图像中的该点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。经过一阶的导数的边缘检测,所求的一阶导数高于某个阈值,则确定该点为边缘点,这样会导致检测的边缘点太多。可以通过求梯度局部最大值对应的点,并认定为边缘点,去除非局部最大值,可以检测出精确的边缘。一阶导数的局部最大值对应二阶导数的零交叉点,这样通过找图像强度的二阶导数的零交叉点就能找到精确边缘点。

1.4 对得到图像作开操作进行滤波

数学形态非线性滤波,可以用于抑制噪声,进行特征提取、边缘检测、图像分割等图像处理问题。腐蚀是一种消除边界点的过程,结果是使目标缩小,孔洞增大,因而可有效的消除孤立噪声点;膨胀是将与目标物体接触的所有背景点合并到物体中的过程,结果是使目标增大,孔洞缩小,可填补目标物体中的空洞,形成连通域。先腐蚀后膨胀的过程称为开运算,它具有消除细小物体,并在纤细处分离物体和平滑较大物体边界的作用;先膨胀后腐蚀的过程称为闭运算,具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。对图像做了开运算和闭运算,闭运算可以使图像的轮廓线更为光滑,它通常用来消掉狭窄的间断和长细的鸿沟,消除小的孔洞,并弥补轮廓线中的断裂。

相关文档
最新文档