2020年河南省高考数学一诊试卷(文科)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省高考数学一诊试卷(文科)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()

A.0 B.1 C.2 D.3

2.(5分)已知a∈R,复数z=,若=z,则a=()

A.1 B.﹣1 C.2 D.﹣2

3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.

已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()

A.最低气温与最高气温为正相关

B.10月的最高气温不低于5月的最高气温

C.月温差(最高气温减最低气温)的最大值出现在1月

D.最低气温低于0℃的月份有4个

4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()

A.2 B.3 C.4 D.6

5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()

A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺

6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()

A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8

7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()

A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)

8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不

唯一,则实数a的值为()

A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2

9.(5分)函数f(x)=的部分图象大致是()

A.B.C.

D.

10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2 11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2

12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()

A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=

14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.

15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1

的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.

三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)

17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;

(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.

18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);

(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.

19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.

(1)求证:B1C∥平面A1DE;

(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.

20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1

的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.

(1)求W的标准方程:

(2)求.

21.(12分)已知函数f(x)=x﹣lnx.

(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]

22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,

p的轨迹为曲线c1

(Ⅰ)写出C1的普通方程及参数方程;

(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]

23.已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;

(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)

参考答案与试题解析

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个

相关文档
最新文档