考研数学备考:概率论各章节知识点梳理.doc
概率论知识点总结精编WORD版
概率论知识点总结精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B 的和事件。
记为 A∪B。
事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。
事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为 A-B。
用交并补可以表示为B-。
A=BA互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。
互斥时BA⋃可记为A+B。
对立事件:称事件“A不发生”为事件A的对立事件(逆事件),记为A。
对立事件的性质:ΩAA,。
B⋂B==⋃Φ事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律):BA⋃BA⋂=BA⋃BA⋂=第二节事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A )贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
考研数学概率论备考重点公式与解题思路整理
考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。
本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。
一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。
那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。
1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。
2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。
概率论知识点梳理
第一章:随机事件及其概率这一章的内容基本上属于高中学过的知识,除了第三节的全概率公式和Bayes公式。
但这两个公式只是把条件概率的计算换了一种形式。
一、随机事件及运算二、概率及其运算三、条件概率四、事件的独立性第二章:随机变量这一章将随机事件抽象成数字变量,并分为离散和连续两种进行研究。
最后用函数来表达两种变量的概率分布,再推广到多维变量。
其中运用了一些微积分知识。
一、离散型随机变量介绍离散型随机变量的概念和性质,介绍几种常见的离散性随机变量如:0-1分布、二项分布、泊松分布二、随机变量的分布函数将变量值及其概率用函数联系起来。
其实就是在不同的区间上变量值的概率。
但因为离散的关系,所以更像是数列而不是函数。
三、连续型随机变量变量值有无穷多的可能,所以变量的分布函数在各个区间上是连续的。
它和离散型随机变量的关系有些类似于函数和数列的关系。
四、一维随机变量的函数分布当变量和概率是一一对应时的函数分布,有归一、单调不减等性质。
概率密度是概率分布的导数,概率分布式概率密度的积分。
涉及到已知变量与另外一个变量具有函数关系,求另一个变量概率函数分布问题。
五、二维随机变量的联合分布当变量是成对出现时,概率的函数分布,同样有归一等性质。
变量的划分从各区间变为各区域。
涉及到二重积分、全微分等知识。
六、多维随机变量及其独立性其实就是二维的推广,此处将随机事件的独立性抽象为随机变量的独立性。
七、条件分布还是将随机事件的条件分布抽象化,用数字和符号来表示。
顺便将条件分布推广到多维随机变量。
八、多维随机变量函数的分布第三章:随机变量的数字特征一、随机变量的数学期望和高中所学的期望是一个东西,类似于加权平均分,不过现在要通过概率密度和概率分布去求。
二、方差体现变量的稳定性,和高中所学相同,不过同样需要用新的概念和知识去求解。
三、协方差和相关系数协方差是一个新的概念,用来判断两个随机变量是否相关。
相关系数是用来衡量两个变量之间的相关程度的量。
考研数学备考:概率论各章节知识点梳理
考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。
下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。
1. 随机事件与概率概率论的基本概念是随机事件和概率。
随机事件是随机现象的结果,概率是事件发生的可能性大小。
在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。
2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。
这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。
同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。
3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。
这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。
4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。
这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。
同时还包括多维随机变量的独立性、相关性等概念。
5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。
这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。
6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。
中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。
这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。
7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。
这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。
8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。
这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。
考研数学概率论重要章节知识点总结
2018考研数学概率论重要章节知识点总结第一章、随机事件与概率本章需要掌握概率统计的基本概念,公式。
其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
第二章、随机变量及其分布本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。
第三章、多维随机变量的分布在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。
二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。
掌握用随机变量的独立性的判断的充要条件。
最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。
第四章、随机变量的数字特征本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。
另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。
第五章、大数定律和中心极限定理本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。
第六章、数理统计的基本概念重点在于“三大分布、八个定理”以及计算统计量的数字特征。
第七章、参数估计本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。
对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。
区间估计和假设检验只有数一的同学要求,考题中较少涉及到。
考生要对每章的出题重点做到了如指掌,加以题目训练,相信会有好的成绩!。
(完整word版)考研数学一概率论知识点概要
本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。
祝大家学有所得。
第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。
样本点:每一个可能的结果叫做一个样本点。
样本空间:全体样本点的集合,记为Ω。
随机事件:随机试验中每一个可能出现的结果,叫做随机事件。
基本事件:试验中不可再分的事件。
不可能事件:不可能发生的事件。
必然事件:必定要发生的事件。
复合事件:由两个或两个以上的事件构成的事件。
事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。
事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。
互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。
两者之一必然发生,但又不可能同时发生的事件。
事件的并:A B事件A,B中至少有一个发生,称事件A B发生。
事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。
概率:事件发生可能性大小的描述。
条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。
事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。
A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。
对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。
取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。
概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第二章随机变量及其分布第三章多维随机变量及其分布第四章随机变量的数字特征第五章大数定律及中心极限定理定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮接近于总体的率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.第七章参数估计单个总体X~N(μ,σ),两个总体X~N(μ1,σ1),Y~N(μ2,σ2).第八章假设实验。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
概率论与数理统计复习要点知识点doc
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
考研数学概率论重点整理
考研数学概率论重点整理概率论是数学中的一个重要分支,它研究随机事件的规律性。
考研数学中的概率论是一个重要的考点,在准备考试时需要重点整理和复习。
本文将从概率的基本概念、常见的概率分布以及概率计算方法等方面进行重点整理,帮助考生更好地复习概率论知识。
一、概率的基本概念1.随机试验和样本空间随机试验是指在相同的条件下可以重复进行的实验,其结果不确定。
样本空间是随机试验的所有可能结果构成的集合。
2.随机事件和事件的概率随机事件是样本空间的一个子集,表示随机试验的某种结果。
事件的概率是指事件发生的可能性大小,用P(A)表示。
3.频率与概率的关系频率是指随机事件在大量重复试验中出现的次数与总试验次数的比值。
当试验次数趋于无穷时,频率趋近于概率。
二、常见的概率分布1.离散型随机变量离散型随机变量是只取有限或可列无限个数值的随机变量,其概率分布可以用概率函数或概率分布列表示。
常见的离散型随机变量包括二项分布、泊松分布等。
2.连续型随机变量连续型随机变量是取值范围为一段连续区间的随机变量,其概率分布可以用概率密度函数表示。
常见的连续型随机变量包括正态分布、指数分布等。
三、概率计算方法1.加法定理与乘法定理加法定理适用于求两个事件的并、或概率。
乘法定理适用于求两个事件的交概率。
2.条件概率与贝叶斯定理条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
贝叶斯定理是由条件概率推导出来的计算公式,用于计算两个事件之间的概率关系。
3.独立性和互斥性独立事件是指两个事件之间相互不影响的事件,其概率计算有简化的特点。
互斥事件是指两个事件不能同时发生的事件。
四、重点题型解析1.题型一:概率计算题概率计算题是考试中的常见题型,主要涉及到加法定理、乘法定理、条件概率等知识点的应用。
解答此类题目时,需要准确理解题目要求,运用相应的概率计算方法进行计算。
2.题型二:随机变量的分布函数与密度函数求解此类题目主要考察对于离散型随机变量和连续型随机变量的概率密度函数和分布函数的求解能力。
概率论与数理统计各章重点知识整理
概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
考研数学大纲概率论重要考点总结
在考研数学中,概率与数理统计这门课程相对其他两门课程来说得分率是比较低的。
由于概率学本身的学科特点,使同学们觉得概率复习起来比较吃力。
在此为大家整理了考研数学概率论各章节重点内容,方便同学们把握重点做有效复习。
第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:1.随机事件的关系运算﹔2.求随机事件的概率﹔3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数﹔2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3.反求或判定分布中的参数﹔4.求一维随机变量在某一区间的概率﹔5.求一维随机变量函的分布。
第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
考研数学概率论总结(强烈推荐)Word版
考研数学概率论部分重难点总结概率论是考研数学必须全得的分数,其实概率论也是考验数学三驾马车中最简单的一门,代数是最难的一门,因此,学好概率论是考验数学的必须部分。
下面进行总结1.1概率这门课的特点与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
记得当初看到陈文灯复习指南概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格时,感觉其中必然会有很多内容是超纲的、不用细看;但后来复习时才发现,可以省略不看的内容少之又少,由大量的内容需要记忆。
所以对于概率部分相当多的内容都只能先死记硬背,然后通过足量做题再来牢固掌握,走一条“在记忆的基础上理解”的路。
记牢公式性质,同时保证足够的习题量,考试时概率部分20%的分值基本上就不难拿到了。
1.2概率第一章《随机事件和概率》本章内容在历年真题中都有涉及,难度一般不大。
虽然对于本章中的古典概型可以出很难的题目,但大纲的要求并不高,考试时难题很少。
填空、选择常考关于事件概率运算的题目,大多围绕形如)()(BAPABP=、)|()|(ABPABP=、)(CBAP++这样的式子利用各种概率运算公式求解;其它内容如全概率公式和贝叶斯公式在小题中和大题中都有可能考到。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
最新概率论与数理统计各章重点知识整理
最新概率论与数理统计各章重点知识整理第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
考研数学备考:概率论各章节知识点梳理
考研数学备考:概率论各章节知识点梳理考研数学备考:概率论各章节知识点梳理第一局部:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。
第二局部:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且纯熟。
第三局部:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量结合概率分布及其性质(3)二维连续型随机变量结合概率密度及其性质(4)二维随机变量结合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!第四局部:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。
第五局部:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
第六局部:数理统计的根本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵敏运用解决此类问题不在话下第七局部:参数估计(1)点估计(2)估计量的优良性(3)区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学备考:概率论各章节知识点梳理考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由我为你精心准备了“考研数学备考:概率论各章节知识点梳理”,持续关注本站将可以持续获取更多的考试资讯!
考研数学备考:概率论各章节知识点梳理
众所周知,概率论的知识点又多又杂,需要我们系统的归类并掌握,这样才能获得高分。
为此我整理了相关内容,希望对大家有所帮助。
第一部分:随机事件和概率
(1)样本空间与随机事件
(2)概率的定义与性质(含古典概型、几何概型、加法公式)
(3)条件概率与概率的乘法公式
(4)事件之间的关系与运算(含事件的独立性)
(5)全概公式与贝叶斯公式
(6)伯努利概型
其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。
第二部分:随机变量及其概率分布
(1)随机变量的概念及分类
(2)离散型随机变量概率分布及其性质
(3)连续型随机变量概率密度及其性质
(4)随机变量分布函数及其性质
(5)常见分布
(6)随机变量函数的分布
其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。
第三部分:二维随机变量及其概率分布
(1)多维随机变量的概念及分类
(2)二维离散型随机变量联合概率分布及其性质
(3)二维连续型随机变量联合概率密度及其性质
(4)二维随机变量联合分布函数及其性质
(5)二维随机变量的边缘分布和条件分布
(6)随机变量的独立性
(7)两个随机变量的简单函数的分布
其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!
第四部分:随机变量的数字特征
(1)随机变量的数字期望的概念与性质
(2)随机变量的方差的概念与性质
(3)常见分布的数字期望与方差
(4)随机变量矩、协方差和相关系数
其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。
第五部分:大数定律和中心极限定理
(1)切比雪夫不等式
(2)大数定律
(3)中心极限定理
其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
第六部分:数理统计的基本概念
(1)总体与样本
(2)样本函数与统计量
(3)样本分布函数和样本矩
其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下
第七部分:参数估计
(1)点估计
(2)估计量的优良性
(3)区间估计。