LCD行业-富相科技-LCD液晶显示器驱动系统

合集下载

LCD基本驱动原理

LCD基本驱动原理

LCD基本驱动原理LCD(液晶显示器)的基本驱动原理是利用液晶分子在电场作用下改变其排列方式来控制光的透过和阻挡,从而实现图像的显示。

下面将以液晶显示器的构造、液晶原理和驱动方法三个方面详细介绍LCD的基本驱动原理。

液晶显示器主要由三部分组成:玻璃基板,液晶层和电极层。

液晶层是一层特殊的有机化合物,它在没有电场时呈现正常或散乱的排列状态;而在有电场作用下,液晶分子会发生定向,使光线通过的情况发生改变。

电极层是由透明导电材料制成的,它能够在液晶层上施加电场。

玻璃基板用来提供结构支撑和保护。

液晶的驱动原理基于液晶分子的排列方式,液晶分为向列型和相序型两种。

向列型液晶具有向列排列,这意味着分子在没有电场作用下是按照规则排列的,在电场作用下分子会倾斜或扭曲改变光的透过和阻挡。

相序型液晶则具有无序排列,电场的作用下,它们会排列成特定的序列,使光线通过的情况发生变化。

根据液晶材料的不同,液晶显示器被分为TN (扭曲向列型)、STN(超扭曲向列型)、IPS(In-Plane Switching,平面转向型)和VA(Vertical Alignment,垂直向列型)等类型。

液晶显示器的电极层通过施加电压,产生电场。

液晶分子受到电场的作用,改变排列状态,从而改变传递的光的强度和偏振方向。

根据不同的液晶构造和目标显示效果,液晶显示器的驱动方法也有所不同。

最常用的驱动方法是矩阵驱动法,其中最常见的是被动矩阵驱动法和主动矩阵驱动法。

被动矩阵驱动法是通过将水平和垂直方向的扫描线分别与透明电极交叉连接来驱动液晶分子。

每个像素点都位于两条扫描线的交叉点上,通过施加相应的电压,控制液晶分子改变透光或阻挡光。

主动矩阵驱动法使用了一个透明的源驱动器和一个选通驱动器。

透明的源驱动器是将输入像素数据线连接到显示面板的水平行,而选通驱动器是将输出扫描线驱动到显示面板的垂直行。

通过控制源驱动器和选通驱动器的电压,选择性地驱动特定的像素点,从而控制液晶分子的排列,实现图像的显示。

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。

其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。

TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。

液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。

平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。

这种液晶分子的特性决定了TFT液晶显示器的驱动原理。

TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。

在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。

当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。

当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。

为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。

在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。

液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。

当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。

在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。

控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。

控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。

另外,TFT液晶显示器还需要背光模块来提供光源。

背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。

背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。

为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。

它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。

TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。

这些像素点由一层薄膜晶体管(TFT)驱动。

薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。

当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。

TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。

驱动电路通常由一个控制器和一组电荷泵组成。

控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。

电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。

控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。

TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。

驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。

驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。

1.扫描电路:负责控制像素点的扫描和刷新。

扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。

2.数据存储器:用于存储显示数据。

数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。

3.灰度调节电路:用于调节像素点的亮度。

通过调节像素点的电流输出,可以实现不同的亮度效果。

4.像素点驱动电路:负责控制像素点的偏振状态。

像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。

5.控制线路:用于传输控制信号。

控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。

LCD显色及驱动原理

LCD显色及驱动原理

LCD显色及驱动原理LCD(液晶显示器)是利用液晶材料的光学特性来实现图像显示的设备。

液晶材料是一种能够在电场作用下改变光传播速度的有机物质,具有具有低功耗、轻薄、色彩鲜艳等特点。

液晶显示器的显示原理基于液晶材料的光学特性。

液晶材料具有两个重要特点:扭曲型液晶和各向同性液晶。

在不施加电场时,液晶分子呈现扭曲型结构,光无法通过,并且呈现黑色。

当施加电场时,液晶分子重新排列并变为各向同性液晶,光可以通过,呈现出不同的亮度和颜色。

液晶显示器的显示过程可以分为两个阶段,即调光和色彩处理。

调光阶段是通过改变像素区域的透明程度来控制亮度的。

液晶显示器的单个像素由红、绿、蓝三个子像素组成。

每个子像素下面都有一个透明的电极板,电极板上有许多微小的透明缺口,每个缺口被称为一个亮点。

当电场作用于液晶材料时,液晶分子在亮点处排列,允许光通过,显示出亮的像素。

反之,电场消失时,液晶分子重新排列,光无法通过,显示出暗的像素。

通过对电场的控制,可以调节液晶分子的排列程度,从而控制像素的亮度。

色彩处理阶段是通过改变液晶材料分子之间的相互作用来实现颜色的显示。

液晶材料分子在不同颜色红、绿、蓝光照射下表现出不同的特性。

在液晶显示器中,通过堆积不同颜色的液晶层来产生不同的颜色。

当红、绿、蓝三个颜色的光照射到液晶分子上时,液晶分子的各向同性程度发生变化,从而导致不同的颜色显示。

液晶显示器的驱动主要分为主动矩阵驱动和被动矩阵驱动两种方式。

主动矩阵驱动是指每个像素都有一个与之对应的电容,液晶分子的排列受电场的作用,通过对每个像素施加电场的方式来控制像素的亮度和颜色。

主动矩阵驱动技术的优点是刷新速度快,显示效果好,但是需要复杂的电路和高成本。

被动矩阵驱动是指每行像素和每列像素都有电极,液晶分子排列受电场作用,通过改变行和列电极之间的交流电压的方式来控制像素的亮度和颜色。

被动矩阵驱动技术的优点是简单、低成本,但是刷新速度较慢,显示效果有限。

lcd显示驱动原理

lcd显示驱动原理

lcd显示驱动原理液晶显示器(Liquid Crystal Display, LCD)是一种利用液晶体的光学特性来输出图像的设备。

它由液晶层、驱动电路、背光源和控制电路组成。

LCD显示驱动的原理可以分为以下几个步骤:1.电压施加:通过驱动电路向液晶层施加电压,使得液晶分子朝向不同的方向排列,从而改变光的传播方式。

2.光的传播:当液晶分子排列有序时,光的传播路径会改变。

通过调整电压的变化,可以控制液晶分子的排列,从而改变光的传播路径。

3.亮度调节:通过控制电压的大小和频率,可以调节背光源的亮度,从而实现LCD显示的亮度调节。

4.像素控制:LCD面板由一个个像素组成,每个像素都有液晶分子和彩色滤光片。

通过调整液晶分子的排列和滤光片的透光性,可以控制每个像素的颜色和亮度,从而显示出图像。

总的来说,LCD显示驱动是通过驱动电路控制液晶分子的排列和背光源的亮度,从而实现像素的控制和图像显示。

控制电路会接收输入信号,并将其转化为相应的驱动信号,通过驱动电路控制液晶的排列方式和背光的亮度,最终将图像显示在LCD屏幕上。

LCD显示驱动的原理进一步细化如下:1. LCD结构:液晶显示器由液晶分子和彩色滤光片组成。

彩色滤光片负责调整光的颜色,液晶分子则负责控制光的透过与阻挡。

2. 电压控制液晶分子:液晶分子在不同的电场作用下,具有不同的排列方式。

液晶分子的排列方式会影响光的传播路径,从而实现光的显示。

通过驱动电路施加不同的电压,可以改变液晶分子的排列方式。

3. 二极管结构驱动:常见的液晶显示器驱动方式是使用二极管结构。

每个像素有一个单独的液晶分子和驱动电路,通过对每个像素的电压进行控制,可以通过改变液晶分子的排列方式来实现图像的显示。

4. 行列扫描:驱动电路会按照一定的顺序对每一行的像素进行扫描,控制电压的变化使得液晶分子的排列发生变化。

这样可以通过逐行扫描的方式将整个图像显示出来。

5. 背光控制:液晶显示器通常需要背光才能正常显示。

lcd屏幕驱动原理

lcd屏幕驱动原理

lcd屏幕驱动原理1.引言1.1 概述引言部分旨在介绍本篇文章的主要内容和背景。

本文将详细讨论LCD (Liquid Crystal Display,液晶显示器)屏幕的驱动原理。

LCD屏幕作为现代电子产品中广泛应用的显示器件之一,具有节能、清晰、轻薄等特点,被广泛应用于智能手机、平板电脑、电视、计算机显示器等设备中。

在本文中,我们将首先介绍LCD屏幕的基本原理,包括液晶分子的排列结构、光的透射和偏振特性等。

了解这些基本原理将为后续的驱动工作原理提供必要的背景知识。

接下来,本文将重点探讨LCD屏幕的驱动工作原理。

作为一种主动矩阵显示技术,LCD屏幕的驱动原理涉及到电场调控液晶分子的排列状态,从而实现像素点的显示。

我们将详细解释液晶分子在不同电压下的排列方式,以及如何通过电路信号的控制来实现各种显示效果。

通过对LCD屏幕的驱动原理进行深入的研究和探索,我们可以更好地理解其工作原理,为设计和优化LCD驱动电路提供指导和参考。

同时,我们也可以借此机会探讨一些新兴的LCD驱动技术和未来的发展趋势。

在本篇文章的后续章节中,我们将按照以上提到的大纲,分别介绍LCD 屏幕的基本原理和驱动工作原理,并在结论部分对所讨论的内容进行总结和展望。

希望通过本文的阅读,读者能够对LCD屏幕的驱动原理有一个更清晰的认识,并对相关技术的研究和应用提供一些启发和帮助。

1.2文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和每个部分的主要内容,以便读者能够更好地理解和阅读本文。

本文分为引言、正文和结论三个主要部分。

引言部分主要是对整篇文章进行概括性介绍。

首先,我们会简要概述LCD屏幕驱动原理的背景和重要性。

然后,我们将介绍文章的结构和每个部分的主要内容,以便读者能够有一个整体的把握。

正文部分是本文的主体部分,包括了LCD屏幕的基本原理和LCD屏幕驱动的工作原理。

在2.1小节中,我们将详细介绍LCD屏幕的基本原理,包括LCD的构造和LCD显示原理。

lcd驱动原理

lcd驱动原理

lcd驱动原理LCD驱动原理是指控制液晶显示器(LCD)工作的基本原理和方法。

液晶显示器是一种利用液晶材料的光学特性显示图像的平面显示器。

它通过一个特定的驱动电路将电信号转换为显示图像。

液晶显示器通常由玻璃基板、像素点阵列、驱动电路和灯管组成。

驱动电路起着核心作用,它可以控制每个像素点的电压和开关状态,以达到控制显示效果的目的。

液晶显示器通常采用被动矩阵驱动方式,即通过一个行列排布的驱动电路进行控制。

在驱动电路中,液晶材料扮演着关键角色。

液晶有两种典型状态:向列头方向扭曲和向列尾方向扭曲。

液晶分子扭曲程度决定了其透光性,从而实现信息的显示。

驱动电路通过施加电场来控制液晶分子的扭曲程度。

当电压施加到液晶层时,液晶分子会因电场作用而扭曲,从而改变光的传播路径。

通过改变施加的电压,可以控制液晶分子的扭曲程度,从而调整显示的亮度和颜色。

液晶显示器驱动电路通常由逐行扫描和逐列输出两个阵列组成。

逐行扫描阵列控制每行液晶分子的扭曲程度,逐列输出阵列则控制输出的电压。

通过逐行扫描和逐列输出的方式,可以实现对整个显示器的控制。

驱动电路还包括了时序控制和温度补偿等功能。

时序控制是为了保证电路产生准确的电压和信号,使液晶分子能够按照预定的方式扭曲。

而温度补偿则是为了解决液晶分子在不同温度下的扭曲程度不同的问题,以保证显示的准确性和稳定性。

总之,LCD驱动原理是通过控制驱动电路中液晶分子的扭曲来实现显示效果的原理。

驱动电路中的逐行扫描和逐列输出阵列,以及时序控制和温度补偿功能等,都是为了保证显示器能够正确地显示出图像和信息。

液晶显示器驱动原理介绍讲述课件

液晶显示器驱动原理介绍讲述课件

05
液晶显示器驱动技术的实 际应用
液晶显示器在电视中的应用
液晶电视
液晶显示器作为电视的核心显示部件 ,能够提供清晰、逼真的画面效果, 广泛应用于家庭和商业场合。
智能电视
随着技术的发展,液晶电视与智能技 术的结合,使得电视具备了更多的功 能,如网络浏览、视频通话等。
液晶显示器在电脑中的应用
笔记本电脑
液晶显示器驱动原 理介绍
contents
目录
• 液晶显示器的概述 • 液晶显示器的工作原理 • 液晶显示器驱动电路 • 液晶显示器驱动技术的发展趋势 • 液晶显示器驱动技术的实际应用
01
液晶显示器的概述
液晶显示器的定义与特点
定义
液晶显示器(LCD)是一种通过 液晶材料实现图像显示的设备。
特点
具有低功耗、体积小、重量轻、 无辐射等优点,广泛应用于各种 电子设备中。
智能化的液晶显示器驱动技术
智能化的液晶显示器驱动技术是液晶显示器驱动技术的最新发展方向。随着人工智能和物联网技术的 发展,智能化已经成为各种设备的必然趋势。智能化的液晶显示器驱动技术能够实现自适应调节、自 动校准等功能,提高液晶显示器的智能化水平和用户体验。
智能化的液晶显示器驱动技术主要通过引入人工智能算法、传感器技术、无线通信等技术手段实现。 这些技术手段能够使液晶显示器具备自主学习和自我调整的能力,使其在各种应用场景下都能够提供 最佳的显示效果和用户体验。
果。
液晶显示器的显示原理
010203Fra bibliotek背光系统
背光系统提供显示器所需 的基本光源,光线通过液 晶层后,由彩色滤光片决 定像素的颜色。
彩色滤光片
彩色滤光片用于决定像素 的颜色,不同颜色的像素 组合形成完整的图像。

TFTLCD液晶显示器的驱动原理详解

TFTLCD液晶显示器的驱动原理详解

TFTLCD液晶显示器的驱动原理详解1.TFT液晶显示器的像素控制TFT液晶显示器由很多个像素点组成,每个像素点由一个TFT晶体管和一个液晶单元组成。

驱动原理中的像素控制指的是对每个像素点的亮度和颜色进行控制。

首先,通过扫描线进行逐行的行选择,确定需要刷新的像素点的位置。

然后,通过控制每个像素点的TFT晶体管的门电压,来控制像素点是否导通,从而决定其亮度。

最后,通过改变液晶单元的偏振方向和强度,来调整像素点显示的颜色。

2.TFT液晶显示器的背光控制TFT液晶显示器需要背光来照亮像素点,使其显示出来。

背光控制是驱动原理中非常重要的一部分。

通常,TFT液晶显示器采用CCFL(冷阴极荧光灯)或LED(发光二极管)作为背光源。

背光的亮度可以通过控制背光源的电压或电流来实现。

在驱动原理中,通过在适当的时间段内给背光源供电,来控制背光的开关和亮度,进而实现对显示器亮度的控制。

3.TFT液晶显示器的数据传输TFT液晶显示器的驱动原理还涉及到数据的传输和刷新。

液晶显示器通常使用串行并行转换器将来自图形处理器(GPU)或其他输入源的图像信号转换为液晶显示器可接受的格式。

在驱动原理中,通过控制驱动芯片中的数据线和时钟线,将每个像素点对应的图像数据传输到相应的位置,从而实现图像的显示。

此外,TFT液晶显示器的驱动原理还包括时序控制和电压控制。

时序控制用于控制图像数据的传输速率和刷新频率,以确保图像的稳定和流畅;电压控制用于确定液晶单元的电压,以实现相应的亮度和颜色效果。

总结起来,TFT液晶显示器的驱动原理主要涉及像素控制、背光控制、数据传输、时序控制和电压控制。

每个像素点的亮度和颜色通过TFT晶体管和液晶单元的控制实现,背光通过背光源的控制实现,数据通过驱动芯片的控制传输到相应的位置。

通过精确的控制和调整,TFT液晶显示器能够呈现出清晰、鲜艳的图像。

液晶显示器 LCD工作原理及驱动方式

液晶显示器 LCD工作原理及驱动方式

液晶显示器 LCD工作原理及驱动方式一. 液晶显示器的工作原理1.什么是液晶显示器有一些物质,它们在固体加热变为液体的过程中,不是直接由固体变为液体,而是先要经一种中间状态,处于中间状态的物质外观上看是具有流动的混浊液体,但是,它们的光学性质和某些电学性质又和晶体相似.是各向异性的.如具有双折射特性.当温度继续升高时,这种浑浊液体变得透明清澈,流向同性液体.反之,这类物质从各向同性液体开始冷却时,一般也要先经过中间状态转变为固态. 这种能在某个温度范围内兼有液体和晶体二者特性的物质叫液晶,它不同于通常的固态,液态和气态,又称物质的第四态.液晶分为热质液晶和溶质液晶两大类.其中热质液晶就是前面所讲的 ,溶质液晶是由于溶液浓度发生变化而出现的液晶相. 目前所用的多是热致液晶.从液晶分子排列分三类:a.向列相液晶. 向列相液晶的长轴互相平行,但分子的重心是杂乱分布的,分子运动自由,对外界作用敏感,因此应用广.b.胆甾相液晶.分子呈扁平形,在空间形成一个螺旋结构.分子的长轴彼此平行,与向列向一样.当温度变化时,螺矩也随之变化,从而使提胆甾相显现不同的颜色.因此这种液晶可用来制作测量物体表面温度.c.近晶相液晶液晶的分子排列成层,在每层内分子长轴平行,其方向垂直于层面.各层中分子的重心杂乱分布.2.液晶显示的原理a.液晶显示器分类:L 按显示方式分透射型,反射型,和投影显示三大类.按机理分,动态散射型,扭曲向列场效应型,电控折射型,宾主效应型,相变存储型,有源矩阵型.超扭曲向列型,铁电液晶型,等等 .b.扭曲向列型 TNLCDa>. 定向薄膜.b>. 偏振光.自然光光波的振动方向在与传播方向的垂直平面内是随机分布的.它通过偏振片时,变成只沿一个方向分布的光,即为偏振光.c>.液晶中光的传播.通过起偏器形成的偏振光其振动方向与上方定向薄膜凹槽走向.一运载.当光向下传播时,光的传播方向随液晶的分子扭曲.因此进入检偏器时,光的振动方向与检偏器偏光轴一运载而能通过检偏器.为非显示状态.如果在需要显示部份,在电极上加电压,于是液晶分子长轴方向将与电场方向平行.偏振光通过液晶时不发生扭曲,因此不能通过检偏器.显示器部份该显示的地方呈非透明状态,为显示状态.d> . 反射与透射式液晶显示器. 在上述液晶显示器的背面上装一个反射板,就构成了反射式显示器,适用于明亮的环境.e>. 高容量点阵液晶显示器.如计算机显示屏,彩色平板电视屏,就是采用此类.二. 彩色液晶显示器原理.按彩色产生原理分: 彩色滤色膜方式 {TN型; STN型; VAN型; FLC型;}彩色光源方式: { TN型; STN型; FLC型}光开关彩色方式:{VAN型;PAN型;HAN型;GH方式.} 彩色滤色膜方式和彩色光源方式是利用彩色滤色膜和彩色光源用为彩色产生源,而其中的液晶单元仅仅起开关作用,因此这两种方式都叫做被动式彩色LCD.主动式彩色LCD的光开关彩色方式和GH方式中,液晶单元是过偏光子的作用使其产生双折射性和二色性的变化,直接捕捉色相变化而工作的.被动式LCD,担任光开关机能的液晶单元,其透过光是无色的黑白光.具体说,TN型,二层单元结构的D-STN型,附加位相差板的F-STN型,ECB方式的VAN 型,强电介质性液晶的FLC型.添加了黑色二色性染料的GH型等液晶单元得到了作用.1.彩色滤色膜方式的彩色LCD如图,具有黑白光开关机能的液晶单元和R,G,B,微彩色滤色膜组合,通过加法混色实现多色显示或全色显示. 按着带状.三角形等配置的R,G,B,各像素之间通常是黑底,所以提高了对比度和色纯度.一般情况下,彩色滤色膜上形成的透明电极在TFT(薄膜晶体管)驱动中作为全部的电极,而在纯矩阵驱动中作为带汰电极.这彩色Lcd的光透过率相当低,所以应附加后照光.后照光除提高LCD辉度有用外,与彩色滤色膜结合还可提高色纯度.彩色滤色片的R,G,B 吸收光,虽然因染色,颜料的色散及电沉积,印刷等有所不同,但都是宽带响应,与三波长的灯结合可实现高的色纯度.这种方法可作出:25.4---508mm的彩色LCD.用于摄相机,小型彩电等2.彩色光源方式的LCD.这种方式LCD中,彩色产生源是由彩色光源及具有黑白光开关机能的液晶构成.一般情况下使用R,G,B,三色作为彩色光源,也就是将卤光灯和氙灯等发出较强的白光,用分色镜分成R,G,B,三基色.另外在R,G,B,整个光源上使用了三个黑白光开关液晶单元,将R,G,B,的光一个个地入射到这些单元中.再用二色棱镜将由各个液晶分解生成的R图像,B图像,G图像等合成.现市场售的TV ,都是TN型和STN型液晶单元用作光开关.三. 液晶显示器驱动方式1.液晶的驱动电压要使液晶显示,两电极间所加电压应是交变的,且电压的正负幅度相同等 ,即不能有直流成份,否则易使液晶发行极化而分解,失效.另外,电压的频率不应低于30hz,否则显示闪烁;但频率也不能太高,若高于200hz液晶功耗大而发热升温,特性变差.2.静态驱动方式在电子表中一些所用位数不多的段式数码液晶显示器都使用静态驱动方式.(用异或门电路)3.点阵式LCD的时间分割驱动方式.像个人计算机的显示器就彩用点阵式,像素量大,不能使用静态驱动方式.时间分割法的原理: 电极为矩阵排列,按顺序给各电极加选通波形.通过此操作,由X电极和Y电极交点形成的像素全部可以是任意的显示状态,X电极称作为扫描电极,Y极叫作信号电极.所有X扫描电极依序加电夺波形完了,则称一个帧周期.对频率叫帧频.时间分割驱动,不仅仅对被选通的像素加电压,而且对非选通的像素加电压.(低于阈值电压).第一帧为正极驱动,第二帧为负极驱动,于是对液晶实验了两帧为周期的交流驱动,而信号电极在正极或负极的帧期间,对选通波形给-v 电位.对于非选通波形纵+V,于是在选通像素施加了波形.很显然,随着扫描电极的增加,有效电压变小,对比度下降.4.字符显示LCD在很多LCD中,在容量驱动中,就用LCD模块.如果用作图形显示,则不需字符发生器(ROM).等离子体显示屏(PDP)一. 特点工作电压低,显示屏厚度薄,有存储机能,工作寿命长从结构分: AC型PDP显示单元, DC型PDP显示单元,二. 原理:不论是AC型PDP显示单元, DC型PDP显示单元, 都是利用气体放电产生辉光进行显示的.与荧光灯的辉光放电原理是一样.在两个电极上加足够的电压引起辉光放电.因为气体中总是有少量的自由电子和正离子存在,在两极较强的电场作用下,电子和正离子都得到加速,电子在自已的行程上将气体原子电离而产生新的电子,正离子处于激发态的原子.激发态的原子回到静态而产生荧光. 在辉光放电中,靠近阴极处有一暗区,离开暗区为长度很短的阴极辉光区,阴极辉光区与阳极之间为较长的阳极辉光区.阴极与阳极爆裂间的电压主要降在阴极附近的暗区.R.G.B.荧光体受到显示单元中混合气体放电而发光的辉光照射后产生的红,绿,蓝的原理进行彩色显示.三. PDP的驱动方式.AC型PDP与DC型PDP的驱动方式相同的.分五大部份: 列驱动,行驱动,动态控制,数据缓冲器及电源部份.四. PDP的电源不论是什么型号的PDP,多利用DC-DC 或AC-DC 电源转换器供电.显示单元电压为180—250V.。

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。

lcd 驱动方式和原理

lcd 驱动方式和原理

LCD(Liquid Crystal Display,液晶显示器)驱动方式是指用于控制LCD显示像素的电流或电压的方法。

LCD的工作原理是通过改变液晶分子的排列状态来调节光的透过率,从而实现图像显示。

以下是几种常见的LCD驱动方式和原理:1. 静态驱动方式(Static Driven Method):静态驱动方式是最简单的驱动方式之一。

每一个液晶像素点由一个独立的驱动电路控制,通过施加不同的电压或电场来改变液晶的取向,从而实现显示效果。

静态驱动方式适用于小尺寸的LCD,但对于大尺寸LCD来说,由于需要大量的驱动电路,使得整体结构复杂,成本较高。

2. 动态驱动方式(Dynamic Driven Method):动态驱动方式采用行列交替驱动的方法。

将液晶显示屏分割成若干行和列,通过周期性地切换不同的行和列的驱动电压,来逐行、逐列地更新显示内容。

这种方式可以减少所需的驱动电路数量,降低成本,并适用于大尺寸的液晶显示屏。

3. 时序控制驱动方式(Timing Control Driven Method):时序控制驱动方式通过控制驱动信号的时序来控制液晶的状态和显示内容。

时序控制驱动方式广泛应用于各种尺寸的液晶显示器,可以实现高分辨率、高刷新率和多种显示模式。

4. 被动矩阵驱动方式(Passive Matrix Driven Method):被动矩阵驱动方式是一种简单且低成本的驱动方法。

它通过将液晶像素点排列成行列交错的结构,使用行和列上的电极来控制每个像素点的状态。

然而,被动矩阵驱动方式在显示质量、响应速度和观看角度方面存在一定的限制。

5. 主动矩阵驱动方式(Active Matrix Driven Method):主动矩阵驱动方式采用了TFT(Thin-Film Transistor,薄膜晶体管)技术,每个像素点都有一个对应的TFT,通过控制这些TFT 的导通和截止来改变液晶的取向,从而实现高品质的显示效果。

lcd驱动原理

lcd驱动原理

lcd驱动原理
LCD驱动原理
LCD(液晶显示器)驱动系统是一套硬件设备,它可以将电脑的显示内容(象图像,文字等)传送到液晶显示器,使显示器能够正确地显示出视觉效果。

LCD驱动系统一般由两部分组成:
1.驱动电路:它是一组具有某种特殊功能的电路,专门负责将电脑发出的指令转换为液晶显示器能够识别的指令,从而达到控制显示器正确显示图像的目的。

2.控制器:它是一种芯片,用来控制整个驱动系统的运行,将驱动电路所转换的指令顺序传送给显示器,使其能够正确显示图像。

LCD驱动系统的主要功能是控制液晶显示器的显示图像,它的结构一般有两种:一种是有外部控制器的驱动系统,这种系统一般由一个控制器和几个驱动电路组成;另一种是集成驱动系统,这种系统由一个芯片内部集成的控制器和驱动电路组成。

LCD驱动系统的主要功能有:
1. 控制显示器的显示宽度、高度、刷新频率和亮度;
2. 将图像信息从显存发送给显示器;
3. 用驱动电路控制显示器周边的接口,如触摸屏接口、视频信号接口等;
4. 控制显示器背光,使其以正确的亮度显示图像;
5. 控制显示器的旋转;
6. 控制显示器的色彩范围;
7. 控制液晶显示器的电压和频率;
8. 控制显示器的节能效果。

每个不同类型的LCD驱动系统实现的功能不尽相同,但是都需要满足上述基本功能,以使液晶显示器正常显示图像。

LCD显色及驱动原理

LCD显色及驱动原理

LCD显色及驱动原理LCD(液晶显示器)是一种以液晶为显示材料的平板显示器。

它通过电场调节液晶分子排列来控制光的透过与阻挡,从而实现图像显示。

LCD的显色原理和驱动原理如下:1.LC(液晶)分子排列:LCD中主要使用的液晶分子是向列型液晶分子(例如垂直向列型液晶,或平行向列型液晶)。

在没有电场的作用下,液晶分子呈现有序排列,光线透过时不会发生旋转,从而达到透明的状态。

如果给液晶分子加上电场,电场可以改变液晶分子排列的方向和倾斜角度,从而影响光线的透过与阻挡。

2.极化器和偏振光:LCD中存在两个正交的偏振器,称为极化器和偏振器。

极化器将光线极化为特定的方向,而偏振器只允许特定方向的光线通过。

在两个偏振器之间放置了一个液晶层。

3.透明态:当没有电场应用到液晶分子上时,液晶分子是有序排列的,光线透过时会保持原来的极化状态,通过偏振器后能够完全透过,显示器呈现出透明状态。

4.关闭态:当电场垂直于液晶分子时,液晶分子排列改变,使得光线发生旋转,轴向反转90度,称为液晶分子的扭转。

光线的旋转使得通过偏振器后的光线不再具有与偏振器方向一致的偏振状态,无法透过偏振器,显示器呈现黑色状态。

5.显示色彩:LCD显示器要显示色彩,是通过调节每个像素点的亮度和颜色来实现的。

每个像素点由三个亮度可变的基本色彩点组成,即红、绿、蓝(RGB)三原色。

通过调整液晶分子的旋转角度,通过偏振器的光线透过与阻挡,可以调节每个像素点的透过光线的亮度和颜色,从而实现对图像的显示。

6.驱动原理:LCD显示器的驱动原理是通过控制每个像素点液晶分子的电场来实现的。

每个像素点都有一个独立的电极驱动,电极会施加电场,控制液晶分子的排列方向和倾斜角度。

通过电极的电压调节,可以控制每个像素点的旋转角度,从而实现对光线的调整和图像的显示。

总体而言,LCD显示器的显色原理是通过液晶分子的电场调节来控制光的透过与阻挡,通过调节每个像素点的液晶分子旋转角度来控制光线的亮度和颜色,从而实现对图像的显示。

LCD显色及驱动原理

LCD显色及驱动原理

LCD显色及驱动原理LCD(Liquid Crystal Display),中文称液晶显示器,是一种利用液晶作为电光转换材料来显示图像的平面显示技术。

其显色及驱动原理主要包括液晶分子的取向和电场控制、液晶的色彩显示方法以及液晶显示器的驱动方式。

一、液晶分子的取向和电场控制:液晶分子是长而细的有机分子,有两种常见的取向状态:平行取向(平行于电极方向)和垂直取向(垂直于电极方向)。

液晶分子可以通过施加电场来改变其取向状态。

当电场施加时,液晶分子会旋转到与电场方向平行的方向上。

电场施加的大小和极性将决定液晶分子的取向状态。

二、液晶的色彩显示方法:1. TN(Twisted Nematic,扭曲向列)液晶显示方法:TN液晶显示器通过控制电场的强度,改变液晶分子的取向状态,从而实现颜色的显示。

液晶分子的取向状态可以将入射光分为两个相位不同的线偏振光,通过调整电场改变液晶分子的取向角度,从而控制光的偏振态,实现显示效果。

TN液晶显示器色彩饱和度较低,视角较窄。

2. IPS(In-Plane Switching,平面转换)液晶显示方法:IPS液晶显示器是一种改进的液晶显示技术。

通过在液晶层中加入聚合物,使得液晶分子旋转角度相同。

IPS液晶显示器由两层平行的玻璃基板构成,中间夹有液晶层。

通过施加电场使液晶分子取向,改变电场分布从而改变透光度,实现颜色和显示效果。

IPS液晶显示器具有更好的色彩表现和视角范围。

三、液晶显示器的驱动方式:1.静态驱动(静态矩阵):静态驱动是一种最基本的液晶显示器驱动方式。

通过交叠的水平和垂直电极网络来控制液晶分子的取向状态,从而控制像素的亮暗。

静态驱动方式简单,但需要大量的引线,复杂度较高。

2.动态驱动(动态矩阵):动态驱动是一种更先进的液晶显示器驱动方式。

使用复杂的触发器和电路,以扫描的方式控制液晶分子的取向状态。

通过利用人眼暂留特性,使得动态驱动方式下的刷新频率足够高,能够显示流畅的图像。

LCD驱动方式及显示原理

LCD驱动方式及显示原理

LCD驱动方式及显示原理LCD (Liquid Crystal Display)是一种平板显示器技术,广泛应用于电子设备的显示屏上。

LCD驱动方式及显示原理是如何实现LCD屏幕的像素控制和图像显示的关键。

下面将详细介绍LCD驱动方式及显示原理。

1.LCD驱动方式:(1)数字式驱动数字式驱动是最常用的驱动方式,通过数字信号来对LCD显示器的像素进行控制。

-静态驱动:使用固定的电压,例如使用一个稳定的电压源,用于控制LCD屏幕的每个像素。

-动态驱动:分类为1/240、1/480、1/960、1/1200等等格式。

它在特定的时钟频率下,快速切换电压,使液晶分子在两种状态之间变化。

(2)模拟式驱动模拟式驱动是通过模拟信号来控制LCD显示器的像素。

它通常用于LCD屏幕上像素点较少的低分辨率显示设备。

-逐行驱动:按照行顺序逐个驱动LCD的所有像素点。

-平面驱动:将整个屏幕划分为很多平面,并且同时驱动每个平面的像素。

2.LCD显示原理:LCD显示原理涉及到电光效应和液晶分子的操控。

(1)电光效应当电压施加在液晶材料上时,其分子将发生旋转或重新排列,从而改变透过的光的方向,从而改变液晶材料的透过性。

液晶显示屏架构中的液晶分子通常被安排成两个平行的玻璃衬底之间的夹层。

当无电压施加在液晶分子上时,它们会形成同心圆状。

而当电压施加在液晶分子上时,它们会改变形状,通常是旋转成平行或垂直的状态。

(2)液晶分子的操控液晶显示屏的构造中包含两片玻璃衬底,每个衬底上都有一个导电层。

当电压施加在导电层上时,它会在液晶分子中产生电场。

根据电场的大小和方向,液晶分子将旋转或重新排列,改变透光的方向,并实现对光的控制。

3.LCD驱动流程:(1)数据输入:控制器将图像数据(RGB值)传输到LCD驱动电路。

(2)数据解码:LCD驱动电路将输入的图像数据转换为液晶分子可理解的电信号。

(3)电场操控:通过电信号操控液晶分子的排列,将其使之平行或垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N×M STN LCDs 液晶層間隙4.5um 液晶材料:低黏滯係數
N×M圖框緩 衝記憶體
主動矩陣式液晶顯示器 AM-LCDs
TFT LCDs 等效電路
Column Driver
Row Drivers
Arrangement of Color Filter
RGBRGB RGBRGB RGBRGB
DC Bias of Common
AC Modulation Addressing of TFT LCDs
Graylevel
V0
Voltage
V7
V1
V6
V2
V5
V3
V4
V4
V3
V5
V2
V6
V1
V7
V0
Common Waveform
1Frame / 1 Line
TFT LCDs 的電光效應 Direct Addressing
• 缺點
– 視角限制。 – 外加被光源或投射光源。 – 溫度操作範圍限制。
液晶顯示器的種類
液晶 顯示器
扭轉型 (Twinst Nematic, TN) 1971 超扭轉型 (Super Twinst Nematic, STN) 1984
雙層雙扭轉型 (Double Layer STN, DSTN)1987 光相位補償超扭轉型 (Film STN, FSTN)1988 主動驅動超扭轉型 (AASTN or MLS STN) 1992 強介電型 (Ferroelectric Liquid Crystal : FLC) 1980 PDLC (Polymer Dispersive LC) 1988 PSCT (Polymer Stabilized Cholesteric Texture) 1993 Other DS (Dynamic Scattering) 1968 PC (Phase Change) 1968 GH (Guest Host) 1968 ECB (Elcetrical Control Birefregency) 1971 BTN (Bistable Twist Nematic) 1995 IPS (In Plane Switch) 1995 VA (Vertical Alignment)1996
DF
IAPT 驅動 IC
............................
IAPT 參考電壓
2D 0 2D
垂直訊號電極
2D
灰階顯示 ─ FRC
•Frame Rate Control, FRC :
灰階顯示 ─ PWM
•Pulse Width Modulation, PWM :
灰階顯示 ─ PHM
Frame Inversion Column Inversion
Row Inversion Dot Inversion
Direct Driving of TFT LCDs
V7
V6
GrayScale

V5
Voltage
V4
V3
V2
V1
V0
V0
V1
V2
V3
V4
V5
1 Frame / 1 Line
V6
V7
(d) 液晶畫素波形
(e) 水平掃描 補償波形 £GV
(f) 補償之液晶畫素波形
A
B
L
Frame Response of STN LCDs
Active Addressing for STN LCDs
Active Addressing 驅動電壓
If Voff=2V, N=240 rows, Then : F = 0.730 X 2V = 1.460V |G| = 0.954 X 2V = 21.909V
TFT
Cs on Common
Cs Common
Gate Line TFT
液晶畫素
Cs Common
Cs Gate Line
液晶畫素 Cs
Cs on Gate
Timing Chart of TFT LCDs
Gate
Frame Time
1
2
3
Time
N
TFT LCDs Driving Method
Stripe
R B G RB GRBG
R B G RB GRBG
R B G RB GRBG
Triangle
RGRG GBGB RGRG GBGB
RGRG WBWB RGRG WBWB
Pixel Structure of TFT LCDs
Cs on Common 與 Cs on Gate 架構
Data Line Data Line
TFT LCDs 的電光效應 AC Addressing
TFT LCDs Driving Waveform Cs on Common (一)
TFT LCD 驅動波形 (Cs on Common, Common = DC Bias)
TFT LCDs Driving Waveform Cs on Common (二)
Vsig
Vc
Vsig Vc Vs
Vc-Vs
Vs XOR
ON
OFF
LC Cell Vc
多工驅動法 (振幅選擇驅動法, APT)
F
0 水 平 掃 描 訊 號
T Frame 1 1234
DT

直+D
影 像
0
訊號-D
Frame 2 N 1 2 3 Column 1
Frame 1
1234
F+D
Row 1 Row 2
•Pulse High Modulation, PHM :
液晶的頻率響應
Vertical Crosstalk of STN LCDs
Vertical Crosstalk 的抑制 (一)
每兩條水平線變換一次驅動電壓極性
Vertical Crosstalk 的抑制 (二)
採用補償驅動週期
一條水平掃描線的掃描週期分割成兩部份, 一半的掃描時間是採用正極性的驅動訊號, 另一半的時間是採用負極性的驅動訊號。
T
100% 90%
Vns
Vs
TN
TN
10%
Vns Vs
V
STN STN
TN 與 STN 的電壓漂移
T
100%
TN Mode
T
100%
STN Mode
V
V
LCDs 驅動方式
•直接驅動法 (Direction Addressing)
•靜態驅動法 (Static Addressing) •多工驅動法 (Multiplex Addressing) •主動驅動法 (Active Addressing / Multi-Line Selection)
LCD行业-富相科技-LCD 液晶显示器驱动系統
2020/9/8
液晶物質的相變化
加熱 冷卻
加熱 冷卻
固體結晶
液晶
液體
液晶分子的種類
Smectic LC 層狀液晶
Nematic LC 線狀液晶
Cholesteric LC 膽固醇狀液晶
液晶分子的排列
Crystalline Liquid
Crystalline
ON OFF
+D -D
F-D +D F+D -D
Row 3
ON +D
-D
Row N
OFF +D
-D
N
0
0
0
F-D
0
液晶畫素電壓
多工驅動法的限制
1.3
1.2
1.1
1.0
100
200
APT 驅動波形
IAPT 驅動波形
APT Addressing
IAPT Addressing
APT 與 IAPT 方式比較
•Output Range of Segment Driver is about 44V. •Common Driver of Common Driver is about 3V.
Segment Voltage of Active Addressing
Active Addressing 的矩陣運算
STN LCDs Drivers 架構
串列輸入訊號 (HLHL...H)
DCLK
......移位暫存器(Shifter Register) 並列輸出
LP 偏 F+D 壓0 位 F-D 準 2D
...閂鎖暫存器(Latch Register)
HL H
H
............................ ............................
•主動矩陣驅動法 (Active Matrix Addressing)
•兩端元件 (MIM, Diode..) •三端元件 (A-Si:H TFT, Ploy-Si TFT ..)
•Plasma Addressing (PALC) •熱掃描驅動法 (雷射掃描) •光掃描驅動法 (電子速掃描
LCDs 靜態驅動法
TN 型 LCDs 顯示原理
Field OFF
Twist 90
Field ON
液晶分子
利用液晶的旋光特性 調變穿透光線
液晶的旋光特性消失
STN LCDs 顯示原理
Twist 270
Field OFF
利用液晶的雙折射 特性調變穿透光線
液晶分子
Field ON
TN & STN 電光轉移曲線 V-T Curve
行(Row)
Column Sequential 硬體架構
相关文档
最新文档