三角函数基础,两角和与差、倍角公式

合集下载

三角函数的和差公式与倍角公式

三角函数的和差公式与倍角公式

三角函数的和差公式与倍角公式三角函数是数学中的重要概念,广泛应用于各个领域。

其中,和差公式与倍角公式是三角函数中的重要内容,它们在解决三角函数的运算中起到了重要的作用。

本文将介绍三角函数的和差公式与倍角公式的概念、推导过程及应用。

一、和差公式的概念与推导和差公式是用来表示两个角的和差的三角函数关系的公式。

对于任意两个角A和B,和差公式可以表示如下:1. 两角的和的正弦函数公式:sin(A + B) = sinA * cosB + cosA * sinB2. 两角的差的正弦函数公式:sin(A - B) = sinA * cosB - cosA * sinB3. 两角的和的余弦函数公式:cos(A + B) = cosA * cosB - sinA * sinB4. 两角的差的余弦函数公式:cos(A - B) = cosA * cosB + sinA * sinB5. 两角的和的正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)6. 两角的差的正切函数公式:tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些和差公式的推导过程可以利用向量运算、三角函数性质等方法进行推导。

由于篇幅限制,本文将不进行具体的推导,但读者可以通过学习向量运算和三角函数性质,自行推导出这些和差公式。

二、倍角公式的概念与推导倍角公式是用来表示一个角的两倍角关系的三角函数公式。

对于任意一个角A,倍角公式可以表示如下:1. 正弦函数的倍角公式:sin(2A) = 2 * sinA * cosA2. 余弦函数的倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2 * cos^2(A) - 1 = 1 - 2 * sin^2(A)3. 正切函数的倍角公式:tan(2A) = 2 * tanA / (1 - tan^2(A))这些倍角公式的推导可以采用不同的方法,如三角恒等式、三角函数的平方等性质。

三角函数的积化和差与倍角公式的应用

三角函数的积化和差与倍角公式的应用

三角函数的积化和差与倍角公式的应用三角函数的积化和差公式是数学中常用的重要公式之一,它能够将两个三角函数的乘积转化为两个三角函数的和或差,从而便于进一步计算。

倍角公式则是将一个角的两倍或半角与三角函数相关联的公式,能够简化计算过程。

下面将详细介绍三角函数的积化和差公式和倍角公式的定义和应用。

一、三角函数的积化和差公式1.正弦函数的积化和差公式:sin(x ± y) = sinxcosy ± cosxsiny2.余弦函数的积化和差公式:cos(x ± y) = cosxcosy ∓ sinxsiny3.正切函数的积化和差公式:tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)1.计算三角函数的值:通过这些公式可以将一个角分解为两个已知角的和或差,从而求解三角函数的值。

2.化简复杂三角函数表达式:通过运用积化和差公式,可以将复杂的三角函数表达式化简为简单的形式,更方便计算和分析。

3.证明三角函数等式:通过使用积化和差公式可以证明一些三角函数的等式,展示三角函数之间的关系。

二、三角函数的倍角公式1.正弦函数的倍角公式:sin2x = 2sinxcosx2.余弦函数的倍角公式:cos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x3.正切函数的倍角公式:tan2x = 2tanx / (1 - tan^2x)1.导出其它角的三角函数值:通过倍角公式,可以求解一些无法直接求出的角的三角函数值。

2.化简复杂三角函数表达式:通过运用倍角公式,可以将一个较复杂的三角函数表达式化简为简单的形式。

3.求解三角方程:通过倍角公式,可以将一个角的两倍或半角与三角函数相关联,从而将一个三角方程转化为一个简单的代数方程。

综上所述,在数学中,三角函数的积化和差公式和倍角公式是非常重要的公式,它们可以帮助我们简化计算过程,求解三角函数的值,证明三角函数的等式,化简复杂的三角函数表达式,求解三角方程等。

三角函数和差公式

三角函数和差公式

1.同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-c osαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))然后用α/2代替α即可。

三角函数转换公式

三角函数转换公式

三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

两角和与差倍角半角公式

两角和与差倍角半角公式

两角和与差倍角半角公式一、两角和与差公式:两角和公式可以将两个角的三角函数之和表示为一个角的三角函数。

具体来说,对于任意两个角A和B,有以下两角和公式:1. 正弦和:sin(A + B) = sin A cos B + cos A sin B2. 余弦和:cos(A + B) = cos A cos B - sin A sin B3. 正切和:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)类似地,两角差公式可以将两个角的三角函数之差表示为一个角的三角函数。

具体来说,对于任意两个角A和B,有以下两角差公式:1. 正弦差:sin(A - B) = sin A cos B - cos A sin B2. 余弦差:cos(A - B) = cos A cos B + sin A sin B3. 正切差:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)这些公式的推导可以通过欧拉公式和三角函数的定义推导得到。

二、倍角公式:倍角公式可以将一个角的三角函数表示为另一个角的三角函数。

具体来说,对于任意角A,有以下倍角公式:1. 正弦倍角:sin(2A) = 2sin A cos A2. 余弦倍角:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A3. 正切倍角:tan(2A) = (2tan A) / (1 - tan^2 A)倍角公式的推导可以通过两角和公式和三角函数的定义推导得到。

三、半角公式:半角公式可以将一个角的三角函数表示为另一个角的三角函数。

具体来说,对于任意角A,有以下半角公式:1. 正弦半角:sin(A/2) = ±√((1 - cos A) / 2)2. 余弦半角:cos(A/2) = ±√((1 + cos A) / 2)3. 正切半角:tan(A/2) = ±√((1 - cos A) / (1 + cos A))半角公式的推导可以通过两角和公式和三角函数的定义推导得到。

5.4 两角和与差、二倍角的三角函数公式

5.4 两角和与差、二倍角的三角函数公式

高考总复习数学 高考总复习 数学

高考总复习数学 高考总复习 数学
1 + cos 2 x 1 + sin 2 x 解: f ( x) = 2 2
2 2 2 1 = ( sin 2 x + cos 2 x) + 2 2 2 2 2 π 1 = sin(2 x + ) + 2 4 2
3π 2 1 1 (I) f ( ) = sin π + = 8 2 2 2
(Ⅰ)求 f ( x) 的定义域; (Ⅱ)若角a在第一象限且
3 cos α = 5
,求 f (α )
高考总复习数学 高考总复习 数学
π sin x + ≠ 0 解:(Ⅰ) 由 2 π x ≠ kπ ( k ∈ Z ) 即
π 得 x ≠ + kπ , 2
2
π 故 f ( x) 的定义域为 x ∈ R | x ≠ kπ ,k ∈ Z 2
1 + cos 2α + sin 2α 2 cos 2 α + 2sin α cos α = = cos α cos α
14 = 2(cos α + sin α ) = 5
高考总复习数学 高考总复习 数学 【点评与感悟 点评与感悟】求值,化简,证明是三角函数中最常见的题型, 点评与感悟 其解题一般思路为 "五遇六想"即:遇到切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值; 想消元,引辅角. "五遇六想"作为解题经验的总结和概括,操 作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联 系,促进转化),两种数学思想(转化思想和方程思想),三 个追求目标(化为特殊角的三角函数值,使之出现相消项或相 约项),三种变换方法(切化弦法,消元降次法,辅助元素法).

三角函数中的和差角公式与倍角公式

三角函数中的和差角公式与倍角公式

三角函数中的和差角公式与倍角公式三角函数是数学中重要的概念之一,广泛应用于各个领域。

在三角函数的学习中,和差角公式与倍角公式是非常基础且重要的内容。

它们在解三角方程、化简三角函数表达式以及推导其他公式等方面起到了重要作用。

本文将详细介绍和差角公式与倍角公式的定义、推导以及举例应用。

一、和差角公式和差角公式是三角函数中用于表示两个角的和与差的关系的公式。

假设角 A 和 B 分别为任意两个角,则有以下和差角公式:1. 余弦和差角公式:cos(A±B) = cosAcosB ∓ sinAsinB2. 正弦和差角公式:sin(A±B) = sinAcosB ± cosAsinB3. 正切和差角公式:tan(A±B) = (tanA±tanB) / (1∓tanAtanB)推导和差角公式的方法可以通过不同的方式进行,包括几何推导、代数推导以及复数推导等。

不同的推导方法可以满足不同的需求,但最终得到的结果是相同的。

举例应用:假设 A = 30°,B = 45°,根据和差角公式可以得到:cos(30°+45°) = cos30°cos45° - sin30°sin45°sin(30°-45°) = sin30°cos45° - cos30°sin45°通过计算,可以得到具体的数值。

二、倍角公式倍角公式是三角函数中用于表示一个角的两倍的关系的公式。

假设角 A 为任意角度,则有以下倍角公式:1. 余弦倍角公式:cos2A = cos^2A - sin^2A2. 正弦倍角公式:sin2A = 2sinAcosA3. 正切倍角公式:tan2A = (2tanA) / (1 - tan^2A)倍角公式的推导可以借助和差角公式来完成,通过将和差角公式中的 A 与 B 角取相等,即可得到对应的倍角公式。

第一课时 两角和、差及倍角公式

第一课时 两角和、差及倍角公式
三角函数公式的应用策略
(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规
律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;
(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.
目录
公式的逆用及变形用
【例1】 (1)(2022·新高考Ⅱ卷)若sin(α+β)+cos(α+β)=
=-tan C.∴tan(A+B)= 3,tan A+tan B= 3(1-tan Atan B),又∵tan A
+tan
2 3
B= ,∴tan
3
Atan
1
B= .
3
答案 (2)B
目录
|解题技法|
三角函数公式的活用技巧
(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-
D.-5

解析:B tan 87°-tan 27°- 3tan 27°tan 87°=tan(87°-27°)(1+tan
27°tan 87°)- 3tan 27°tan 87°= 3(1+tan 27°tan 87°)- 3tan
27°tan 87°= 3.
目录
2.已知α,β,γ∈

π
0,
2
,sin α+sin γ=sin β,cos β+cos γ=cos α,则β-α
3
4
.

π
θ-cos sin
4
cos2
cos2 −sin2 (cos+sin)(cos−sin)


=cos

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

高考数学两角和与差及二倍角的三角函数公式课件

高考数学两角和与差及二倍角的三角函数公式课件

-23×12+ 35× 23=
15-2 6.
故选 D. 答案:D
(2)4sin 80°-csoins 1100°°=(
A. 3
B.- 3
) C. 2
D.2 3-3
解析:因
4sin
80°-csoins
1100°°=4sin
80°sin10 °-cos sin 10°
10°=
2sin
20°-cos sin 10°
10°=2sin30°-sin101°0°-cos
【规律方法】三角函数的给角求值,关键是把待求角用已 知角表示:
①已知角为两个时,待求角一般表示为已知角的和或差; ②已知角为一个时,待求角一般与已知角成“倍的关系” 或“互余、互补”的关系.
考点 2 给值求值问题 例 2:(1)(2016 年新课标Ⅰ)已知 θ 是第四象限角,且 sinθ+π4=35,则 tanθ-π4=________.
1.两角和与差的三角函数
三角函数
两角和
正弦
sin(α+β)=sin αcos β+cos αsin β
余弦
cos(α+β)=_c_o_s_α__co_s__β_-__s_in__α_si_n__β_
正切
tan(α+β)=1t-antαan+αttaannββ
简写形式 Sα+β Cα+β
Tα+β
(续表) 三角函数 正弦 余弦
考点 3 给值求角问题
例 3:已知 A,B 均为钝角,且 sin A= 55,sin B= 1100,求 A+B 的值.
解:∵A,B 均为钝角,且 sin A= 55,sin B= 1100,
∴cos A=-
1-sin2A=-
2 =-2 5

19《三角函数-两角和与差二倍角公式》

19《三角函数-两角和与差二倍角公式》

2 ,
(一)公式正用 例1、求值:
1sin555

5 2 cot 12
例2
P(53 例1)
1 2 设 . , sin , cos 2 9 2 3
50
3
求α+2β。
[点评] “给值求角”:求角的大小,常分两步 完成:第一步,先求出此角的某一三角函数 值;第二步,再根据此角的范围求出此角。 在确定角的范围时,要尽可能地将角的范围 缩小,否则易产生增解。
四.给式求值 例4:P(55例3)已知a为第二象限角,且
和sin2a+cos2a的值
5 cos sin 求 sin con 2 2 2 2 2
【作业布置】
三角函数的化简与证明
一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量 不含分母和根号 (2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简 (3)化简基本方法:用公式;异角化同角;异名 化同名;化切割为弦;特殊值与特殊角的三角函 数值互化。
一.给角求值. 例1、计算 sin 40 (tan 10
0 0
3 ) 的值。
练习:(全国高考)tan20°+4sin20°
[点评] “给角求值” 观察非特殊角的 特点,找出和特殊角之间的关系 注意特殊值象1、等,有时需将其转化 成某个角的三角函数,这种技巧在化 简求值中经常用到。
二.给值求值 例2、例2、(P(55) 已知
3 1 sin( x ) cos( x ) 4 4 4
求cos4x的值.

三角函数基础两角和与差倍角公式

三角函数基础两角和与差倍角公式

三角函数基础两角和与差倍角公式
三角函数是指以三角形为几何形状而建立起来的一类函数,它们的值
与其内角有关,受到内角变化的影响而变化。

在代数与几何科学中,三角
函数是重要的数学函数,它们涉及到若干重要的定理和公式,具有广泛的
应用,如几何学、椭圆学、力学、流体力学等等。

常用的三角函数有正弦、余弦和正切三个函数,它们又称为基本三角
函数,常缩写为sin、cos和tg。

在三角函数的基础上,还有另外六种运算及其对应的函数,即反正切、余切、反余切、反正弦、反余弦和反正切。

这六种函数称为反三角函数,
常缩写为arcsin、arccos、arctg、arccot、arcctg和arccsc。

1、两角和与差
(1)两角和:
对于任意两个以弧度度量的角α和β,其和可表示为α+β,称为
α和β的两角和。

(2)两角差:
另外,任意两个以弧度度量的角α和β,其差可表示为α-β,称
为α和β的两角差。

(1)正弦倍角公式:
对于任意角α,倍角2α的正弦可表示为:
sin2α=2sinα·cosα
(2)余弦倍角公式:
对于任意角α,倍角2α的余弦可表示为:cos2α=cos2α-sin2α
(3)正切倍角公式:
对于任意角α,倍角2α的正切可表示为:tg2α=2tgα/(1-tg2α)
(4)其他倍角公式:。

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

三角函数两角和差及二倍角公式

三角函数两角和差及二倍角公式

三角函数两角和差及二倍角公式一、三角函数的两角和差公式对于任意两个角A和B,我们定义它们的和角为C=A+B,差角为D=A-B。

三角函数的两角和差公式能够将C和D的三角函数表示成A和B的三角函数。

1.两角和公式sin(C) = sin(A + B) = sinAcosB + cosAsinBcos(C) = cos(A + B) = cosAcosB - sinAsinBtan(C) = tan(A + B) = (tanA + tanB) / (1 - tanAtanB)这些公式可以用来计算两个角的正弦、余弦和正切之和。

2.两角差公式sin(D) = sin(A - B) = sinAcosB - cosAsinBcos(D) = cos(A - B) = cosAcosB + sinAsinBtan(D) = tan(A - B) = (tanA - tanB) / (1 + tanAtanB)这些公式可以用来计算两个角的正弦、余弦和正切之差。

二、三角函数的二倍角公式对于角A,我们定义它的二倍角为B=2A。

三角函数的二倍角公式能够将B的三角函数表示成A的三角函数。

1.二倍角正弦公式sin(B) = sin(2A) = 2sinAcosA这个公式可以用来计算角A的二倍角的正弦。

2.二倍角余弦公式cos(B) = cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)这个公式可以用来计算角A的二倍角的余弦。

3.二倍角正切公式tan(B) = tan(2A) = (2tanA) / (1 - tan^2(A))这个公式可以用来计算角A的二倍角的正切。

三、证明示例我们可以通过证明示例来演示三角函数的两角和差及二倍角公式。

示例1:证明sin(A + B) = sinAcosB + cosAsinB证明:由于正弦函数的定义,我们有:sin(A + B) = sinAcosB + cosAsinB因此,得证。

015两角和与差的三角函数及二倍角公式

015两角和与差的三角函数及二倍角公式

页眉内容两角和与差的三角函数及二倍角公式、三角恒等式证明1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ;tan(α±β)= .3.公式的变式tanα+tanβ=tan (α+β)(1-tanα tanβ)1-tanα tanβ=)tan(tan tan βαβα++ 4.常见的角的变换:2α=(α+β)+(α-β);α=2βα++2βα- α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π 5.二倍角公式sin2α= ;cos2α= = = ;tan2α= .6.公式的变用:1+cos2α= ;1-cos2α= .7.三角函数式的化简的一般要求:① 函数名称尽可能少;② 项数尽可能少;③ 尽可能不含根式;④ 次数尽可能低、尽可能求出值.8.常用的基本变换方法有:异角化同角、异名化同名、异次化同次.9.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.基础过关10.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).11.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.12.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题.13.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立.14.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明.⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法.⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( ) A.71 B.7 C.- 71 D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( )A.-21B.21 C.-23 D.23 例2. 已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值.典型例题变式训练2:设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π, 求cos (α+β).例3. 若sinA=55,sinB=1010,且A,B 均为钝角,求A+B 的值.例4.化简sin 2α·sin 2β+cos 2αcos 2β-21cos2α·cos2β.变式训练4:化简:(1)2sin ⎪⎭⎫ ⎝⎛-x 4π+6cos ⎪⎭⎫ ⎝⎛-x 4π; (2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--απαπα4sin 4tan 21cos 222.1.三角函数式的化简、求值、证明等是三角变形常见的题型,三角函数式变形的过程就是分析矛盾、发现差异,进而消除差异的过程。

三角函数的和差化积与倍角公式

三角函数的和差化积与倍角公式

三角函数的和差化积与倍角公式三角函数是数学中常见的一个分支,它与三角形的关系密切相关。

在三角函数的学习中,和差化积与倍角公式是非常重要的概念和技巧。

本文将介绍三角函数的和差化积与倍角公式,并探讨它们的应用。

一、和差化积公式和差化积公式是指将两个三角函数的和(或差)转化为一个三角函数的积。

其中,和差化积公式有两个版本,分别适用于正弦函数和余弦函数。

1. 正弦函数的和差化积公式对于正弦函数的和差化积公式,有以下两个公式:正弦函数的和差化积公式1:$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm\cos(\alpha)\sin(\beta)$$正弦函数的和差化积公式2:$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp\sin(\alpha)\sin(\beta)$$其中,$\alpha$和$\beta$为任意角度。

2. 余弦函数的和差化积公式对于余弦函数的和差化积公式,有以下两个公式:余弦函数的和差化积公式1:$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp\sin(\alpha)\sin(\beta)$$余弦函数的和差化积公式2:$$\cos(\alpha \mp \beta) = \cos(\alpha)\cos(\beta) \pm\sin(\alpha)\sin(\beta)$$其中,$\alpha$和$\beta$为任意角度。

二、倍角公式倍角公式是指将一个三角函数的角度加倍转化为一个三角函数的表达式。

倍角公式同样适用于正弦函数和余弦函数。

1. 正弦函数的倍角公式对于正弦函数的倍角公式,有以下两个公式:正弦函数的倍角公式1:$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$正弦函数的倍角公式2:$$\sin^2(\alpha) = \frac{1}{2}(1 - \cos(2\alpha))$$其中,$\alpha$为任意角度。

第十四讲两角和与差的三角函数及二倍角公式

第十四讲两角和与差的三角函数及二倍角公式

第十四讲:两角和与差的三角函数及二倍角公式考向预览1、熟记两角和与差的三角函数及二倍角公式,掌握公式的特征并能灵活运用,能根据问题情境准确选用公式进行三角函数的简单恒等变形,掌握三角函数求值的基本题型与求解方法。

2、综合运用三角公式进行三角变换,常用的变换:变换角度、变换名称、变换解析式结构。

考点盘清1、两角和与差的三角函数公式:=±)sin(βα。

=±)cos(βα=±)tan(βα2、二倍角公式:=α2sin =α2tan 。

=-=ααα22sin cos 2cos =3、辅助角公式:)sin(cos sin 22ϕααα++=+b a b a ,(其中ϕ角的终边过点P(a,b ),ab =∈ϕππϕtan ]-,,().若点P 在第一象限,则ϕ取锐角;若点P 在第二象限,则ϕ取钝角;若点P 在第三象限,则ϕ取负钝角;若点P 在第四象限,则ϕ取负锐角。

4、三角变换的基本题型——化简、求值、证明(1)化简:三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中: ①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.依据三角函数式的结构,常采用的三角变换方法有:异名化同名、异次化同次、高次降次、异角化同角。

(2)求值:常见的有给值求角、给角求值、给值求值。

课前演练1.cos(45°-30°)的值为( ) A.22 B.32C.2+34 D.2+642.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( ) A.17 B .7C .-17D .-7 3.(2011·上海卷)函数y =2sin x -cos x 的最大值为 5. 4.已知cos(α-π6)+sin α=435,则sin(α+7π6)的值是( ) ()()3①给角求值的关键是正确地分析角已知角与未知角之间的关系,准确地选用公式,注意转化为特殊值.②给值求值的关键是分析已知式与待求式之间角、名称、结构的差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求待求式的值.③给值求角的关键是求出该角的某一三角函数值,讨论角的范围,求出该角.它包括无条件的恒等式和附加条件恒等式的证明.常用方法:从左推到右;从右推到左证明.;左右互推.A .-235 B.235C .-45D.455.定义运算a ⊕b =a 2-ab -b 2,则sin π6⊕cos π6=( ) A .-12+34 B .-12-34C .1+34D .1-346.(2012·永州模拟)若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x7.若1+tan x 1-tan x =2013,则1cos2x +tan2x 的值为 2013 . 8.已知tan(α+β)=25,tan(β-π4)=14,那么tan(α+π4)的值是322. 9.已知α∈(π2,π),化简21-sin α+2+2cos α=。

三角函数的和差公式和倍角公式

三角函数的和差公式和倍角公式

三角函数的和差公式和倍角公式在学习三角函数时,我们经常会遇到和差公式和倍角公式的应用。

和差公式可以帮助我们计算两个角的正弦、余弦和正切之和或差的值,而倍角公式则可以将一个角的倍角表示为另外一个角的三角函数值。

下面我们来详细介绍一下这两个公式的应用。

一、和差公式和差公式可以帮助我们计算两个角的正弦、余弦和正切之和或差的值。

1. 正弦的和差公式:sin(A ± B) = sin A cos B ± cos A sin B其中,符号“±”表示正负号可以相互替换,即“+”和“-”可以互换使用。

2. 余弦的和差公式:cos(A ± B) = cos A cos B ∓ sin A sin B同样地,符号“±”和“∓”也可以相互替换使用。

3. 正切的和差公式:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)需要注意的是,当分母tan A tan B为零时,公式不成立。

这些和差公式的应用非常广泛,尤其在计算角度之和或差的三角函数值时,非常方便。

例如,当我们需要计算sin 75°时,可以利用和差公式将其转化为sin (45° + 30°),再根据已知的sin 45°和sin 30°的值进行计算。

二、倍角公式倍角公式可以将一个角的倍角表示为另外一个角的三角函数值。

1. 正弦的倍角公式:sin 2A = 2sin A cos A使用倍角公式,可以将某个角的正弦函数值转化为另一个角的正弦函数值。

例如,当我们需要计算sin 60°时,可以利用倍角公式将其转化为sin 2×30°,再根据已知的sin 30°的值进行计算。

2. 余弦的倍角公式:cos 2A = cos² A - sin² A = 2cos² A - 1 = 1 - 2sin² A通过倍角公式,我们可以将某个角的余弦函数值转化为另一个角的余弦函数值。

三角函数基础,两角和与差倍角公式

三角函数基础,两角和与差倍角公式

练习:一、填空题1. α是第二象限角,则2α是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.同角三角函数的基本关系公式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1cos sin 22=+αα1“同角”的概念与角的表达形式无关,如: 13cos 3sin 22=+αα2tan 2cos2sinααα= 2上述关系(公式)都必须在定义域允许的范围内成立。

3由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系).②任一角的函数等于与其相邻的两个函数的积(商数关系).③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解范例:例1化简:ο440sin 12-解:原式οοοοο80cos 80cos 80sin 1)80360(sin 1222==-=+-=例2 已知αααααsin 1sin 1sin 1sin 1+---+是第三象限角,化简解:)sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+----+++=原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2222αααααααα--+=----+= 0cos <∴αα是第三象限角,Θ αααααtan 2cos sin 1cos sin 1-=----+=∴原式 (注意象限、符号)例3求证:ααααcos sin 1sin 1cos +=-分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

60角、420角都是第一象限的角,135角、225-角都就认为这个角不属于任何一个象限的角一定是锐角吗0
~90
的角一定是锐角吗二、终边重合的角
例子:我们可以用集合表示所有与60角终边重合的角36060,}k Z +∈60=,集合中也包括了60本身.
所有与角α终边重合的角连同角α在360,k α+都可以表示成角与整数个周角的和.
250; ); x
x cos cos +
练习:
一、填空题
1. α是第二象限角,则2
α
是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为
.
同角三角函数的基本关系公式:
αααtan cos sin = ααα
cot sin cos = 1cot tan =⋅αα 1cos sin 22=+αα
1︒“同角”的概念与角的表达形式无关,如: 13cos 3sin 2
2
=+αα
2tan 2
cos
2sin
ααα
= 2︒上述关系(公式)都必须在定义域允许的围成立。

3︒由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系).
②任一角的函数等于与其相邻的两个函数的积(商数关系).
③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例:
例1化简: 440sin 12-
解:原式
80cos 80cos 80sin 1)80360(sin 122
2
==-=+-=
例2 已知α
α
αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简
解:)
sin 1)(sin 1()
sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+---
-+++=
原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2
222ααααα
ααα--+=----+= 0cos <∴αα是第三象限角, αα
α
ααtan 2cos sin 1cos sin 1-=----+=
∴原式 (注意象限、符号)
例3求证:
α
α
ααcos sin 1sin 1cos +=-
分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足
tan15
tan15
= cos15sin8cos7sin15sin8
+-= 一定是 ( D .不确定。

相关文档
最新文档