图像预处理方法

合集下载

多模医学图像预处理和融合方法

多模医学图像预处理和融合方法

法规和隐私
医学图像的隐私保护和法规限制也是 一大挑战。
未来发展方向和趋势
深度学习技术的进一步应 用
高维医学图像分析
个性化医疗
多学科交叉合作
随着深度学习技术的不断发展,其在医学 图像处理中的应用也将更加广泛。
随着多模医学图像数据的不断增加,高维 医学图像分析将成为未来的一个重要研究 方向。
基于大数据和人工智能的个性化医疗将进 一步发展,为多模医学图像预处理和融合 方法提供更多的应用场景。
01
多模医学图像预处理和融 合方法的挑战和未来发展
面临的挑战
技术复杂性
多模医学图像预处理和融合方法涉及 的技术非常复杂,需要深入的专业知 识和理解。
数据异质性
不同模态的医学图像在空间分辨率、 对比度等方面可能存在差异,增加了 融合的难度。
噪声和干扰
医学图像中可能存在噪声和干扰,如 设备误差、运动伪影等,对融合结果 产生负面影响。
利用不同模态图像的拉普拉斯金字塔进行融合,以突出边缘 和细节信息。
基于区域或块的融合方法
区域相似性融合法
将图像分割成若干区域,根据区域相似度进行融合。
基于块的融合法
将图像分块,根据块内的像素信息进行融合。
基于模型的融合方法
贝叶斯框架法
利用贝叶斯定理建立模型,对多模态图像进行融合。
神经网络法
利用深度学习等神经网络技术对多模态图像进行融合。
多学科交叉合作将进一步加强,包括医学 、计算机科学、物理学、生物医学工程等 学科的交叉融合,推动多模医学图像预处 理和融合方法的发展。
01
结论
研究成果总结
01
医学图像预处理
在医学图像预处理方面,研究者们提出了多种方法,包括去噪、图像增

图像处理技术在目标检测中的使用方法研究

图像处理技术在目标检测中的使用方法研究

图像处理技术在目标检测中的使用方法研究概述:目标检测是计算机视觉领域中的一个重要研究方向,旨在从图像或视频中准确地识别出特定的目标。

近年来,随着深度学习的发展,图像处理技术在目标检测中的应用呈现出了越来越广阔的前景。

本文将通过研究目标检测中常用的图像处理技术,探讨其使用方法及效果。

一、图像预处理对于目标检测任务来说,图像预处理是一个关键的步骤,其目的是通过一系列的处理操作,尽可能地提取出目标的关键特征,从而提高检测的准确性和稳定性。

常用的图像预处理技术包括:1. 图像尺寸调整:将图像调整为固定的尺寸,确保输入的图像在尺寸上具有一致性。

2. 图像增强:通过增强图像的对比度、色彩、清晰度等方面,使目标在图像中更加显著、容易被检测到。

3. 去噪处理:通过降低图像的噪声水平,减少目标检测时可能出现的误检情况。

二、特征提取在目标检测中,特征提取是一个不可或缺的步骤,用于从图像中提取出具有代表性的特征来描述目标。

常见的特征提取方法包括:1. 基于颜色特征:通过提取目标的颜色信息,例如颜色直方图、颜色矩阵等,来描述目标的特征。

2. 基于纹理特征:利用纹理信息,如灰度共生矩阵、小波变换等,描述目标的纹理特性。

3. 基于形状特征:通过提取目标的几何形状、轮廓等特征,来描述目标的形状特性。

三、目标检测算法1. 传统的目标检测算法传统的目标检测算法主要包括基于模板匹配的方法、基于特征的方法和基于统计的方法等。

这些方法依赖于事先定义的特征或模型,对目标的检测效果受限。

2. 基于深度学习的目标检测算法深度学习的兴起为目标检测带来了革命性的变化,其中最有代表性的算法是基于卷积神经网络(Convolutional Neural Network,简称CNN)的方法,如Faster R-CNN、YOLO、SSD等。

这些方法通过在大规模数据集上进行训练,能够自动地学习到图像中目标的特征,并实现准确、高效的目标检测。

四、图像分割技术图像分割是目标检测中的一个重要环节,其目的是将图像分割成若干个具有相似特征的子区域。

图像预处理流程

图像预处理流程

图像预处理流程:图2。

2图像预处理流程图2.2系统功能的实现方法系统功能的实现主要依靠图像处理技术,按照上面的流程一一实现,每一部分的具体步骤如下:1原始图像:由数码相机或其它扫描装置拍摄到的图像;2预处理:对采集到的图像进行灰度化、图像增强,滤波、二值化等处理以克服图像干扰;3字轮定位:用图像剪切的方法获取仪表字轮;4字符分割:利用字符轮廓凹凸检测定位分割方法得到单个的字符;5字符识别:利用模板匹配的方法与数据库中的字符进行匹配从而确认出字符,得到最后的仪表示数。

2。

3.1MATLA B简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是矩阵实验室(MatrixLaboratory)的简称,和Mathem atica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

2。

3.2MATLAB的优势和特点1、MATLAB的优势(1)友好的工作平台和编程环境MATLAB由一系列工具组成.这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。

图像识别中常见的预处理技术(九)

图像识别中常见的预处理技术(九)

图像识别中常见的预处理技术图像识别是计算机视觉领域的一个重要研究方向,它通过对图像进行处理和分析,使计算机能够理解和识别图像中的内容。

在图像识别中,预处理技术起着至关重要的作用。

本文将介绍图像识别中常见的预处理技术,并分析其应用和效果。

一、图像去噪图像去噪是图像预处理的一项基础工作。

图像中的噪声会影响到图像的质量和后续处理的效果,因此在进行图像识别之前,首先需要对图像进行去噪处理。

常用的图像去噪方法有中值滤波、均值滤波和高斯滤波等。

中值滤波通过计算像素邻域的中值来去除噪声,适用于椒盐噪声等。

均值滤波通过计算像素邻域的平均值来去除噪声,适用于高斯噪声等。

高斯滤波通过计算像素邻域的加权平均值来去除噪声,并能保持图像的细节特征。

二、图像增强图像增强是指对图像的明暗、对比度等参数进行调整,以提高图像的视觉效果。

图像增强可以改善图像的可视化效果,同时也能提高图像在识别算法中的准确性。

常见的图像增强方法有直方图均衡化、对数变换和伽马变换等。

直方图均衡化通过将直方图拉伸到整个灰度范围内,来增强图像的对比度。

对数变换通过对图像的像素值进行对数变换,来增强图像的低对比度区域。

伽马变换通过对图像的灰度级进行非线性映射,来增强图像的亮度和对比度。

三、图像标准化图像标准化是指对图像的尺度、方向和光照等进行校正,以便于后续的图像识别。

图像标准化可以消除因图像采集设备和环境等因素引起的差异,提高图像识别的鲁棒性。

常见的图像标准化方法有尺度标准化、方向标准化和光照标准化等。

尺度标准化通过将图像缩放到固定的尺寸,来消除尺度的差异。

方向标准化通过计算图像的梯度方向,来将图像的方向统一到一个范围内。

光照标准化通过对图像的亮度进行校正,来消除光照的差异。

四、图像分割图像分割是将图像划分成若干个具有独立特征的区域或对象的过程。

图像分割可以将复杂的图像场景分解为易于识别的子图像,提高图像识别的准确性和效率。

常见的图像分割方法有阈值分割、边缘检测和区域生长等。

图像处理基本方法

图像处理基本方法

图像处理的基本步骤针对不同的目的,图像处理的方法不经相同。

大体包括图像预处理和图像识别两大模块。

一、图像预处理:结合识别复杂环境下的成熟黄瓜进行阐述,具体步骤如下:图像预处理阶段的流程图对以上的图像流程进行详细的补充说明:图像预处理的概念:将每一个文字图像分检出来交给识别模块识别,这一过程称为图像预处理。

图像装换和图像分割以及区域形态学处理都是属于图像处理的基本内容之一。

图像转换:方法:对原图像进行灰度化处理生成灰度矩阵一一降低运算速度(有具体的公式和方程),中值滤波去噪声一一去除色彩和光照的影响等等。

图像分割:传统方法:基于阈值分割、基于梯度分割、基于边缘检测分割和基于区域图像割等方法。

脉冲耦合神经网络(PCNN)是针对复杂环境下的有效分割方法,分割的时候如果将一个数字图像输入PCNN,则能基于空间邻近性和亮度相似性将图像像素分组,在基于窗口的图像处理应用中具有很好的性能。

区域形态学处理:对PCNN分割结果后还存在噪声的情况下,对剩余的噪声进行分析,归类属于哪一种噪声。

是孤立噪声还是黏连噪声。

采用区域面积统计法可以消除孤立噪声。

对于黏连噪声,可以采用先腐蚀切断黏连部分,再膨胀复原目标对象,在进行面积阙值去噪,通过前景空洞填充目标,最后通过形态学运算,二值图像形成众多独立的区域,进行各连通区域标识,利于区域几何特征的提取。

二、图像识别:图像识别流程图提取目标特征:目标特征就是的研究对象的典型特点,可以包括几何特征和纹理特征。

对于几何特征采用的方法:采用LS-SVM支持向量机对几何特征参数进行处理,通过分析各个参数的分布区间来将目标和周围背景区分开,找出其中具有能区分功能的决定性的几何特征参数。

纹理特征方法:纹理特征中的几个参数可以作为最小二乘支持向量机的辅助特征参数,提高模型的精准度。

最小二乘支持向量机介绍:首先选择非线性映射将样本从原空间映射到特征空间,以解决原空间中线性不可分问题,在此高维空间中把最优决策问题转化为等式约束条件,构造最优决策函数,并引入拉格朗日乘子求解最优化问题,对各个变量求偏微分。

生物图像分析技巧

生物图像分析技巧

生物图像分析技巧生物图像分析技巧是生物学研究中重要的一环,通过对生物图像进行深入分析,可以揭示生物体的结构、功能以及与疾病之间的关系。

本文将介绍一些常用的生物图像分析技巧,帮助我们更好地理解和应用这些技巧。

一、图像预处理图像预处理是生物图像分析的第一步,旨在消除图像中的噪声、增强图像的对比度等。

常用的图像预处理方法包括平滑滤波、直方图均衡化、边缘检测等。

平滑滤波可以消除图像中的噪声,直方图均衡化可以增强图像的对比度,而边缘检测可以提取图像中的边缘信息。

二、图像分割图像分割是将图像划分成若干个具有独特特征的区域的过程。

常见的图像分割方法包括基于阈值的分割、基于边缘的分割、基于区域的分割等。

基于阈值的分割是将图像的像素根据其灰度值与预设的阈值进行比较,将像素分类为目标或背景。

基于边缘的分割是通过检测图像中的边缘来进行分割,而基于区域的分割则是将图像分成若干个具有相似特征的区域。

三、特征提取特征提取是生物图像分析的关键步骤,用于从图像中提取出有用的信息。

常用的特征提取方法包括颜色特征提取、纹理特征提取、形状特征提取等。

颜色特征提取可以提取图像中物体的色彩信息,纹理特征提取可以提取图像中物体的纹理信息,而形状特征提取则可以提取图像中物体的形状特征。

四、分类与识别分类与识别是将图像分为不同的类别或识别图像中的目标物体的过程。

常见的分类与识别方法包括基于模型的方法、基于特征的方法、基于机器学习的方法等。

基于模型的方法是通过建立数学模型来描述不同类别的图像,从而将其分类或识别。

基于特征的方法是通过提取图像中的特征,并利用这些特征来进行分类或识别。

而基于机器学习的方法则是利用训练样本来训练分类器或识别器,从而实现对新样本的分类或识别。

五、应用领域生物图像分析技巧广泛应用于各个生物学研究领域,包括医学影像分析、细胞图像分析、动物行为分析等。

在医学影像分析中,生物图像分析技巧可以用于疾病的诊断和治疗。

在细胞图像分析中,生物图像分析技巧可以用于细胞的形态特征提取和分类。

图像预处理流程

图像预处理流程

图像预处理流程:图2.2图像预处理流程图2.2系统功能的实现方法系统功能的实现主要依靠图像处理技术,按照上面的流程一一实现,每一部分的具体步骤如下:1原始图像:由数码相机或其它扫描装置拍摄到的图像;2预处理:对采集到的图像进行灰度化、图像增强,滤波、二值化等处理以克服图像干扰;3字轮定位:用图像剪切的方法获取仪表字轮;4字符分割:利用字符轮廓凹凸检测定位分割方法得到单个的字符;5字符识别:利用模板匹配的方法与数据库中的字符进行匹配从而确认出字符,得到最后的仪表示数。

2.3.1 MATLA B简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB 爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

2.3.2 MATLAB的优势和特点1、MATLAB的优势(1)友好的工作平台和编程环境MATLAB由一系列工具组成。

《envi图像预处理》课件

《envi图像预处理》课件

几何校正
目的:消除图像中的几何变形 方法:使用控制点进行校正 控制点选择:选择具有明显特征的点 校正结果:得到无变形的图像
图像增强
亮度调整:提高图像亮度,使图像更清晰 对比度调整:增强图像对比度,使图像细节更明显 锐化处理:提高图像锐度,使图像边缘更清晰 色彩调整:调整图像色彩,使图像色彩更丰富
实例1:图像去噪处理,对 比处理前后的图像质量
实例4:图像融合处理,对 比处理前后的图像融合效果
Part Six
envi图像预处理的 未来发展
envi图像预处理技术的发展趋势
智能化:利用深度 学习、人工智能等 技术,实现图像的 自动预处理
高效化:提高图像 预处理的速度和效 率,降低计算成本
多样化:开发更多 类型的预处理算法, 满足不同应用场景 的需求
envi图像预处理在地理信息系统中的应用
地理信息系统(GIS):用于管理、分析和显示地理数据
Envi图像预处理:对遥感图像进行预处理,提高图像质量
应用:在GIS中,预处理后的遥感图像可以用于地形分析、土地利用分类、植被监测 等
优势:预处理后的遥感图像可以提高GIS分析的准确性和效率
envi图像预处理在环境监测中的应用
遥感图像处理:用于提取地物信息, 如土地利用、植被覆盖等
工业检测:用于产品质量检测,如 缺陷检测、尺寸测量等
添加标题
添加标题
添加标题
添加标题
医学图像处理:用于疾病诊断和治 疗,如CT、MRI等
军事侦察:用于战场侦察和情报分 析,如目标识别、地形分析等
Part Five
envi图像预处理的 效果评估
envi图像预处理
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 e n v i 图 像 预 处 理

图像处理技术的图像预处理与增强技巧

图像处理技术的图像预处理与增强技巧

图像处理技术的图像预处理与增强技巧图像处理技术是一个广泛应用于各个领域的技术,在现代社会中被广泛应用于图像分析、图像识别、电影特效等多个领域。

而图像预处理与增强技巧则是在实际应用中非常重要的一环,它可以通过一系列处理方法对原始图像进行改进和优化,以提高图像的质量和清晰度,使后续的图像处理工作更加准确和有效。

一、图像预处理技术1. 去噪处理:图像在采集和传输的过程中常常会受到噪声的干扰,因此去除噪声是图像预处理的首要任务。

常用的去噪方法包括均值滤波、中值滤波和高斯滤波等,它们可以有效地减少图像中的噪声点,提高图像的信噪比。

2. 图像均衡化:图像均衡化是一种通过调整图像的像素值分布,使图像的直方图在亮度和对比度上更加均匀的方法。

它可以提高图像的视觉效果,增强图像的细节和轮廓,使图像更加清晰和易于理解。

3. 图像去除背景:在某些图像处理任务中,需要将图像中的目标对象与背景进行分离,以便进行后续的处理。

图像去除背景是一种常见的预处理技术,它可以通过使用阈值分割、边缘检测等方法,将图像中的目标对象与背景进行有效分离。

二、图像增强技术1. 锐化处理:图像经过传输和处理后常常会失去一些细节和清晰度,这时可以使用图像增强技术来提高图像的清晰度和边缘细节。

锐化处理可以通过加强图像的高频分量来增强图像的边缘和细节,常用的方法包括拉普拉斯滤波和unsharp mask 等。

2. 对比度增强:对比度是图像中不同亮度级别之间的差异程度,对比度增强可以使图像中的不同区域之间的亮度差异更加明显。

常用的对比度增强方法包括直方图均衡化和直方图拉伸等,它们可以改变图像的像素值分布,提高图像的视觉效果和细节展现。

3. 颜色增强:颜色是图像中的重要特征,对图像的理解和识别起着重要作用。

颜色增强可以通过调整图像的色调、饱和度和亮度等参数来增强图像的色彩表现力和视觉效果,使图像更加鲜艳和生动。

总结:图像预处理与增强技巧在图像处理技术中起着非常重要的作用。

图像预处理技术

图像预处理技术
内,这时得到的图像可能是一个模糊不清、没有灰度层次的图像。采用
上述线性变换对图像中每一个像素灰度作线性拉伸,可使图像中相邻像
素灰度的差值增加,进而有效改善图像视觉效果。
3.1 图像的灰度变换
3.1.1线性变换
在 Matlab 环境中,采用函数 imadjust( )对图像进行灰度值
线性变换,常用语法有:
素”的赋值操作。
g( x , y )
d
g ( x, y)
d c
f x , y a c
ba
c
a
b
灰度变换曲线
f ( x , y)
3.1 图像的灰度变换
3.1.1线性变换
将灰度值小于a 的像素的灰度值全部映射为c ,将灰度值大于b的像素的
灰度值全部映射为d。
在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围
3.2 图像的几何变换
3.2.4插值
2) 双线性插值
在该方法中输出像素的值是它在输入图像中 2×2 的邻域采
样点的加权平均值,它根据某像素周围 4 个像素的灰度值在水
平和垂直两个方向上对其插值。
对于一个目的像素,设置坐标通过反向变换得到的浮点坐
标为 ( + , + ),其中 、均为非负整数,、为 区间的
直方图均衡化的基本思想是把原始图像的直方图变换为均匀分布的形式,这
样就增加了像素灰度值的动态范围,从而可达到增强图像整体对比度的效果。
3.1 图像的灰度变换
3.1.4直方图均衡化
I=imread('mengwa.jpg'); %载入原始图像
I1=rgb2gray(I);
figure,imshow(I1);

图像预处理方法

图像预处理方法

预处理就是在图像分析中,对输入图像进行特征抽取等前所进行的处理;输入图像由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声,对比度不够等缺点;另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和位置不确定;为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对图像进行预处理;图像预处理的主要目的是消除图像中无关的信息,滤除干扰、噪声,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征抽取的可靠性.人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作;人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别;归一化工作的目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像4; 2.1 几何规范化由于图像在提取过程中易受到光照、表情、姿态等扰动的影响,因此在识别之前需要对图像做归一化的预处理4,通常以眼睛坐标为基准点,通过平移、旋转、缩放等几何仿射变换对人脸图像进行归一化;因为人脸虽然是柔性的三维曲面,同一人脸因表情变化会有差异,但相对而言人的两眼之间的距离变化不会很大,因此双眼的位置及眼距,就成为人脸图像归一化的依据;定位眼睛到预定坐标,将图像缩放至固定大小;通过平移、旋转、缩放等几何仿射变换,可以对人脸图像做几何规范化处理,仿射变换的表达式为: ]100][1,,[]1,,[323122211211a a a a a a v u y x = 2-1 其中u,v 表示输入图像中像素的坐标x,y 表示输出图像中像素的坐标;将上式展开可得322212312111u a x a v a u a y a v a ++=++= 2-2平移变换就是给图像中的所有点的坐标都加上u ∆和v ∆ ,其变换表达式为]1u 01001][1,,[]1,,[v v u y x ∆∆= 2-3将图像中的所有点相对于坐标原点逆时针旋转θ角的变换表达式为]1000cos sin 0sin cos ][1,,[]1,,[θθθθ-=v u y x 2-4 缩放变换既是将图像按给定的比例r 放大或缩小,当1>r 时图像被放大,当10<<r 时图像被缩小,其变换表达式为]1000000r][1,,[]1,,[r v u y x = 2-5本论文在对人脸图像特征提取之前,首先对所有的图像进行几何规范化,将两个人眼的位置固定在同一位置上,结果如图2.1,图2.2所示;图2.1 几何规范化之前的人脸图像图2.2 几何规范化后的人脸图像2.2 灰度级插值图像经过空间变换后,变换后的空间中各像素的灰度值应该等于变换前图像对应位置的像素值;但实际情况中,图像经过几何变换后,某些像素会挤压在一起或者分散开来,使得变换后图像的一些像素对应于变换前图像上非整数坐标的位置,为此需要通过插值求出这些像素的灰度值,通常采用的方法有最近邻插值、双线性插值和双三次插值;2.2.1 最近邻插值最近邻插值是一种最简单的插值方法,输出的像素灰度值就是输入图像中预期最邻近的像素的灰度值,这种方法的运算量非常小,但是变换后图像的灰度值有明显的不连续性,能够放大图像中的高频分量,产生明显的块状效应;2.2.2 双线性插值双线性插值输出像素的灰度值是该像素在输入图像中22领域采样点的平均值,利用周围四个相邻像素的灰度值在垂直和水平两个方向上做线性插值;这种方法和最近邻插值法相比,计算量稍有增加,变换后图像的灰度值没有明显的不连续性,但双线性插值具有低通滤波的性质,会导致高频分量信息的部分丢失,图像轮廓变得模糊不清;2.2.3 双三次插值双三次插值利用三次多项式来逼近理论上的最佳正弦插值函数,其插值邻域的大小为44,计算时用到周围16个相邻像素的灰度值,这种方法的计算量是最大的,但能克服前两种插值方法的缺点,计算精度较高;2.3 灰度规范化灰度规范化是通过图像平滑、直方图均衡化、灰度变换等图像处理方法来改善图像质量,并将其统一到给定的水平;2.3.1 图像平滑图像平滑处理的目的是为了抑制噪声,改善图像质量,可以在空间域和频域中进行;常用的方法包括:邻域平均、空域滤波和中值滤波等;邻域平均法是一种局部空间域处理的方法,它用像素邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑;由于图像中的噪声属于高频分量,空域滤波法采用低通滤波的方法去除噪声实现图像平滑;中值滤波是一种非线性处理技术,能抑制图像中的噪声;它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的像素数很少,而图像则是由像素较多、面积较大的小块构成12;无论是直接获取的灰度图像,还是由彩色图像转换得到的灰度图像,里面都有噪声的存在,噪声对图像质量有很大的影响;进行中值滤波不仅可以去除孤点噪声,而且可以保持图像的边缘特性,不会使图像产生显著的模糊,比较适合于实验中的人脸图像;中值滤波的步骤:1将模板在图中漫游,并将模板中心与图中某个像素位置重合;2读取模板下各对应像素的灰度值;3将这些灰度值从小到大排成一列;4找出这些值里排在中间的一个;5将这个中间值赋给对应模板中心位置的像素;由以上步骤可以看出,中值滤波的主要功能就是让与周围像素灰度值的差比较大的像素改取与周围像素值接近的值,所以它对孤立的噪声像素的消除能力是很强的;由于它不是简单的取均值,所以产生的模糊比较少;换句话说,中值滤波即能消除噪声又能保持图像的细节13;实例如下:图2.3 原始图像与55中值滤波后的效果图2.3.2 直方图均衡化灰度直方图反映了图像中每一灰度级与具有该灰度级的像素出现的频率之间的关系,可以表示为: Nn P k k )r ( 2-6 其中,k r 表示第k 个灰度级,k n 为第k 级灰度的像素数,N 为一幅图像的像素总数,灰度直方图是图像的重要统计特征,可以被认为是图像灰度概率密度函数的近似,直方图均衡化就是将图像的灰度分布转换为均匀分布;对于对比度较小的图像来说,其灰度直方图分布集中在某一较小的范围之内,经过均衡化处理后,图像所有灰度级出现的概率相同,此时图像的熵最大,即图像包含的信息量最大;以r 和s 分别表示归一化了的原图像灰度和直方图均衡化后的图像灰度,Tr 为变换函数,则在0,1区间内任意一个r 经变换后都对应一个s ,)(r T s =;)(r T 应满足下列条件:1.s 在0,1区间内为单调递增函数;2.在0,1区间内,反变换)(1s T r -=也存在,且为单调递增函数;条件1保证了灰度级从黑到白的次序,条件2确保了映射后的像素灰度在允许的范围内;有概率论论可知,已知随机变量r 的概率密度函数为)(r P r ,而随机变量s 是r 的函数,则随机变量s 的概率密度函数)(s P s 可由)(r P r 求出;假定随机变量s 的分布函数)(s F s ,根据分布函数的定义:dr r P ds s P s F rr s s s ⎰⎰∞-∞-==)()()( 2-7 根据概率密度函数和分布函数之间的倒数关系,将上式两边对s 求导得: )(s-1|)()(s T r r s ds dr r P s P -=∞=⎰ 2-8 从上式可以看出,通过变换函数)r (T 可以控制图像灰度的概率密度函数,因为直方图均衡化有1)(=s P s ,则:)]([)(r T d dr r P ds r == 2-9两边积分得:⎰==rr r P r T 0)()(s 2-10 上式表明变换函数为原图像直方图的累计函数;对于灰度为离散的数字图像来说,用频率代替概率,变换函数)(r T 的离散形式可以表示为: ∑∑=====k l l k l l r k k Nn r P r T s 00)()( 2-11 式中:1r 0≤≤k ,L L k ,1...2,1,0-=,L 为灰度级数目;示例如下:图2.4 直方图均衡化前后的图像由两幅图像处理前后的效果变化可以看出经过直方图均衡化后,图像的细节更加清楚,直方图各灰度等级的分布更加平衡;2.3.3 灰度变换灰度拉伸又叫对比度拉伸,它是最基本的一种灰度变换,使用的是最简单的分段线性变换函数,它是将原图像亮度值动态范围按线性关系扩展到指定的范围或整个动态范围;它的主要思想是提高图像处理时灰度级的动态范围,适用于低对比度图像的处理,一般由两个基本操作组成:⑴直方图统计,来确定对图像进行灰度拉伸的两个拐点;⑵灰度变换,根据步骤⑴确定的分段线性变换函数进行像素灰度值的映射;实例如下:图2.5 原始图像以及灰度拉伸处理后的效果由两幅图像处理前后的效果变化可以看出灰度拉伸后增强了图像的对比度,使得图像细节更加的突出;通过灰度变换,将不同图像的灰度分布参数统一调整到预定的数值,称为灰度归一化,通常是调整图像灰度分布的均值和均方差分别为0和1;设一幅尺寸为N M *的图像的灰度值分布可以用矩阵),i (j I 形式表示,N J M ≤≤≤≤1;i 1,矩阵每个元素值即为图像中该点的像素值,则图像的灰度值分布概率密度函数的均值和均方差分别为 ∑∑∑∑====-==M i N j M i N j j i I MN j i I MN 11211)),((1),(1μσμ 2-122.4本章小结本章对图像预处理技术进行了简单的介绍,包括不同方法对图像的作用区域和作用效果都做了介绍,并对其中比较常用的图像处理技术进行效果图展示,在对图像进行定位之前,图像处理的好坏也能影响到定位的精准度,选择合适的图像处理方法,有效地减少光照、图像质量等对定位的影响,也成为本文研究的一个重点。

图像预处理

图像预处理

图像预处理主要是对系统获取的原图像基本特征的信息进行相应的、有针对性的处理,以滤去干扰、噪声,作几何校正、色彩校正,以便于计算机的分析计算,一般包括滤波、图像增强、图像二值化、形态学运算、边缘检测等等。

3.1图像灰度化将彩色图像转换成灰度图,一方面提高了图像的处理速度,另一方面更统一了多种颜色的车辆牌照。

本文采用加权平均值法将图像灰度化,即根据重要性或其他指标给R、G、B赋予不同的权值,并使R、G、B等于它们的值的加权和平均R=G=B=(W rR+W gG+W bB)/3其中Wr、Wg、Wb分别是R、G、B的权值,取Wr=0.299、Wg=0.588、Wb=0.113,从而得到最合理的车牌灰度图像。

3.2中值滤波接着要进行图像的去噪处理,用中值滤波方法可以有效去除图像中的噪声点,同时保护图像边缘的细节。

中值滤波[2][3]是通过在图像上移动一个滑动窗口,窗口中心位置的象素值用窗口内部所有象素灰度的中值来代替。

因此关键在于滑动窗口的选取,本文采用3x3方形窗口进行滤波,可以很好的消除图像中孤立噪声点的干扰,还能有效的保护边界信息。

3.3灰度变换如果一幅图成像时由于光线过暗或曝光不足,则整幅图偏暗(如灰度范围从0到6 3);光线过亮或曝光过度,则图像偏亮(如灰度范围从200到255),都会造成图像对比度偏低问题,即灰度都挤在一起了,没有拉开,这时可以采用灰度变换方法来增强图像对比度。

本文采用分段线性灰度变换法进行灰度变换,根据经验值,对[30 200]之间的灰度值进行变换。

3.4直方图均衡化直方图是用来表达一幅图像灰度等级分布情况的统计表。

通过对图像中像素个数多的灰度值(及对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(及对画面不起主要作用的灰度值)进行归并,从而达到清晰图像的目的,其本质上是一个直方图变换,即将输入图像的直方图映射成一个最大平展的直方图。

经过直方图均衡化处理以后,图像的灰度分布变得均匀,原来偏暗的图像亮度明显增强,图像变得更为清晰。

计算机图像识别的智能化处理方法解读

计算机图像识别的智能化处理方法解读

计算机图像识别的智能化处理方法解读随着计算机技术的不断发展,图像识别技术在各个领域中得到了广泛的应用。

图像识别的智能化处理方法是指利用计算机技术对图像进行处理和分析,从而实现对图像中内容的识别和理解。

本文将就计算机图像识别的智能化处理方法进行一些解读,包括图像预处理、特征提取、分类识别等几个方面。

一、图像预处理图像预处理是图像识别过程中的第一步,它的主要目的是对原始图像进行一些必要的处理,以便于后续的特征提取和分类识别。

图像预处理的主要内容包括图像的去噪、灰度化、尺寸调整等。

去噪是指对图像中的噪声进行抑制或者消除,以减少噪声对图像识别的影响。

常用的去噪方法包括中值滤波、均值滤波等。

灰度化是将彩色图像转化为灰度图像,这样可以简化图像的处理过程。

尺寸调整是指将图像的大小进行调整,通常是为了适应后续处理的需要,例如将图像调整为统一的大小。

二、特征提取在图像识别中,特征提取是非常重要的一步,它的主要目的是从图像中提取出对目标进行描述和区分的特征。

特征可以是图像的形状、纹理、颜色等信息。

常用的特征提取方法包括边缘检测、角点检测、纹理特征提取等。

边缘检测是指寻找图像中的边界,常用的边缘检测算法包括Sobel算子、Prewitt算子等。

角点检测是指寻找图像中的角点,常用的角点检测算法包括Harris角点检测、FAST 角点检测等。

纹理特征提取是指从图像中提取纹理信息,用于描述图像的表面特征。

三、分类识别分类识别是图像识别的最后一步,它的主要目的是根据提取的特征对图像进行分类和识别。

常用的分类识别方法包括支持向量机(SVM)、人工神经网络(ANN)等。

支持向量机是一种通过寻找最优分类超平面来进行分类的机器学习方法,它可以有效地处理高维度的数据,并且具有较强的泛化能力。

人工神经网络是一种模拟人脑神经元网络结构的分类方法,它可以有效地处理非线性关系,并且可以学习和适应复杂的数据分布。

计算机视觉技术中的图像预处理方法

计算机视觉技术中的图像预处理方法

计算机视觉技术中的图像预处理方法在计算机视觉领域中,图像预处理是一个至关重要的步骤。

它可以帮助我们提高图像的质量、减少图像的噪声、增强图像的细节等,从而为后续的图像分析和处理任务打下良好的基础。

本文将介绍一些常用的图像预处理方法。

图像去噪是图像预处理中最常见的任务之一。

噪声是图像中不需要的、无用的信息,它们可能来自于图像采集过程中的传感器噪声、电磁干扰、信号传输中的干扰等。

为了去除这些噪声,我们可以使用滤波器来平滑图像。

常见的滤波器包括均值滤波器、中值滤波器和高斯滤波器。

均值滤波器通过计算邻域像素的平均值来消除噪声,适用于轻度的噪声;中值滤波器通过计算邻域像素的中值来消除噪声,适用于椒盐噪声等突发噪声;高斯滤波器通过将每个像素的值与周围像素的加权平均值相乘来消除噪声,适用于正态分布的噪声。

图像增强是指通过调整图像的亮度、对比度、饱和度等参数,使图像的观感更加清晰和美观。

常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化。

直方图均衡化通过重新分布图像的像素值,使得图像的亮度分布更加均匀,从而增强图像的对比度和细节。

对比度拉伸是通过重新调整图像的像素值的范围,使得图像的动态范围更广,从而增加图像的对比度。

锐化是通过增加图像的边缘和细节来增强图像的清晰度,常用的锐化方法包括拉普拉斯锐化和边缘增强。

图像缩放是指改变图像的尺寸大小。

在某些场景下,我们需要将图像缩放到固定的尺寸,以便进行后续的图像处理和分析。

常用的图像缩放方法包括最邻近插值、双线性插值和双三次插值。

最邻近插值是指根据邻近的像素点的值来确定新像素点的值,适用于图像放大时的缩放;双线性插值是指根据邻近的四个像素点的值来确定新像素点的值,适用于图像缩小和放大时的缩放;双三次插值是指根据邻近的16个像素点的值来确定新像素点的值,适用于图像缩小时的缩放。

图像配准是指将多幅图像从不同的视角或者不同的传感器中获得的图像进行对齐。

对于配准问题,常用的方法包括特征提取和特征匹配。

(完整word版)图像的预处理.docx

(完整word版)图像的预处理.docx

第四章图像的预处理在图像的形成、传输或变换的过程中,由于受多种因素的影响,图像往往与原始景物之间或图像与原始图像之间产生某种差异。

这种差异称为降质或退化。

在对图像进行研究处理前,必须对这些降质的图像进行一些改善图像的预处理。

通常改善方法有两类:一类是不考虑图像降质的原因,只将图像中感兴趣的特征有选择的突出,而衰减其次要信息:另一类是针对图像降质的原因,设法去补偿降质因素,从而使改善后的图像尽可能的逼近原始图像。

第一类方法能提高图像的可读性,改善后的图像不一定逼近原始图像,如突出目标的轮廓,袁减各种噪声,将黑白图像转换成彩色图像等:这类方法通常称为图像增强技术。

第二类方法能提高图像质量的逼真度,一般称为图像复原技术。

作为我们图像目标分离技术研究,我们只要对图像中的目标及背景的某些特征感兴趣,所以我们的预处理为图像增强。

4.1 直方图在对图像进行处理之前,了解图像整体或局部的uidu分布情况是非常必要的。

对图像的灰度分布进行分析的重要手段就是建立灰度直方图,利用图像灰度直方图,可以直观地看出图像中的像素亮度分布情况,通过直方图的均衡化、归一化的处理等,可对图像的质量进行调整。

另外,通过对直方图的分析,有助于确定图像域值化处理的域值。

灰度直方图是灰度级的函数,它表示图像中具有某种会的级的像素的个数,反映了图像中每种灰度出现的频率。

图像的直方图具有以下三个重要的性质:(1)直方图是一幅图像中各像素灰度值出现次数 ( 或频数 ) 的统计结果,它只反映该图像中不同灰度值出现的次数 ( 或频数 ) ,而未反映某一灰度值像家所在位置。

也就是说,它只包含了该图像中菜一灰度值的像素出现的概率,而丢失了其所在位置的信息。

(2)任一幅图像,都能惟一地确定出一幅与它对应的宜方图,但不同的图像,可能有相同的直方图。

也就是说,图像与直方图之间是多对一的映射关系。

(3)由于直方图是对具有相同灰度值得像素统计得到的,因此,一幅图像各自去的直方图之和就该等于该图像全图的直方图。

计算机视觉技术中常见的图像分析方法

计算机视觉技术中常见的图像分析方法

计算机视觉技术中常见的图像分析方法计算机视觉技术是指通过计算机系统对图像进行分析和处理的一种技术。

在计算机视觉领域,图像分析是一项核心任务,它旨在从图像中提取有用的信息和特征。

图像分析方法涵盖了许多技术和算法,本文将介绍一些常见的图像分析方法。

1. 图像预处理图像预处理是图像分析的第一步,目的是提取和强调图像中的特征,并减少噪声和不必要的细节。

常见的图像预处理方法包括图像去噪、图像增强和图像尺寸调整等。

图像去噪可以使用滤波器进行,常用的有均值滤波、中值滤波和高斯滤波等。

图像增强技术包括直方图均衡化、对比度增强和锐化等。

图像尺寸调整常用的方法有缩放和裁剪。

2. 特征提取特征提取是图像分析的核心步骤,它将原始图像转换为可用于进一步处理的特征表示。

特征可以是图像的局部结构、纹理、颜色、形状等。

常见的特征提取方法包括边缘检测、角点检测、纹理分析和特征描述子等。

边缘检测可以通过Canny算子、Sobel算子和Laplacian算子等来实现。

角点检测方法常用的有Harris角点检测和FAST角点检测。

纹理分析可以使用局部二值模式(LBP)和方向梯度直方图(HOG)等方法。

特征描述子是一种将图像特征表示为向量的方法,常见的有尺度不变特征变换(SIFT)和加速稳健特征(SURF)等。

3. 目标检测与识别目标检测与识别是计算机视觉中的重要任务,它旨在从图像中找出感兴趣的目标并判断其类别。

目标检测方法可以分为两类:基于传统机器学习的方法和基于深度学习的方法。

基于传统机器学习的方法常用的有支持向量机(SVM)、随机森林(Random Forest)和卷积神经网络(CNN)等。

基于深度学习的方法主要是使用深度神经网络(DNN)进行目标检测和识别,例如YOLO(You Only Look Once)和Faster R-CNN(Region-based Convolutional Neural Networks)等。

4. 图像配准图像配准是将两个或多个图像进行对齐的过程,以便进行比较、融合或进行其他后续处理。

论文中图像处理的步骤与技巧

论文中图像处理的步骤与技巧

论文中图像处理的步骤与技巧图像处理是计算机视觉领域中的重要研究方向,它涉及到对图像进行获取、预处理、分析和识别等一系列操作。

在论文撰写过程中,图像处理的步骤和技巧是不可忽视的,它们能够帮助研究者更好地展示实验结果和研究成果。

本文将介绍一些常用的图像处理步骤和技巧,希望能对读者在论文写作中的图像处理工作有所帮助。

一、图像获取与预处理图像获取是图像处理的第一步,它决定了后续处理的质量。

在实验过程中,我们常常使用相机或者传感器来采集图像。

为了获得清晰、准确的图像,研究者需要注意以下几个方面的技巧。

首先,合理选择相机的参数。

相机的曝光时间、ISO感光度、白平衡等参数会直接影响图像的质量。

在实验前,研究者应根据实际需求调整相机参数,以获得最佳的图像效果。

其次,注意光照条件。

光照是影响图像质量的重要因素之一。

在实验过程中,研究者需要根据实际情况调整光源的位置和亮度,避免图像过暗或过亮。

最后,进行图像预处理。

图像预处理是为了去除噪声、增强图像特征等目的。

常见的图像预处理技术包括滤波、直方图均衡化、边缘检测等。

在论文中,研究者应明确图像预处理的方法和参数,并解释其作用和效果。

二、图像分析与特征提取图像分析是图像处理的核心环节,它通过对图像进行分析和特征提取,从而得到图像的信息。

在图像分析过程中,研究者需要注意以下几个方面的技巧。

首先,选择合适的特征提取方法。

特征是图像中的关键信息,它能够反映图像的某种属性或结构。

在实验中,研究者需要根据研究目的选择合适的特征提取方法,如颜色特征、纹理特征、形状特征等。

其次,进行特征选择和降维。

在实际应用中,图像的维度往往很高,这会给后续的处理和分析带来困难。

因此,研究者需要进行特征选择和降维,选取最具代表性的特征进行后续处理。

最后,进行图像分类和识别。

图像分类和识别是图像处理的重要应用之一。

在实验中,研究者需要选择合适的分类器和识别算法,并进行实验验证。

同时,研究者还需要对分类和识别结果进行评估和分析,以验证算法的有效性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预处理就是在图像分析中,对输入图像进行特征抽取等前所进行的处理。

输入图像由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声,对比度不够等缺点。

另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和位置不确定。

为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对图像进行预处理。

图像预处理的主要目的是消除图像中无关的信息,滤除干扰、噪声,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征抽取的可靠性.人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。

人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。

归一化工作的目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像[4]。

几何规范化由于图像在提取过程中易受到光照、表情、姿态等扰动的影响,因此在识别之前需要对图像做归一化的预处理[4],通常以眼睛坐标为基准点,通过平移、旋转、缩放等几何仿射变换对人脸图像进行归一化。

因为人脸虽然是柔性的三维曲面,同一人脸因表情变化会有差异,但相对而言人的两眼之间的距离变化不会很大,因此双眼的位置及眼距,就成为人脸图像归一化的依据。

定位眼睛到预定坐标,将图像缩放至固定大小。

通过平移、旋转、缩放等几何仿射变换,可以对人脸图像做几何规范化处理,仿射变换的表达式为:]100][1,,[]1,,[323122211211a a a a a a v u y x = (2-1) 其中(u,v)表示输入图像中像素的坐标(x,y)表示输出图像中像素的坐标。

将上式展开可得322212312111u a x a v a u a y a v a ++=++=(2-2)平移变换就是给图像中的所有点的坐标都加上u ∆和v ∆ ,其变换表达式为]1u 010001][1,,[]1,,[v v u y x ∆∆=(2-3)将图像中的所有点相对于坐标原点逆时针旋转θ角的变换表达式为]1000cos sin 0sin cos ][1,,[]1,,[θθθθ-=v u y x (2-4) 缩放变换既是将图像按给定的比例r 放大或缩小,当1>r 时图像被放大,当10<<r 时图像被缩小,其变换表达式为]1000000r ][1,,[]1,,[r v u y x =(2-5)本论文在对人脸图像特征提取之前,首先对所有的图像进行几何规范化,将两个人眼的位置固定在同一位置上,结果如图,图所示。

图 几何规范化之前的人脸图像图几何规范化后的人脸图像灰度级插值图像经过空间变换后,变换后的空间中各像素的灰度值应该等于变换前图像对应位置的像素值。

但实际情况中,图像经过几何变换后,某些像素会挤压在一起或者分散开来,使得变换后图像的一些像素对应于变换前图像上非整数坐标的位置,为此需要通过插值求出这些像素的灰度值,通常采用的方法有最近邻插值、双线性插值和双三次插值。

最近邻插值最近邻插值是一种最简单的插值方法,输出的像素灰度值就是输入图像中预期最邻近的像素的灰度值,这种方法的运算量非常小,但是变换后图像的灰度值有明显的不连续性,能够放大图像中的高频分量,产生明显的块状效应。

双线性插值双线性插值输出像素的灰度值是该像素在输入图像中2*2领域采样点的平均值,利用周围四个相邻像素的灰度值在垂直和水平两个方向上做线性插值。

这种方法和最近邻插值法相比,计算量稍有增加,变换后图像的灰度值没有明显的不连续性,但双线性插值具有低通滤波的性质,会导致高频分量信息的部分丢失,图像轮廓变得模糊不清。

双三次插值双三次插值利用三次多项式来逼近理论上的最佳正弦插值函数,其插值邻域的大小为4*4,计算时用到周围16个相邻像素的灰度值,这种方法的计算量是最大的,但能克服前两种插值方法的缺点,计算精度较高。

灰度规范化灰度规范化是通过图像平滑、直方图均衡化、灰度变换等图像处理方法来改善图像质量,并将其统一到给定的水平。

图像平滑图像平滑处理的目的是为了抑制噪声,改善图像质量,可以在空间域和频域中进行。

常用的方法包括:邻域平均、空域滤波和中值滤波等。

邻域平均法是一种局部空间域处理的方法,它用像素邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。

由于图像中的噪声属于高频分量,空域滤波法采用低通滤波的方法去除噪声实现图像平滑。

中值滤波是一种非线性处理技术,能抑制图像中的噪声。

它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的像素数很少,而图像则是由像素较多、面积较大的小块构成[12]。

无论是直接获取的灰度图像,还是由彩色图像转换得到的灰度图像,里面都有噪声的存在,噪声对图像质量有很大的影响。

进行中值滤波不仅可以去除孤点噪声,而且可以保持图像的边缘特性,不会使图像产生显着的模糊,比较适合于实验中的人脸图像。

中值滤波的步骤:(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)读取模板下各对应像素的灰度值;(3)将这些灰度值从小到大排成一列;(4)找出这些值里排在中间的一个;(5)将这个中间值赋给对应模板中心位置的像素。

由以上步骤可以看出,中值滤波的主要功能就是让与周围像素灰度值的差比较大的像素改取与周围像素值接近的值,所以它对孤立的噪声像素的消除能力是很强的。

由于它不是简单的取均值,所以产生的模糊比较少。

换句话说,中值滤波即能消除噪声又能保持图像的细节[13]。

实例如下:图 原始图像与5*5中值滤波后的效果图直方图均衡化灰度直方图反映了图像中每一灰度级与具有该灰度级的像素出现的频率之间的关系,可以表示为:Nn P k k =)r ( (2-6)其中,k r 表示第k 个灰度级,k n 为第k 级灰度的像素数,N 为一幅图像的像素总数,灰度直方图是图像的重要统计特征,可以被认为是图像灰度概率密度函数的近似,直方图均衡化就是将图像的灰度分布转换为均匀分布。

对于对比度较小的图像来说,其灰度直方图分布集中在某一较小的范围之内,经过均衡化处理后,图像所有灰度级出现的概率相同,此时图像的熵最大,即图像包含的信息量最大。

以r 和s 分别表示归一化了的原图像灰度和直方图均衡化后的图像灰度,T(r)为变换函数,则在[0,1]区间内任意一个r 经变换后都对应一个s ,)(r T s =。

)(r T 应满足下列条件:1.s 在[0,1]区间内为单调递增函数;2.在[0,1]区间内,反变换)(1s T r -=也存在,且为单调递增函数。

条件1保证了灰度级从黑到白的次序,条件2确保了映射后的像素灰度在允许的范围内。

有概率论论可知,已知随机变量r 的概率密度函数为)(r P r ,而随机变量s 是r 的函数,则随机变量s 的概率密度函数)(s P s 可由)(r P r 求出。

假定随机变量s 的分布函数)(s F s ,根据分布函数的定义:dr r P ds s P s F rr s s s ⎰⎰∞-∞-==)()()( (2-7) 根据概率密度函数和分布函数之间的倒数关系,将上式两边对s 求导得:)(s -1|)()(s T r r s ds dr r P s P -=∞=⎰ (2-8)从上式可以看出,通过变换函数)r (T 可以控制图像灰度的概率密度函数,因为直方图均衡化有1)(=s P s ,则:)]([)(r T d dr r P ds r ==(2-9)两边积分得:⎰==rr r P r T 0)()(s(2-10)上式表明变换函数为原图像直方图的累计函数。

对于灰度为离散的数字图像来说,用频率代替概率,变换函数)(r T 的离散形式可以表示为:∑∑=====k l l k l l r k k Nn r P r T s 00)()( (2-11)式中:1r 0≤≤k ,L L k ,1...2,1,0-=,L 为灰度级数目。

示例如下:图直方图均衡化前后的图像由两幅图像处理前后的效果变化可以看出经过直方图均衡化后,图像的细节更加清楚,直方图各灰度等级的分布更加平衡。

灰度变换灰度拉伸又叫对比度拉伸,它是最基本的一种灰度变换,使用的是最简单的分段线性变换函数,它是将原图像亮度值动态范围按线性关系扩展到指定的范围或整个动态范围。

它的主要思想是提高图像处理时灰度级的动态范围,适用于低对比度图像的处理,一般由两个基本操作组成:⑴直方图统计,来确定对图像进行灰度拉伸的两个拐点;⑵灰度变换,根据步骤⑴确定的分段线性变换函数进行像素灰度值的映射。

实例如下:图 原始图像以及灰度拉伸处理后的效果由两幅图像处理前后的效果变化可以看出灰度拉伸后增强了图像的对比度,使得图像细节更加的突出。

通过灰度变换,将不同图像的灰度分布参数统一调整到预定的数值,称为灰度归一化,通常是调整图像灰度分布的均值和均方差分别为0和1。

设一幅尺寸为N M *的图像的灰度值分布可以用矩阵),i (j I 形式表示,N J M ≤≤≤≤1;i 1,矩阵每个元素值即为图像中该点的像素值,则图像的灰度值分布概率密度函数的均值和均方差分别为∑∑∑∑====-==M i N j M i N j j i I MN j i I MN 11211)),((1),(1μσμ(2-12) 本章小结本章对图像预处理技术进行了简单的介绍,包括不同方法对图像的作用区域和作用效果都做了介绍,并对其中比较常用的图像处理技术进行效果图展示,在对图像进行定位之前,图像处理的好坏也能影响到定位的精准度,选择合适的图像处理方法,有效地减少光照、图像质量等对定位的影响,也成为本文研究的一个重点。

相关文档
最新文档