反比例函数面积问题模型(八年级数学)

合集下载

反比例函数三角形面积问题

反比例函数三角形面积问题

反比例函数三角形面积问题1. 引言嘿,大家好!今天咱们要聊聊一个有趣的话题——反比例函数和三角形面积的结合。

乍一听,可能会觉得有点晦涩,但别担心,我们一步一步来,肯定能搞清楚!想象一下,三角形的面积和反比例函数就像是一对好朋友,他们相互影响,相互作用,带来不少趣味。

2. 反比例函数的基础知识2.1 什么是反比例函数?先从最基础的开始说起。

反比例函数其实很简单,它就是形如 (y = frac{k}{x}) 的函数,其中 (k) 是常数,(x) 和 (y) 是变量。

简而言之,当 (x) 增大时,(y) 会减小,反之亦然。

你可以把它想象成一个永远相反的游戏:一个上升,另一个就得下降。

2.2 反比例函数的图像说到图像,这个函数的图像是双曲线。

它的两个分支分别位于坐标轴的两侧,永远不会触碰坐标轴。

感觉像是两条永远不会交汇的路。

3. 三角形的面积3.1 基础公式提到三角形的面积,最简单的公式就是 (text{面积} = frac{1}{2} times text{底} times text{高})。

就这么简单,底和高就是构成三角形的两条直线,像是两个好朋友,缺一不可。

3.2 结合反比例函数现在,我们把反比例函数和三角形的面积结合起来。

假设有一个三角形,它的底边和高分别是 (x) 和 (y),且这两者之间满足 (y = frac{k}{x})。

那三角形的面积就是(frac{1}{2} times x times y)。

代入反比例函数的关系,面积公式就变成了 (frac{1}{2} times x times frac{k}{x}),结果是 (frac{k}{2}),也就是说,三角形的面积只和常数 (k) 有关,而和底边 (x) 或高度 (y) 无关。

4. 例子解析4.1 具体例子举个例子来说明。

假设我们有一个三角形,底边 (x) 和高 (y) 满足 (y = frac{6}{x})。

我们把这些值带入面积公式中,计算过程如下:[。

由面积求反比例函数比例系数的4种常见压轴题型全攻略—2024学年八年级数学上册(沪教版)(解析版)

由面积求反比例函数比例系数的4种常见压轴题型全攻略—2024学年八年级数学上册(沪教版)(解析版)

由面积求反比例函数比例系数的4种常见压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一由三角形面积求反比例的比例系数】 (1)【考点二由四边形面积求反比例的比例系数】 (2)【考点三由其它面积问题求反比例函数解析式】 (2)【考点四反比例函数中求面积问题的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一根据三角形面积求反比例的比例系数】,AMOA.2B.2−C.4D.4−【答案】D【分析】根据反比例函数系数【详解】解:设点A的坐标为,AMO的面积为若POM的面积等于A.6B.5C.5−D.6−【答案】CS=POMS=POM轴上,若ABC面积为A.4−B.1C.2D.4【答案】DAB y ⊥轴, 【点睛】本题考查反比例函数的图象和性质,理解反比例函数相等,是解决问题的前提.4.如图,点A 是反比例函数y 点.若点C 为x 轴上任意一点,且ABC 的面积为 A .12−B .8−C .6−D .6【答案】A 【分析】过点A 作AE x ⊥轴于E ,设,AD a AE b ==,由此可得出点A 的坐标,进而可得k ab =−,然后再根据ABC 的面积可求出12ab =,即可求解.【详解】解:过点A 作AE x ⊥轴于E ,如图,ABCS=A.4B.4−C.8D.8−【答案】D【分析】设点P坐标为⎛ ⎝A .6B .3C .9D .12【答案】A 【分析】过点A 作AE CD ⊥于点E ,然后平行四边形的性质可知AED BOC ≌,进而可得矩形ABOE 的面积与平行四边形ABCD 的面积相等,最后根据反比例函数k 的几何意义可求解.【详解】解:过点A 作AE CD ⊥于点E ,如图所示:∴90∠=∠=︒,AED BOC四边形ABCD是平行四边形,∴,=∥,BC AD BC AD∴ADE BCO∠=∠,∴≌(AAS),AED BOC平行四边形S=ABCDA.8B.11C.15D.16【答案】C12AOE BOF S S k ==AOC AOE COE S S S =+和 由反比例函数的性质可知1|2AOE BOF S S ==△△AOC AOE COE S S S =+△△△, ∴1211515()2222AC OE OE OE k k ⋅=⨯⨯==−①,BOD DOF BOF S S S =+△△△, ∴1113()3(8)222BD OF EF OE OE ⋅=⨯⨯−=⨯⨯−由①②两式得:351222OE OE −=,ABCD 为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值( )A .3B .6C .12D .24四边形ABCD 是菱形,AC BD ∴⊥,OA OC =,6ABCD S =菱形,∴11BD x ∥轴,AE x 轴,BD (1)若2AC BC =,ABE 的面积为(2)在(1)的条件下,若四边形12 3y x=− 5BDE S =AE 2AC BC =ACBDABE的面积为1)解:四边形S=14BDE−=a b12b=【答案】a b,依题意得【分析】首先设点B的坐标为(,)a______,b=______;(1)=(2)求反比例函数表达式;【答案】(1)−【分析】(1)由非负计算式相加等于(2)由点A和点B坐标,及中点E得到点坐标关系,最后代入解析式计算即可;)又1a+≥)点ABCD,【考点四反比例函数中求面积问题的拓展提高】−【答案】 2.4=,依题意得点【分析】首先设OC m表示出线段AB的长,然后依据若【详解】解:设点A横坐标为点点SS 6OAB =S ABC = 【答案】2【分析】过点A ,B 作AE ,都在曲线上,设出A 、B 坐标,由图形的面积公式求出【详解】解:过点A ,B 作 ∵点B 横坐标为点A 横坐标的两倍,且点∴设,k A m m ⎛⎫−− ⎪⎝⎭,则∵S S S S 6ABO AEO BDO ABDE =+−=梯形,S ABC =【点睛】本题考查反比例函数系数k的几何意义,三角形的面积公式等,关键是对反比例函数性质的掌握.【过关检测】一、单选题,则ABC的面积为(A.34B.98【答案】A【分析】设1,A aa(),则1,B aa(4ABCS=2.如图,平行于x 轴的直线与函数点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为 A .4B .4−C .2D .2−【答案】C 【分析】本题考查了反比例函数图象上点的坐标特征,三角形的面积计算,设12ABC S =Rt BOC 的一条直角边过BOC 的斜边.若BOD 的面积是A .6−B .4−C .4D .6OAE OBC S S=OAE S =OBC S =OBC S =OAEOBC SS =OAE S=42OBC OAE SS k ==.OBC OCD BOD S S S ∠=+ 【点睛】本题考查相似三角形的判定和性质,反比例函数的性质;理解反比例函数解析式解题的关键.A .4B .8C .8−D .10−【答案】C 【分析】通过证明(AAS COD BED ≌和BED 中,∴(AAS COD BED ≌【点睛】本题主要考查了三角形全等的判定和性质,反比例函数k 值的几何意义,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,以及反比例函数k 值的几何意义.二、填空题 ,若ABO 的面积为【答案】4【分析】本题考查反比例函数的图象与性质,反比例函数图象上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积是12AOB S k ==,计算出来即可. AOB S =PAO 的面积为 【答案】10−又0k<,.若ABC的面积【答案】4 yx =【分析】本题主要考查了反比例函数和正比例函数的综合问题,理解反比例函数和正比例函数的两个交点关于原点对称可知==2ACO BCOS S,再根据ACOS===2ACO BCOS S,ACOS=,若AOC 的面积为 【答案】5【分析】本题考查反比例函数【详解】解:∵AOC AOB BOC SS S =−,∴1 222k −=, x ①若4k =−,则CD 的长度为【答案】20【分析】此题主要考查了反比例函数图象上的点,三角形的面积等,正确地作出辅助线构造三角形的中位线是解决问题的关键.CACD的中位线,则△同高,又∵AOB和COB=,∴AB BC∵CD x⊥轴,为ACD的中位线,2,OB OD=点DAC△S=AOD,AOP 的面积为【答案】12,又因为AOP 的面积为设OA a =,因为:1:2OA AB =,所以2AB a =,因为AP BP =,PH x ⊥轴因为AOP 的面积为1【答案】6【分析】连接,,,OA OC OB OD ,222OAE OBF OCE ODF m m S S S S ======−11,22OAE OCE AOC OBF ODF BOD S S S AC OE S S S BD OF +==+==,3AC =,2BD =,,222OAE OBF OCE ODF m n m S S S S ======− ∵11,22OAE OCE AOC OBF ODF BOD S S S AC OE S S S BD OF +==+==,3AC =,2BD =,∴11113,2222m n OE m −=⨯−∴3,2m n OE m n OF −=−=【答案】46OAB ABD SS ==.由11223AOC AOB S k S ===,则 ∵AB x ⊥轴,∴OD AB ∥.6OAB ABD S S ==.11223AOC AOB S k S ===,,EOF 的面积为AOM S =42EOF AOM S S ==− AOM S =1·422EOF AOM S OE OF S k ===−, EOF S,EOF S =,若AOB 的面积为积公式,即可求出AOC 的面积;过点52OBD ODE OBE SS S =+=,AOC ODE S S S =+四边形OBE S =AOB S =AOC S = OBD S=52OBD ODE OBE S S S =+=,AOC ODE S S S =+四边形OBE S=AOB OBE ABE ABE DCAE BDCA S S S S S S =+=+=四边形梯形∵点(2,4)A,∴84ADm=−,三、解答题若ODC的面积为,求ABO的面积.再利用分割法求出ABO的面积;,ODC的面积为∴2361m n m n +=⎧⎨−+=−⎩,解得:2m n ⎧=⎪⎨⎪=⎩∴直线AB 解析式为122y x =+,∴点()0,2F ,12ABO OFB AOF S S S =+=⨯12ABD ABC BCD S S S =+=⨯的面积等于ODE的面积,求点MBO S =ODE S =的面积等于ODE 的面积时,。

例谈反比例函数中的面积问题

例谈反比例函数中的面积问题

例谈反比例函数中的面积问题———— 一道习题的延伸山东省莱阳市穴坊镇中心中学 王良良在鲁教版初中数学课本八年级下册P106页提出了这样一个问题:在一个反比例函数图象上任取两点P 、Q ,过点P 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 1,过点Q 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 2,那么S 1与S 2有什么关系?为什么?对于上面的问题,应结合反比例函数中的几何意义来解决。

如图1所示,若P(x,y)是双曲线y =xk (k ≠0)上任意一点,过P 作PB ⊥x 轴于B ,PC ⊥y 轴于C ,则OB=|x|,OC=|y|,所以S 矩形PBOC =OB ·OC=|xy|,又因xy=k ,即S 矩形PBOC =|k|,将其继续推广,可得S △POB =S △POC =2||k ,由此可以很容易解决课本中的问题。

将反比例函数和正比例函数的图像结合,也会有意想不到的结论。

如图2所示,反比例函数y =xk 与正比例函数y=mx 相交于两点A 、B ,过其中任意一点向某一坐标轴作垂线,由交点与垂足所构成的三角形的面积S △ABC =|k|。

若借助于这些基本图形,学生在解决反比例函数面积类的问题时,就不会觉得困难了。

下面结合几个例题分析此类问题的解法,供参考。

例1 如图3,一次函数的图象y=21x-2分别交x 轴、y 轴于A 、B ,P 为AB 上一点,且PC 为△AOB 的中位线,PC 的延长线交反比例函数y =x k (k ≠0)的图象于点Q ,S △OCQ =23,求k 的值和点Q 的坐标。

解析:因为S △OCQ =23,所以k=2×23=3,易求得点A(4,0),点C 的横坐标为2,代入y=x 3,得y=23,所以点Q 的坐标为(2,3)。

例2 两个反比例函数y =x k (k ≠0)和y=x1在第一象限内的图象如图4所示,点P 在y =x k 的图象上,PC ⊥x 轴于点C,交y=x1的图象于点A ,PD ⊥y 轴于点D ,交y=x 1的图象于点B ,当点P 在y =xk 的图象上运动时,以下结论:①△ODB 与 △OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当A 是PC 中点时,点B 一定是PD 的中点。

苏科版八年级数学下册11.2《反比例函数的图像与性质-面积问题》课件

苏科版八年级数学下册11.2《反比例函数的图像与性质-面积问题》课件

变式1:如图,过反比例函数 y 2 (x 0)图象上任意两 点A、B分别作x轴的垂线,垂足分x别为C、D,连结OA
、OB,设AC与OB的交点为E,ΔAOE与梯形ECDB的
面积分别为 S1 、S2,比较它们的大小,可得 (B )
A.S1>S2
B.S1=S2
C.S1< S2 D.S1和S2的大小关系不确定
11.2 反比例函数的图像与性质 ——面积相关问题
回顾
如图,点P(m,n)是反比例函数 y k
x
图象上的一点,过点P分别向x轴、y轴作垂线,
垂足分别是点A、B,则S矩形OAPB=____k____.
结论1:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
B P(m,n)
积为——8—— 。
F E
练习3 利用点求图形的面积或函数解析式
如图,已知双曲线 y k (x>0)经过矩形OABC
x
边AB的中点F,交BC于点E,且四边形OEBF
的面积为2,则k=__2___.
练习3利用坐标求图形的面积或函数解析式
变式1:如图,双曲线 y k (k 0)经过矩形OABC的
B P(m,n)
y轴)的垂线,所得直角三角
OA

x
形的面积S为定值,即S= 1 |k| .
2
回顾
图中这些三角形的 y 面积相等吗?
yk x
O
x
知识点
y k (k 0) x
y PB
y P
x A0
0Q
x
S矩形 k
k S三角形
2
例1 已知解析式 求图形的面积

反比例函数中的面积问题(共26张PPT)

反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”

反比例函数中的面积问题

反比例函数中的面积问题

反比例函数与面积问题
反比例函数内容丰富、涉及的数学知识较多,是函数的重要内容之一。

下面讨论几个反比例函数与图象的面积问题,供同学们学习时参考。

一. 求函数解析式
例 1. 如图1,P 是反比例函数图象在第二象限上的一点,且矩形
PEOF 的面积为3。

求这个反函数的解析式。

分析:利用反比例函数
x k y =的特点及矩形PEOF 的面积为3,求k 的值。

二. 求面积
例2. 图2中正比例函数和反比例函数的图象相交于A 、B 两点,分别
以A 、B 两点为圆心,画与y 轴相切的两个圆,若点A 的坐标为(1,2),
求图中两个阴影面积的和。

分析:利用反比例函数和圆的对称性求解。

三. 特殊点组成图形的面积
例3. 如图3,反比例函数
x 8y -=与一次函数2x y +-=的图象相交于
A 、
B 两点。

(1)求A 、B 两点的坐标;
(2)求AOB ∆的面积。

分析:将AOB ∆的面积转化为AOD ∆与BOD ∆面积和求解。

四. 探讨面积的变化
例4. 如图4,x y =和)0m (mx y >=的图象与
)0k (x k y >=的图象分别交于第一象限内的两点A ,C ,过A ,C 分别向x 轴作垂线,垂
足分别为B ,D ,若直角三角形AOB 与直角三角形COD 的面积分
别为21、S S ,则1S 与2S 的关系为( )
A. 21S S >
B. 21S S =
C. 21S S <
D. 与k ,m 的值无关 分析:利用函数)0k (x k y >=的解析式与面积的关系求解。

反比例函数的面积问题的解题技巧

反比例函数的面积问题的解题技巧

反比例函数的面积问题的解题技巧
反比例函数是数学中比较重要的一种函数类型,在解题过程中也存在许多面积问题。

下面介绍一些解题技巧,帮助大家更好地理解和应用反比例函数的面积问题。

1. 理解反比例函数的定义
反比例函数是指当一个变量的值增加时,另一个变量的值会相应地减小,其函数式表示为
y=k/x(k≠0)。

如果在x的取值范围内对y进行积分,可以得到反比例函数的面积。

在解题时,需要先理解反比例函数的数学定义和性质。

2. 熟练掌握积分运算法则
反比例函数的面积问题需要用到积分运算法则,因此需要熟练掌握积分运算的基本法则和计算方法。

同时也需要掌握一些积分公式,例如x的倒数的积分公式为ln(x)+C。

3. 熟练掌握反比例函数变形技巧
在解题时,有时需要对反比例函数进行变形,例如将y=k/x转化为y=kx^(-1)。

掌握反比例函数的变形技巧有助于更好地解决面积问题。

4. 利用几何图形思维解决问题
反比例函数的面积问题通常涉及到图形的面积计算,因此需要掌握几何图形的基本概念和计算方法。

在解题时,可以利用几何图形思维来解决问题,例如通过画图和分割图形的方法求解。

5. 熟练运用数学知识解决实际问题
反比例函数的面积问题通常涉及到实际问题的解决,因此需要熟练掌握数学知识与实际问题的应用。

在解题时,应该将数学知识与实际情况相结合,运用数学方法求解实际问题。

总之,反比例函数的面积问题需要掌握一定的数学知识和解题技巧。

只有在熟练掌握这些知识和技巧的基础上,才能更好地解决反比例函数的面积问题。

- 1 -。

反比例函数中的面积问题

反比例函数中的面积问题
而 由四边形OEBF的面积为2得
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵

反比例函数面积问题专题

反比例函数面积问题专题

反比例函数面积问题专题反比例函数面积问题是数学中的一个重要问题,也是中学数学中常见的题型之一、这种问题涉及到两个变量的关系,其中一个变量的值与另一个变量的值成反比例关系。

在解决这类问题时,需要通过分析问题的条件和利用数学公式,找出两个变量之间的关系,并求解出所要求的面积。

首先,让我们来梳理一下反比例函数的基本概念。

反比例函数也被称为倒数函数或者比例函数的倒数。

当两个变量的乘积为常数时,我们就可以称它们之间存在反比例关系。

即当一个变量的值增大时,另一个变量的值就会减小,反之亦然。

反比例函数可以用以下的公式来表示:y=k/x其中,y和x分别代表两个变量的值,k为常数,表示两个变量的乘积。

通过这个公式,我们可以求出y与x的关系,也可以表示成x与y的关系。

反比例函数在数学学科中有着广泛的应用,并且有很多技巧可以帮助我们解决相关的问题。

接下来,让我们来讨论解决反比例函数面积问题的思路。

对于这类问题,我们通常需要求解一个围成面积的最大或者最小值。

我们可以按照以下的步骤来解决这类问题:1.确定问题的条件:首先,我们需要明确给定的条件,包括一些已知的数值和问题的限定条件。

2.建立模型并画图:根据给定条件,我们可以建立一个函数模型来描述两个变量的关系,同时我们还可以画出一个图形,以便更好地理解问题。

3.确定所要求的值:根据问题的要求,我们需要确定所要求的面积,是最大的还是最小的。

4.利用数学方法求解:根据问题的要求和模型函数,我们可以通过求导、解方程等数学方法,求得所要求的面积的最大或最小值。

最后,让我们来看几个实际的例子,以更好地理解反比例函数面积问题。

例子1:一个矩形的长和宽成反比例关系,如果矩形的周长为60,求矩形的最大面积。

解决思路:首先根据周长的公式可以得到l + w = 30,然后利用面积公式S = lw,将w表示成l的函数,即w = 30 - l。

将这个表达式代入面积公式中,得到S = l(30 - l) = 30l - l^2、这是一个二次函数,即S = -l^2 + 30l。

人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型

人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型
第10题 图
1
第11题 图
-12
对点训练
-8
第3题 图
8
第4题 图
模型3 两点一垂线 模型展示
S△ABM=|k|
S△
模型解读 过正比例函数与反比例函数的一个交点作坐标轴的垂
线,两交点与垂足构成的三角形的面积等于|k|.
对点训练
D
A.k
B.k2
C.2
D.3
第5题 图
C A.k1=-6 B.k1=-3 C.k2=-6 D.k2=-12
第一轮 中考考点系统复习
第三章 函数及其图象 方法技巧微专题(二) 反比例函数中的
面积问题模型
模型1 一点.3
B.2
D.1
第1题 图
3
第2题 图
模型2 一点两垂线 模型展示
S四边形
模型解读 过反比例函数图象上一点作两条坐标轴的垂线,垂线与
坐标轴所围成的矩形面积等于|k|.
点)所构成的三角形面积,若两交点在同一支上,用减法; 若两交点分别在两支上,用加法.
对点训练
A.-12
C
B.-8
C.-6
D.-4
第8题 图
第9题 图
模型6 两曲一平行
模型解读 两条双曲线上的两点的连线与一条坐标轴平行,求这两
点与原点或坐标轴围成的图形面积,结合k的几何意义求解.
对点训练 13
第6题 图
模型4 两点两垂线 模型展示
S△APP'=2|k|
S▱
模型解读 过反比例函数与正比例函数的交点作两条坐标轴的垂
线,两交点与两垂足(或两垂线的交点)连线围成的图形面 积等于2|k|.
对点训练 8
模型5 两点和一点 S△AOB=S△COD-S△AOC-S△BOD

专题:反比例函数中的面积问题

专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE

BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB

1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO

1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作

反比例函数与面积问题

反比例函数与面积问题

课堂小结
反比例函数与 面积问题
根据反比例函 数求图形面积
根据面积求反 比例函数
y P(m,n)
oAx
y
B P(m,n) oAx
y o P(m,n) P/ A x
典例精讲
例:在平面直角坐标系中,若一条平行于x轴的
直线l分别交双曲线������
=

������ ������

������
=
������������于A,
B两点,P是x轴上的任意一点,则△ABP
的面积等于 .
典例精讲
S矩形ACBD
典例精讲
类型二: 根据图形面积求反比例函数解析式
例: 如图,双曲线������ = ������
点,QB垂直于y轴,垂足为B,直线MO上是否存
在这样的点Q,使得△OBQ的面积是△OPA的面
积的2倍?如果存在,请求出点Q的坐标,如果不
存在,请说明理由.
典例精讲
解:(1)∵y=kx过(﹣1,2)点,∴k=﹣2, ∴y=﹣2x.∵y=������������ 过(﹣1,2)点,∴m=﹣2 .∴y=﹣������������ ; (2)∵△OPA的面积是������������ m=1,Q点的坐标为 (x,﹣2x),∴������������ •|x|•|﹣2x|=2,x=± ������ , 因为在第二象限所以Q点的坐标为(﹣ ������ , 2 ������ ),或( ������,﹣2 ������).

初中数学知识点精讲课程
反比例函数与面积问题
反比例函数面积问题的几种形式:
图示一:
y
P(m,n) oA x
y A P(m,n)
o
x

反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

【例1】.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∴x=2时,y=3;x=6时,y=1,=S△OBD=3,故S△ACOS四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3;(2)过点A 作AN ⊥OB ,垂足为N ,由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D (﹣,3)过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED =(+3)×(3﹣)=3,答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0,②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x +3+,∵y =mx +n 与直线y =x +3+平行,∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2且n .答:n 的取值范围为:0≤n ≤2+2且n ≠3+.。

反比例函数求面积

反比例函数求面积

反比例函数求面积反比例函数是数学中一种常见的函数形式,其表达式为y =k/x,其中k为常数。

反比例函数具有一定的特点,其中最常见的应用就是求解面积相关问题。

在几何学中,很多问题可以通过反比例函数来求解面积,以下将介绍几个常见的例子。

1. 矩形的面积:可以将矩形的长记为x,宽记为y,则矩形的面积为S = xy。

如果已知矩形的面积S和宽y,可以通过反比例函数求解矩形的长x。

我们知道xy = S,对上式两边同时取倒数,得到yx = 1/S,可以看到yx符合反比例函数的形式,因此可以通过反比例函数求解矩形的长。

2. 圆的面积:圆的面积公式为S = πr²,其中r为圆的半径。

如果已知圆的面积S,可以通过反比例函数求解圆的半径r。

我们知道S = πr²,对这个式子两边同时取倒数,得到1/S = 1/(πr²),可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解圆的半径。

3. 三角形的面积:三角形的面积公式为S = 1/2bh,其中b为底边的长度,h为高的长度。

如果已知三角形的面积S和底边长度b,可以通过反比例函数求解高h。

我们知道S = 1/2bh,对这个式子两边同时取倒数,得到1/S = 2/bh,可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解三角形的高。

在实际问题中,反比例函数也有着广泛的应用。

例如,汽车行驶的时间和速度之间就存在着反比例关系。

假设一辆汽车行驶的距离为d,速度为v,行驶的时间为t。

根据定义,速度等于距离除以时间,即v = d/t。

如果我们已知汽车行驶的距离d和行驶的时间t,可以通过反比例函数求解汽车的速度v。

在数学教育中,反比例函数也是一个重要的概念,它可以帮助学生理解函数的性质和图像的变化。

学生可以通过绘制函数图像、计算函数的值等方式来探究反比例函数的特点,并且可以通过实际应用问题来加深对反比例函数的理解。

综上所述,反比例函数是求解面积问题常用的数学工具之一。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题万能解题模型(一):反比例函数中的面积问题类型1:单支双曲线上一点一垂直形成的三角形的面积设单支双曲线方程为 $y=\frac{k}{x}$,点$A(x_1,y_1)$ 为单支双曲线上的一点,点 $P(x_1,0)$ 为$A$ 点向 $x$ 轴作垂线段的底部交点,则 $\triangle AOP$ 的面积为 $S=\frac{1}{2}x_1y_1$,同时 $\triangle ABC$ 的面积为 $S=\frac{1}{2}x_1\cdot\frac{k}{x_1}=\frac{1}{2}k$,因此$\triangle AOP$ 和 $\triangle ABC$ 面积的比值为$\frac{S_{\triangle AOP}}{S_{\triangleABC}}=\frac{\frac{1}{2}x_1y_1}{\frac{1}{2}k}=\frac{y_1}{k} $,即 $S_{\triangle AOP}=|k|\cdot S_{\triangle ABC}$。

类型2:单支双曲线上一点两垂直形成的矩形面积设单支双曲线方程为 $y=\frac{k}{x}$,点$P(x_1,y_1)$ 为单支双曲线上的一点,$AC$ 和 $DE$ 分别为$P$ 点向 $x$ 轴和 $y$ 轴作垂线段的线段,$B$ 点为 $AC$ 和$DE$ 的交点,则四边形 $PMON$ 的面积为 $S=|x_1y_1|$,同时四边形 $ACDE$ 的面积为$S=\frac{1}{2}|x_1|\cdot|y_1|=\frac{1}{2}S_{\square PMON}$,因此四边形 $PMON$ 和四边形 $ACDE$ 面积的比值为$\frac{S_{\square PMON}}{S_{\squareACDE}}=\frac{2S}{|x_1|\cdot|y_1|}=2|k|$,即 $S_{\square PMON}=|k|\cdot S_{\square ACDE}$。

反比例函数k值与面积模型

反比例函数k值与面积模型

反比例函数k值与面积模型
反比例函数是一种特殊的函数形式,其数学表达式为y = k/x,其中k为比例常数。

这种函数关系常常在实际问题中出现,例如面
积模型中的问题。

在面积模型中,我们常常遇到一种情况,即当一个物体的某一
属性(比如长度、宽度等)增大时,另一属性(比如面积)会减小,反之亦然。

这种情况可以用反比例函数来描述,其中k值则表示了
两个属性之间的关系。

举个例子,假设我们有一个长方形的面积为A,长度为l,宽度
为w。

根据长方形的面积公式A = l w,我们可以得到面积A与长
度l、宽度w之间的关系。

如果我们固定面积A不变,增大长度l,
那么宽度w就会减小,它们之间的关系可以用反比例函数来表示,A = k / l,其中k为比例常数。

这里的k值就表示了长度和宽度之间
的关系,k值越大,长度和宽度的变化越小,反之亦然。

另外一个例子是水桶的装水问题。

假设我们有一个容积为V的桶,水龙头的流量为q。

当我们打开水龙头让水流入桶中时,水桶
中的水的高度h随时间t的变化可以用反比例函数来描述,h = k /
t。

这里k值表示了水的高度h和时间t之间的关系,k值越大,水的高度变化越小,反之亦然。

总之,反比例函数的k值在面积模型中的应用可以帮助我们理解不同属性之间的变化关系,从而更好地解决实际问题。

希望这些例子能够帮助你更好地理解反比例函数与面积模型之间的关系。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题反比例函数是一种特殊的函数形式,具有以下的一般形式: y =k/x (其中k为常数,x不等于0)。

反比例函数经常在数学和科学领域中出现,特别是在描述多种关系和量之间的相互影响时。

在这篇文章中,我们将探讨反比例函数面积问题。

面积问题是在求解几何形体的面积时经常遇到的一类问题。

反比例函数面积问题就是基于反比例函数的特性来解决与面积相关的问题。

让我们从一个具体的实例开始,以更好地理解反比例函数在面积问题中的应用。

假设有一个矩形,其长度为x,宽度为y。

我们知道,矩形的面积可以通过计算长度乘以宽度来得到。

我们将根据反比例函数的定义来描述此问题。

根据反比例函数的定义,我们有y = k/x。

将x和y分别替换为矩形的长度和宽度,我们得到y = k/x = l*w (其中l表示矩形的长度,w表示矩形的宽度)。

我们可以看到,在这个例子中,矩形的面积与其长度和宽度之间存在反比例关系。

当长度增加时,宽度会减小,以保持面积不变;反之亦然。

现在让我们来尝试解决一个具体的反比例函数面积问题。

问题:假设有一个矩形,其长度为8 cm,面积为24 cm²。

当长度增加到10 cm时,矩形的面积是多少?解法:我们可以使用反比例函数来解决这个问题。

根据反比例函数的定义,我们有y = k/x。

这里,y表示矩形的面积,x表示矩形的长度。

根据题目中给出的条件,我们可以将面积和长度表示为y = 24/x。

我们将已知的长度和面积带入公式,得到24 = 8/x。

现在我们可以解这个方程,求得反比例函数的常数k的值。

通过求解方程,我们得到k = 24*8 = 192。

现在我们可以使用得到的常数k来求解问题中给出的具体情况。

根据反比例函数的形式y = k/x,我们有y = 192/10 = 19.2 cm²。

所以,当长度增加到10 cm时,矩形的面积为19.2 cm²。

通过这个具体的例子,我们可以看到反比例函数如何在解决面积问题中发挥作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档