大学物理习题精选-答案解析-第2章质点动力学

合集下载

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b it a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1N 1m 1TaFN 2 m 2TaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

第二章 质点动力学习题解答

第二章 质点动力学习题解答

第二章质点动力学习题解答第二章质点动力学习题解答第2章质点动力学2-1.如附图右图,质量均为m的两木块a、b分别紧固在弹簧的两端,直角的放到水平的积极支持面c上。

若忽然撤除积极支持面c,反问在撤除积极支持面瞬间,木块a和b的加速度为多小?求解:在撤除积极支持面之前,a受到重力和弹簧压力均衡,f弹?mg,b受支持面压力向上为2mg,与重力和弹簧压力平衡,撤去支持面后,弹簧压力不变,则a:平衡,aa2-2推论以下观点与否恰当?表明理由。

(1)质点做圆周运动时收到的作用力中,指向圆心的力便是向心力,不指向圆心的力不是向心力。

(2)质点做圆周运动时,所受的合外力一定指向圆心。

求解:(1)不恰当。

不指向圆心的力的分量可以为向心力。

(2)不正确。

合外力为切向和法向的合成,而圆心力只是法向分量。

2-3如附图右图,一根绳子装设着的物体在水平面内搞匀速圆周运动(称作圆锥挂),有人在重力的方向力促合力,写下tcos??0;b:不均衡,f合?2mg?ab?2g。

g0。

另有沿绳子拉力t的方向求合力,写出t?gcos??0。

显然两者无法同时设立,表示哪一个式子就是错误的,为什么?解:tcos??g?0正确,因物体在竖直方向上受力平衡,物体速度直角分量为0,只在水平面内运动。

t?gcos??0不正确,因沿t方向,物体运动有分量,必须考量其中的一部分提供更多向心力。

应属:t?gcos??m?2r?sin?。

2-4未知一质量为m的质点在x轴上运动,质点只受指向原点的引力的促进作用,引力大小与质点距原点的距离x的平方成反比,即为f??kx2,k为比例常数。

设质点在x?a时的速度为零,求x?a处的速41度的大小。

解:由牛顿第二定律:f?ma,f?m?dvdt。

寻求v与x的关系,换元:kdvdxdv?m??m?v,2xdxdtdx拆分变量:kdx?。

mx2vkxdx12k11?0vdv??m?ax2,2v?m(x?a)vdv6ka时,v?ma4。

大学物理课后习题答案第02章

大学物理课后习题答案第02章

第2章 质点和质点系动力学2.1 一斜面的倾角为α, 质量为m 的物体正好沿斜面匀速下滑. 当斜面的倾角增大为β时, 求物体从高为h 处由静止下滑到底部所需的时间.解:设斜面摩擦系数为μ。

当倾角为α时,1sin 0f mg α-=1cos 0N mg α-= 11f N μ= 求得:tg μα=当斜面倾角为β角时,设物块的下滑加速度为a2cos 0N mg β-= 2sin mg f ma β-= 222f N N tg μα==求得:sin cos a g g tg ββα=- 物体从斜面下滑所需要的时间为:21sin 2h at β=t ==2.2 用力f 推地面上的一个质量为m 的木箱,力的方向沿前下方, 且与水平面成α角. 木箱与地面之间的静摩擦系数为0μ, 动摩擦系数为k μ. 求:⑴要推动木箱,f 最小为多少?使木箱作匀速运动, f 为多少?⑵证明当α大于某值时, 无论f 为何值都不能推动木箱, 并求α值.解:⑴当f 的水平分力克服最大静摩擦力时,木箱可以运动,即 ()0cos sin f mg f αμα≥+ 00cos sin mgf μαμα≥-0min 0cos sin mgf μαμα=-使木箱做匀速运动,则()cos sin k f mg f αμα=+ cos sin k k mgf μαμα=-⑵由能推动木箱的条件: ()0cos sin f mg f αμα≥+ 00cos sin f f mg αμαμ-≥若0cos sin 0f f αμα-<时,上式不可能成立,即不可能推动木箱的条件为: 01tg αμ>, 01arctgαμ>2.3 质量为5000kg 的直升飞机吊起1500kg 的物体, 以0.6m/s 2的加速度上升, 求:(1)空气作用在螺旋桨上的升力为多少. (2)吊绳中的张力为多少.解:(1)对飞机物体整体进行受力分析,得()()f M m g M m a -+=+()()4650010.2 6.8910f M m g a N =++=⨯=⨯ (2)对物体m 进行受力分析,得T mg ma -=()4150010.6 1.5910T m g a N =+=⨯=⨯2.4质量为m 汽车以速率0v 高速行驶, 受到2kv f -=的阻力作用, k 为常数.当汽车关闭发动机后, 求:(1)速率v 随时间的变化关系. (2)路程x 随时间的变化关系. (3)证明速率v 与路程x 之间的函数关系为x mke v v -=0.(4)若020/v m s =, 经过15s 后, 速率降为10/t v m s =, 则k 为多少?解:由题意, 2dvmkv dt =- 两边积分 020v tv dv k dt v m =-⎰⎰011kt v v m ⎛⎫-=- ⎪⎝⎭即 00001v mv v k m kv t v t m ==+⎛⎫+ ⎪⎝⎭(2)由上式两边积分 0000xtmv dx dt m kv t =+⎰⎰即 0ln m kv t m x k m +⎛⎫=⎪⎝⎭(3)由(1)中得 00mv kv t m v =-,代入(2)中的结果,得 00ln ln mv m m v m m v x k m k v ⎛⎫+- ⎪⎛⎫== ⎪ ⎪⎝⎭⎪⎝⎭即 0k x mv v e-=(4)020/v m s =,15t s =,10/t v m s =代入00mv v m kv t=+,求得300m k =2.5质量为m 的质点以初速度0v 竖直上抛, 设质点在运动中受到的空气阻力与质点的速率成正比, 比例系数为0>k .试求:(1)质点运动的速度随时间的变化规律. (2)质点上升的最大高度.解:(1) dvm mg kv dt=--mdvdt mg kv=-+1()kd kv mg dt mg kv m+=-+两边积分 001()vtv k d kv mg dt mg kv m +=-+⎰⎰0lnkv mg kt kv mg m+=-+即 k mg e k mg v v t m k-⎪⎭⎫ ⎝⎛+=-0 (2)由(1)中方程得 dv dv dy dv mg kv mm mv dt dy dt dy--=== ()mg kv mg mvdv m dy dv mg kv k mg kv+--==-++两边积分 00(1)yv v m mgdy dv k mg kv=--+⎰⎰ ()2020ln m m g mg kvy v v k k mg kv +=-++当0v =时,有 20max02ln mg kv m m g y v k k mg ⎛⎫+=- ⎪⎝⎭2.6自动枪以每分钟发射120发子弹的速率连续发射. 每发子弹的质量为7.9g , 出口速率为735/m s . 求射击时枪托对肩部的平均压力.解:设肩部所受的平均作用力为F ,由动量定理得 Ft mv =∑即 31207.91073511.660mv F N t-⨯⨯⨯==≈∑2.7 质点在x 轴上受x 方向的变力F 的作用.F 随时间的变化关系为:在刚开始的0.1s 内均匀由0增至20N ,又在随后的0.2s 内保持不变,再经过0.1s 从20N 均匀地减少到0. 求:(1)力随时间变化的t F -图. (2)这段时间内力的冲量和力的平均值. (3)如果质点的质量为3kg , 初始速度为1/m s , 运动方向与力的方向相同. 当力变为零时, 质点速度为多少?解:(1)由题意得(2)由上图得11200.1200.2200.1622I N s =⨯⨯+⨯+⨯⨯=⋅0.5200.1200.20.5200.1150.4I F N t ⨯⨯+⨯+⨯⨯=== (3)由动量定理得 0t I mv mv =-0.10.30.4即 06313/3t I mv v m s m ++⨯===2.8子弹脱离枪口的速度为300/m s , 在枪管内子弹受力为5400410/3F t =-⨯(SI ), 设子弹到枪口时受力变为零. 求:(1)子弹在枪管中的运行的时间. (2)该力冲量的大小. (3)子弹的质量.解:(1)由541040003tF ⨯=-=得3310t s -=⨯ (2)35310004104000.63tt I Fdt dt N s -⨯⎛⎫⨯==-=⋅ ⎪⎝⎭⎰⎰(3)由0I Ft mv ==-得 30.6210300I m kg v -===⨯2.9 自由电子在沿x 轴的振荡电场()0cos E t ωϕ=+E i中运动, 其中0E , ω,ϕ为常数. 设电子电量为e -, 质量为m , 初始条件为:0=t 时, 00v =v i, 00x =r i . 略去重力和阻力的作用, 求电子的运动方程.解:由()0cos F eE t ωϕ=-+得 0tvv Fdt mdv =⎰⎰解得()000sin sin eE eEv v t m m ϕωϕωω=+-+ 两边同乘dt 积分,()000sin sin eE eE dx v t dt m m ϕωϕωω⎛⎫=+-+ ⎪⎝⎭两边积分,()ϕωωϕωϕω++⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=t m eE t m eE v m eE x x cos sin cos 20002002.10 质量为m 的物体与一劲度系数为k 的弹簧连接, 物体可以在水平桌面上运动, 摩擦系数为μ. 当用一个不变的水平力拉物体, 物体从平衡位置开始运动. 求物体到达最远时, 系统的势能和物体在运动中的最大动能.解:分析物体水平受力,物体受外力、弹性力以及摩擦力,如图所示 物体到达最远时,速度为0。

大学物理习题答案02质点动力学

大学物理习题答案02质点动力学

大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。

小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。

[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。

3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。

[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。

大学物理第二章质点动力学习题答案

大学物理第二章质点动力学习题答案

习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。

[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。

[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。

大学物理习题精选-答案——第2章 质点动力学

大学物理习题精选-答案——第2章 质点动力学

质点动力进修题答案 【1 】2-1一个质量为P 的质点,在滑腻的固定斜面(倾角为α)上以初速度0v 活动,0v 的偏向与斜面底边的程度线AB 平行,如图所示,求这质点的活动轨道.解: 物体置于斜面上受到重力mg ,斜面支撑力N .树立坐标:取0v偏向为X 轴,平行斜面与X 轴垂直偏向为Y 轴.如图2-1.图2-1X 偏向: 0=x F t v x 0=① Y 偏向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α=由①.②式消去t ,得220sin 21x g v y ⋅=α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时光及上升的最大高度.解:⑴研讨对象:m⑵受力剖析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=a m f P =+y 分量:dtdV m KV mg =--dt KVmg mdV-=+⇒即dt mKV mg dV 1-=+⎰⎰-=+t vv dt m KV mg dV 010 dt mKV mg KV mg K 1ln 10-=++ )(0KV mg eKV mg t mK+⋅=+-mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K m mg KV mg K m t +=+=② ∵dtdyV =∴Vdt dy =dt mg K e KV mg K Vdt dy tt mK ty⎰⎰⎰⎥⎦⎤⎢⎣⎡-+==-00001)(1mgt Ke KV mg K my t m K 11)(02-⎥⎦⎤⎢⎣⎡-+-=-021()1Kt m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,)1ln(11)(0)1ln(02max0mg KV K m mg K e KV mg K m y mgKV K mm K +⋅-⎥⎥⎦⎤⎢⎢⎣⎡-+=+⋅-)1ln(11)(02202mg KV g Km mg KV mg KV mg K m +-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+=)1ln()(0220002mg KV g K m KV mg KV KV mg Km +-++=)1ln(0220mg KV g Km K mV +-=2-3 一条质量为m ,长为l 的匀质链条,放在一滑腻的程度桌面,链子的一端由微小的一段长度被推出桌子边沿,在重力感化下开端下落,试求链条方才分开桌面时的速度.解:链条在活动进程中,其部分的速度.加快度均雷同,沿链条偏向,受力为mxg l,依据牛顿定律,有mF xg ma l== 经由过程变量调换有m dv xg mv l dx= 0,0x v ==,积分00lv mxg mvdv l =⎰⎰ 由上式可得链条刚分开桌面时的速度为v gl =2-5 升降机内有两物体,质量分离为1m 和2m ,且2m =21m .用细绳衔接,跨过滑轮,绳索不成伸长,滑轮质量及一切摩擦都疏忽不计,当起落机以匀加快a =12g 上升时,求:(1) 1m 和2m 相对起落机的加快度.(2)在地面上不雅察1m 和2m 的加快度各为若干?解: 分离以1m ,2m 为研讨对象,其受力争如图所示.(1)设2m 相对滑轮(即起落机)的加快度为a ',则2m 对地加快度a a a -'=2;因绳不成伸长,故1m 对滑轮的加快度亦为a ',又1m 在程度偏向上没有受连累活动的影响,所以1m 在程度偏向对地加快度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='偏向向下 (2)2m 对地加快度为22ga a a =-'=偏向向上 1m 在水面偏向有相对加快度,竖直偏向有连累加快度,即牵相绝a a a+=' ∴ g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线活动,试问在第二个5秒内和第一个5秒内物体受冲量之等到动量增量之比各为若干?解:设物体沿+x 偏向活动,2525501===⎰⎰tdt Fdt I N·S (1I 沿i 偏向)7521051052===⎰⎰tdt Fdt I N·S (2I 沿i 偏向)3/12=⇒I I∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg,速度5=v m/s,与墙壁碰撞后跳回. 设跳回时速度不变,碰撞前后的速度偏向和墙的法线夹角都为60α︒=,⑴求碰撞进程中小球受到的冲量?=I⑵设碰撞时光为05.0=∆t s,求碰撞进程中小球受到的平均冲力?F = 解:⎩⎨⎧=-=-==--=-=0sin sin cos 2)cos (cos 1212αααααmv mv mv mv I mv mv mv mv mv I y y y x x x i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗枪弹由枪口射出时速度为10s m -⋅v ,当枪弹在枪筒内被加快时,它所受的合力为 F=(bt a -)N(b a ,为常数),个中t 以秒为单位:(1)假设枪弹运行到枪口处合力刚好为零,试盘算枪弹走完枪筒全长所需时光;(2)求枪弹所受的冲量.(3)求枪弹的质量. 解: (1)由题意,枪弹到枪口时,有0)(=-=bt a F ,得bat =(2)枪弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得枪弹的质量202bv a v I m == 2-10 木块B 静止置于程度台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg,B m =,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1.如今给小木块A 一贯右的程度初速度0v =40m/s,问经由多长时光A.B 正好具有雷同的速度?(设B 板足够长)解:当小木块A 以初速度0v 向右开端活动时,它将受到木板B的摩擦阻力的感化,木板B 则在A 赐与的摩擦力及台面赐与的摩擦力的配合感化下向右活动. 假如将木板B 与小木块A 视为一个体系,A.B 之间的摩擦力是内力,不转变体系的总动量,只有台面与木板B 之间的摩擦力才是体系所受的外力,转变体系的总动量. 设经由t ∆时光,A.B 具有雷同的速度,依据质点系的动量定理0()k A B A F t m m v m v -∆=+-2()k A B F m m g μ=+再对小木块A 单独予以斟酌,A 受到B 赐与的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=-以及'1k A F m g μ=解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-代入数据得 2.5v =m/s t ∆2-11一粒枪弹程度地穿过并排静止放置在滑腻程度面上的木块,如图2-11所示. 已知两木块的质量分离为1m 和2m ,枪弹穿过两木块的时光各为1t ∆和2t ∆,设枪弹在木块中所受的阻力为恒力F ,求枪弹穿事后,两木块各以多大速度活动.解:枪弹穿过第一木块时,两木块速度雷同,均为1v ,初始两木块静止,由动量定理,于是有1121()0F t m m v ∆=+-设枪弹穿过第二木块后,第二木块速度变成2v ,对第二块木块,由动量定理有22211F t m v m v ∆=-解以上方程可得图2-10图2-111121212122,F t F t F t v v m m m m m ∆∆∆==+++2-12一端平均的软链铅直地挂着,链的下端刚好触到桌面. 假如把链的上端摊开,证实在链下落的任一时刻,感化于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开端下落时0t =,在随意率性时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在dt 时光内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 依据动量定理,桌面赐与dm 的冲量等于dm 的动量增量,即I Fdt vdm vdx ρ===所以2dxF vv dtρρ== 由自由落体的速度22v gx =得2F gx ρ=这是t 时刻桌面赐与链的冲力. 依据牛顿第三定律,链对桌面的冲力'F F =,'F 偏向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以'3N F xg xg ρρ=+=所以3Nxgρ= 即链条感化于桌面上的压力3倍于落在桌面上那部分链条的重量.2-13一质量为50kg 的人站在质量为100kg 的停在静水中的划子上,船长为5m,问当人从船头走到船尾时,船头移动的距离.解:以人和船为体系,全部体系程度偏向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得m +M =0v V个中v ,V 分离为人和划子相对于静水的速度, 可得m -MV =v人相对于船的速度为'M mM+=-=v v V v 设人在t 时光内走完船长l ,则有'000t ttM m M m l v dt vdt vdt M M ++===⎰⎰⎰在这段时光内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在滑腻的程度桌面上,质量为m ,速度0v 的枪弹程度地射入木块,并陷在木块内与木块一路活动.求: (1)枪弹相对木块静止后,木块的速度和动量; (2)枪弹相对木块静止后,枪弹的动量;(3) 在这个进程中,枪弹施于木块的冲量.解:枪弹相对木块静止后,其配合速度设为u ,枪弹和木块构成体系动量守恒 (1)0()mv m M u =+ 所以0mv u m M =+M Mmv P Mu m M==+(2)枪弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,枪弹施于木块的冲量为00M MmI P v M m=-=+2-15质量均为M 的两辆小车沿着一向线停在滑腻的地面上,质量为m 的人自一辆车跳入另一辆车,接着又以雷同的速度跳回来. 试求两辆车的速度之比.解:质量为m 的人,以相对于地面的速度v 从车A 跳到车B,此时车A 得到速度1u ,因为车是在滑腻的地面上,沿程度偏向不受外力,是以,由动量守恒得1mv Mu =人到达车B 时,配合得速度为2u ,由动量守恒得2()M m u mv +=人再由车B 以相对于地面的速度v 跳回到车A,则车B 的速度为'2u ,而车A 与人的配合速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12m u v M m=+ 所以车B 和车A 得速度之比为'2'1u M mu M+=2-16体重为P 的人拿侧重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以程度向后的相对速度u 抛出,问跳远成绩是以增长若干?解:人和物体构成体系在最高点抛出物体前后沿程度偏向动量守恒,留意到对地面这个惯性参考系''0'0'()cos ()cos m m v mv m v u m v v u m mϕϕ+=+-=++从最高点到落地,人做平抛活动所需时光0sin v t gϕ=跳远距离增长为'00'(cos )cos m s v u t v t m m ϕϕ∆=+-+'0'sin v m put u m m P p gϕ==++ 2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在程度轨道上活动.'22'11()()Mu mv M m u M m u mv Mu -=++=+现有N 小我从平板车的后端跳下,每小我的质量均为m ,相对平板车的速度均为u . 问鄙人述两种情形下,平板车的末速度是若干?(1)N 小我同时跳离;(2)一小我.一小我的跳离. 所得成果是否雷同.解:取平板车和N 小我为研讨对象,因为在程度偏向上无外力感化,故体系在该偏向上动量守恒. 取平板车活动偏向为坐标轴正偏向,设最初平板车静止,则有()0Mv Nm v u +-= 所以N 小我同时跑步跳车时,车速为Nmv u M Nm=+(2)若一小我.一小我地跳车,情形就不合了. 第一个跳车时,由动量守恒定律可得11[(1)]()0M N m v m v u +-+-=第二小我跳车时,有221[(2)]()[(1)]M N m v m v u M N m v +-+-=+-21(1)muv v M N m-=+-以此类推,第N 小我跳车时,有1()()N N N Mv m v u M m v -+-=+1N N muv v M m--=+所以1111()2NN n muv mu M m M m M Nm M nm==++⋅⋅⋅=++++∑因为1112M m M m M Nm >>⋅⋅⋅>+++ 1112NM m M m M Nm M Nm++⋅⋅⋅>++++故N v v >2-18质量为kg 10的物体作直线活动,受力与坐标关系如图2-18所示.若0=x 时,s m v /1=,试求m x 16=时,?=v解:在0x =到m x 16=进程中,外力功为力曲线与x 轴所围的面积代数和=40J由动能定理为:2122mv 21mv 21W -=即1102110214022⨯⨯-⨯=vs m v /32=⇒2-19在滑腻的程度桌面上,程度放置一固定的半圆形樊篱. 有一质量为m 的滑块以初速度0v 沿切线偏向进入樊篱一端,如图2-19所示,设滑块与樊篱间的摩擦因数为μ,试证实当滑块从樊篱另一端滑出时,摩擦力作功为2201(1)2f W mv e μπ-=-解:滑块做圆周活动,依牛顿定律,有:法向:2mv N R=切向:dv dv d mv dvf N m m dt d dt R d θμθθ=-===由以上两式,可得dvd vμθ=- 对上式双方积分,有00v v dv d v πμθ=-⎰⎰可得0v v eμπ-=由动能定理可得摩擦力做功为222200111(1)222f W mv mv mv e μπ-=-=- 2-20质量为M 的木块静止于滑腻程度面上,一质量为m ,速度为v 的枪弹程度射入木块后嵌在木块内,并于木块一路活动,求:(1)木块施于枪弹的力所做的功;(2)枪弹施于木块的力所做的功;(3)木块和枪弹体系耗散的机械能.图2-19图2-18解:把枪弹和木块当作一个体系,动量守恒()M m u mv +=因而求得枪弹和木块配合速度mu v M m=+(1)222221121()22()2M Mm A mu mv mv M m +=-=-+ (2)'222110()2()2Mm A Mu mv M m =-=+ (3)22221111()()222()2M E mu Mu mv mv M m ∆=+-=-+ 2-21一质量10M =kg 的物体放在滑腻的程度桌面上,并与一程度轻弹簧相连,弹簧的劲度系数1000k =N/m. 今有一质量m =1kg 的小球以程度速度0v =4m/s 飞来,与物体M 相撞后以1v =2m/s 的速度弹回,试问: (1) 弹簧被紧缩的长度为若干?(2) 小球m 和物体M 的碰撞是完整弹性碰撞吗?(3) 假如小球上涂有黏性物资,相撞后可与M 粘在一路,则(1),(2)所问的成果又若何? 解:碰撞进程中物体.弹簧.小球构成体系的动量守恒01mv mv Mu =-+01()1(42)0.610m v v u M +⨯+===m/s小球与弹簧碰撞,弹簧被紧缩,对物体M 有感化力,对物体M ,由动能定理 (1)2211022kx Mu -=- 弹簧被紧缩的长度0.60.06x ===m (2)22210111222k E Mu mv mv ∆=+-(3)小球与物体M 碰撞后粘在一路,设其配合速度为'u ,依据动量守恒及动量定理'0()mv M m u =+'2'2110()22kx M m u -=-+ 此时弹簧被紧缩的长度'00.04()mv x k M m ==+m2-22 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如2-22图.求这一体系静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如2-22图所示均衡时,有又11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为图2-22A B F F Mg==12222211121212k kx k x k E E p p =∆∆= 2-23 如题2-23图所示,一物体质量为2kg,以初速度0v =3m·s-1从斜面A 点处下滑,它与斜面的摩擦力为8N,到达B 点后紧缩弹簧20cm 后停滞,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块紧缩弹簧至最短处的地位为重力势能零点,弹簧原长处为弹性势能零点.则由功效道理,有⎪⎭⎫⎝⎛︒+-=-37sin 212122mgs mv kx s f r 222137sin 21kx sf mgs mv k r -︒+=式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得-1m N 1390⋅=k再次应用功效道理,求木块弹回的高度h '2o 2137sin kx s mg s f r -'='-代入有关数据,得m 4.1='s , 则木块弹回高度m 84.037sin o ='='s h2-24铅直平面内有一滑腻的轨道,轨道的BCDE 部分是半径为R 的圆. 若物体从A 处由静止下滑,求h 应为多大才正好能使物体沿圆周BCDE 活动? 图2-23解:木块如能经由过程D 点,就可以绕全部圆周活动. 设木块质量为m ,它在D 点的法向活动方程为2v N mg m R+=式中N 为圆环给木块的法向推力. 显然N =0时,木块刚好能经由过程D 点,所以木块刚好能绕圆周活动的前提为2v Rg =选木块和地球为体系,体系的机械能守恒,所以可得2122mgR mv mgh +=联立求解得 2.5h R =即高度为 2.5h R =时木块刚好能绕圆周活动2-25两个质量分离为1m 和2m 的木块A 和B ,用一个质量疏忽不计.顽强系数为k的弹簧衔接起来,放置在滑腻程度面上,是A 紧靠墙壁,如图示. 用力推木块B 使弹簧紧缩0x ,然后释放. 已知12,3m m m m ==,求(1) 释放后,A .B 两木块速度相等时的瞬时速度的大小; (2) 释放后,枪弹的最大伸长量.解:释放后,枪弹恢复到原长时A 将要分开墙壁,设此时B 的速度为v ,由机械能守恒,由22013/22kx mv = 得03k v x m= A 分开墙壁后,体系在滑腻程度面上活动,体系动量守恒,机械能守恒,有 11222m v m v m v +=22221122211112222m v kx m v m v ++=(1) 图2-26当12v v =时,求得:12033443k v v v x m===(2) (2)弹簧有最大伸长量时,1234v v v ==,由式(2)得 max 012x x =2-26两块质量各为1m 和2m 的木块,用劲度系数为k 的轻弹簧连在一路,放置在地面上,如图示,问至少要用多大的力F 紧缩上面的木块,才干在该力撤去后因上面的木板升高而将下面的木板提起?解:将12,m m 和弹簧和地球视为一个体系,该体系在压力撤离后,只有保守力感化,所以机械能守恒. 设压力撤离时刻为初态,2m 正好提离地面时为末态,初态.末态时动能均为零. 设弹簧原长时为坐标原点和势能零点,则2211001122m gx kx m gx kx +=-+式中0x 为压力F 感化时弹簧的紧缩量,则100m g F kx +-=式中x 为2m 正好能提离地面时弹簧的伸长量,此时请求2kx m g ≥ 联立以上几个方程解得12()F m m g ≥+故能使2m 提离地面的最小压力为min 12()F m m g =+2-27一质量为'm 的三角形木块放在滑腻的程度面上,另一质量为m的立方木块由斜面最低处沿斜面向上活动,相对于斜面的初速度为0v ,如图所示,假如不斟酌木块接触面上的摩擦,问立方木块能沿斜面上滑多高?图2-27图2-28解:三角形木块与立方木块构成的体系在程度偏向不受外力感化,程度偏向动量守恒. 初始时,立方木块速度为0v ,其程度偏向分量为0cos v θ,三角形木块静止;当立方木块达最高点时,相对于三角形木块静止,设二者配合的速度为v ,则'0cos ()mv m m v θ=+在活动进程中,两木块和地球构成的体系只有重力做功,机械能守恒,得2'2011()22mv mgh m m v =++ 由以上两式得立方木块沿斜面上滑的高度为2222'00''cos sin (1)22v v m m m h g m m g m m θθ+=-=++2-28两个外形完整雷同.质量都为M 的弧形导轨A 和B,放在地板上,今有一质量为m 的小物体,从静止状况由A 的顶端下滑,A 顶端的高度为0h ,所有接触面均滑腻. 试求小物体在B 轨上上升的最大高度(设A.B 导轨与地面相切)解:设小物体沿A 轨下滑至地板时的速度为v ,对小物体与A 构成的体系,应用机械能守恒定律及沿程度偏向动量守恒定律,有0A Mv mv -+=(1)2201122A mgh Mv mv =+(2) 解得02/()v Mgh M m =+(3)当小物体以初速v 沿B 轨上升到最大高度H 时,此时小物体相对B 的速度为零,设小物体与B 相对地沿程度偏向的配合速度为u ,依据动量守恒与机械能守恒, 有()Mv M m u =+(4)2211()22mv M m u mgH =++(5) 联立(3)-(5)解得图2-29220()2()Mv M H h M m g M m==++2-29一质量为200g 的砝码盘吊挂在劲度系数196k =N/m 的弹簧下,现有质量为100g 的砝码自30cm 高处落入盘中,求盘向下移动的距离(假设砝码与盘的碰撞是完整非弹性碰撞)解:第一阶段:砝码落入盘中以前,由机械能守恒有第二阶段:砝码与盘碰撞,因为完整非弹性碰撞,其配合速度设为2v ,在垂直偏向,砝码和盘构成体系之碰撞内力弘远于重力.弹簧的弹性力,可以为在垂直偏向动量守恒,因而有11122()m v m m v =+第三阶段:砝码和盘向下移动进程中机械能守恒,留意到弹性势能零点是选在弹簧的原长处22212212122111()()()222kl m m v k l l m m gl ++=+-+ 解以上方程可得222980.980.0960l l --=向下移动的最大距离为20.037l =2-30顽强系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相衔接. 推进小球,将弹簧紧缩一端距离L 后摊开,假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等. 试求L 必须知足什么前提时,才干使小球在摊开后就开端活动,并且一旦停滞下来就一向保持静止状况.解:取弹簧的天然长度处为坐标原点图2-30图2-31211112m gh m v =21m g kl =在0t =时,静止于x L =-的小球开端活动的前提是kL F > (1)小球活动到x 处静止的前提,由功效道理得2211()22F L x kx kL -+=- (2) 使小球持续保持静止的前提为2||||Fk x k L F k=-≤ (3) 所求L 同时知足(1)和(3)式,求得3F FL k k<≤2-31一绳跨过必定滑轮,两头分离拴有质量为m 及M 的物体,如图示,M 静止在桌面上(M >m ).举高m , 使绳处于松懈状况. 当m 自由落下h 距离后, 绳才被拉紧,求此时两物体的速度及M 所能上升的最大高度.解:分三个阶段m 自由下落212mgh mv =,m M 互相感化(经由过程绳),在此阶段,绳中张力T 比物体所受重力大得多,此时可疏忽重力,由动量定理 对m 有0tTdt mV mv ∆-=-⎰对M 有0tTdt MV ∆=-⎰m 降低,M 上升进程机械能守恒 210()2mgH MgH M m V -=-+解以上方程可得2222,m m hV gh H m MM m==+- 图2-32。

大学物理第二章质点动力学习题答案

大学物理第二章质点动力学习题答案

习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。

[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tvm ma f d d == 即 tv m kv d d ==- 所以t m kv v d d -= 对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0 得 t mkv v -=0ln因此 t mke v v -=0(2) 由牛顿第二定律 x v mv t x x v m t v mma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmvs 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得即 tv mma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t vmt kv F mg v00d d 得 mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。

[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。

大学物理2-1第二章(质点动力学)习题答案

大学物理2-1第二章(质点动力学)习题答案

大学物理2-1第二章(质点动力学)习题答案习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。

[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv mkv d d ==-所以t m k v v d d -=对等式两边积分 ⎰⎰-=t v v tm k v v 0d d 0得t mk v v -=0ln因此t mke v v -=0(2)由牛顿第二定律xvmv t x x v m t v m ma f d d d d d d d d ==== 即 xvmvkv d d =- 所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得t vm ma f F mg d d ==-- 即tvmma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t v mt kv F mg v00d d 得mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1mgFf2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

力学习题-第2章质点动力学(含答案)

力学习题-第2章质点动力学(含答案)

第二章质点动力学单元测验题一、选择题1.如图,物体A 和B 的质量分别为2kg 和1kg ,用跨过定滑轮的细线相连,静止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F 作用在物体A 上,则F 至少为多大才能使两物体运动.A.3.4N;B.5.9N;C.13.4N;D.14.7N答案:A解:设沿斜面方向向下为正方向。

A 、B 静止时,受力平衡。

A 在平行于斜面方向:sin A 12F m g T f f 0θ+---=B 在平行于斜面方向:1sin 0B f m g T θ+-=静摩擦力的极值条件:1cos B f m g μθ≤,2()cos B A f m m g μθ≤+联立可得使两物体运动的最小力minF 满足:min ()sin (3)cos B A B A F m m g m m g θμθ=-++=3.6N2.一质量为m 的汽艇在湖水中以速率v 0直线运动,当关闭发动机后,受水的阻力为f =-kv ,则速度随时间的变化关系为A.t mk ev v 0=; B.tm kev v -=0; C.t m kv v +=0;D.t mk v v -=0答案:B解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以0v 方向为正方向建立坐标系.牛顿第二定律:dvma mkv dt==-整理:dtm k vdv -=积分得:tm k ev v -=03.质量分别为1m 和2m (21m m >)的两个人,分别拉住跨在定滑轮(忽略质量)上的轻绳两边往上爬。

开始时两人至定滑轮的距离都是h .质量为1m 的人经过t 秒爬到滑轮处时,质量为2m 的人与滑轮的距离为A.0;B.h m m 21; C.)21+(221gt h m m ; D.)21+(-2212gt h m m m 答案:D解:如图建立坐标系,选竖直向下为正方向。

设人与绳之间的静摩擦力为f ,当质量为1m 的人经过t 秒爬到滑轮处时,质量为2m 的人与滑轮的距离为'h ,对二者分别列动力学方程。

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第2章 质点动力学

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第2章 质点动力学

第二章 质点动力学2-1如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-2如本题图所示,已知两物体A 、B 的质量均为m=3.0kg ,物体A 以加速度a =1.0m/s 2运动,求物体B 与桌面间的摩擦力。

(滑轮与连接绳的质量不计)解:分别对物体和滑轮受力分析(如图),由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-3 如图所示,细线不可伸长,细线、定滑轮、动滑轮的质量均不计,已知314m m =,322m m =。

求各物体运动的加速度及各段细线中的张力。

解:设m 1下落的加速度为a 1,因而动滑轮也以a 1上升。

再设m 2相对动滑轮以加速度a ′下落,m 3相对动滑轮以加速度a ′上升,二者相对地面的加速度分别为:1a a -'(下落)和1a a +'(上升),设作用在m 1上的线中张力为T 1,作用在m 2和m 3上的线中张力为T 2。

列出方程组如下:习题2-2图AB 习题2-1图a AmgT A T B a Bmg习题2-3 图211332122211112)()(T T a a m g m T a a m T g m a m T g m =+'=--'=-=- 代入314m m =,322m m =,可求出:51g a =,52g a =',52g a =,533g a =,g m T 1154=,g m T 1252=2-4光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ。

大学物理第二章质点动力学习题解答

大学物理第二章质点动力学习题解答

2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为 m 1,m 2的物体(m 1M m 2),天平右端的托盘上放有砝码.问天平托盘和 砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴 承摩擦,绳不伸长。

解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用 牛顿第二定律:第二章习题解答2-17质量为2kg 的质点的运动学方程为r (6t 2 1)? (3t 2 3t 1)?(单位:米,秒),求证质点受恒力而运动,并求力的方 向大小。

解:T a d 2r/dt 2 12? 6?, F ma 24? 12?为一与时间无关的恒矢量, 质点受恒力而运动。

F=(242+122)1/2=12 ■ 5N ,力与x 轴之间夹角为:arctgF y / F xarctg 0.526 34'2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:r acos t ? bsin t ?, a,b,3为正常数,证明作用于质点的合力总指向原点证明:•.• a d 2r /dt 22(acos t? bsin tp) 2rF ma m 2r , •••作用于质点的合力总指向原点2-19在图示的装置中两物体的质量各为 m 1,m 2,物体之间及物 体与桌面间的摩擦系数都为卩,求在力F 的作用下两物体的加速度 及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离 m 1,m 2,受力及运动情况 如图示,其中:f 1=卩N 1=卩m 1g , f 2=卩N 2=卩(N 1+m 2g)=卩(m 1+m 2)g.在水平方向对 两个质点应用牛二定律:①+②可求得:a F 2 m 1ggm 1 m 2JlN 1 T ---------------- * f 11Fm1ga 亠T m g m 1a ① F m 1g (m 1 m 2)g T m 2a ②将a 代入①中,可求得:Tm 1(F 2 mg) m 1 m 2仃N 1 ‘‘ m2ga -N 1a 1一 1 • f 1 I'm 1gT' m 1 g m 1a ① m 2g T' m ?a ②T 2T' 由①②可求得:T' 2m 1m 2g T m 1 m 2 '2mim 2g m 1 m 22-21 一个机械装置如图所示,人的质量为m 仁60kg ,人所站的底 板的质量为m 2=30kg 。

大学物理第2章课后答案

大学物理第2章课后答案

第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。

求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。

求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623= N f 8412=(2)由()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F = 得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f f f am f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。

问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点动力学习题答案2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得22sin 21x g v y ⋅=α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=a m f P =+y 分量:dtdVmKV mg =-- dt KVmg mdV-=+⇒即dt mKV mg dV 1-=+⎰⎰-=+t vv dt m KV mg dV 01dt mKV mg KV mg K 1ln 10-=++ )(0KV mg eKV mg t mK+⋅=+-mg Ke KV mg K V t m K1)(10-+=⇒- ①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K m mg KV mg K m t +=+=② ∵ dtdyV =∴ Vdt dy =dt mg K e KV mg K Vdt dy tt mK ty⎰⎰⎰⎥⎦⎤⎢⎣⎡-+==-00001)(1mgt Ke KV mg K my t m K 11)(02-⎥⎦⎤⎢⎣⎡-+-=-021()1Kt m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦ ③ 0t t = 时,max y y =,)1ln(11)(0)1ln(02max0mg KV K m mg Ke KV mg K m y mgKV K mm K +⋅-⎥⎥⎦⎤⎢⎢⎣⎡-+=+⋅- )1ln(11)(02202mg KV g K m mg KV mg KV mg K m +-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+=)1ln()(0220002mg KV g K m KV mg KV KV mg Km +-++=)1ln(0220mg KV g Km K mV +-=2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为mxg l,根据牛顿定律,有mF xg ma l==通过变量替换有m dv xg mv l dx=0,0x v ==,积分00l vm xg mvdv l =⎰⎰由上式可得链条刚离开桌面时的速度为v =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少? 解: 分别以1m ,2m 为研究对象,其受力图如图所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下 (2) 2m 对地加速度为22ga a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+='图2-4∴ g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少? 解:设物体沿+x 方向运动,2525501===⎰⎰tdt Fdt I N·S (1I 沿i 方向)7521051052===⎰⎰tdt Fdt I N·S (2I 沿i方向)3/12=⇒I I∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p 2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回. 设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞过程中小球受到的冲量?=I⑵设碰撞时间为05.0=∆t s ,求碰撞过程中小球 受到的平均冲力?F = 解:⎩⎨⎧=-=-==--=-=0sin sin cos 2)cos (cos 1212αααααmv mv mv mv I mv mv mv mv mv I y y y x x x i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)解:当小木块A 以初速度0v 向右开始运动时,它将受到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,根据质点系的动量定理 0()k A B A F t m m v m v -∆=+-2()k A B F m m g μ=+再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=-以及 '1k A F m g μ=解得 0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-代入数据得 2.5v =m/s t ∆=7.65s2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,两木块各以多大速度运动.图2-10图2-11解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止, 由动量定理,于是有1121()0F t m m v ∆=+-设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有22211F t m v m v ∆=- 解以上方程可得 1121212122,F t F t F t v v m m m m m ∆∆∆==+++2-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面. 如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在d t 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 I F d t v d m vd ρ=== 所以 2dxF vv dtρρ== 由自由落体的速度22v gx =得2F gx ρ=这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以'3N F xg xg ρρ=+= 所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量.2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离.解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得 m +M =0v V其中v ,V 分别为人和小船相对于静水的速度,可得m -MV =v 人相对于船的速度为 'M mM+=-=v v V v 设人在t 时间内走完船长l ,则有 '000ttt M m M ml v d t v d tv d tM M ++===⎰⎰⎰在这段时间内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求:(1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量; (3) 在这个过程中,子弹施于木块的冲量.解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒 (1)0()mv m M u =+ 所以 0mv u m M=+M Mmv P Mu m M==+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为00M MmI P v M m=-=+2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m 的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解: 质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得1mv Mu =人到达车B 时,共同得速度为2u ,由动量守恒得2()M m u mv +=人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12m u v M m=+ 所以车B 和车A 得速率之比为'2'1u M mu M+= 2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以水平向后的相对速度u 抛出,问跳远成绩因此增加多少?解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系''0'0'()cos ()cos m m v mv m v u m v v u m mϕϕ+=+-=++从最高点到落地,人做平抛运动所需时间0sin v t gϕ= 跳远距离增加为'00'(cos )cos m s v u t v t m mϕϕ∆=+-+ '0'sin v m put u m m P p gϕ==++2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有()0Mv Nm v u +-=所以N 个人同时跑步跳车时,车速为'22'11()()Mu mv M m u M m u mv Mu -=++=+Nmv u M Nm=+(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得11[(1)]()0M N m v m v u +-+-=第二个人跳车时,有221[(2)]()[(1)]M N m v m v u M N m v +-+-=+-21(1)muv v M N m-=+-以此类推,第N 个人跳车时,有1()()N N N Mv m v u M m v -+-=+1N N muv v M m--=+所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm >>⋅⋅⋅>+++ 1112NM m M m M Nm M Nm++⋅⋅⋅>++++ 故N v v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。

相关文档
最新文档