各类不等式的解法

合集下载

不等式的解法

不等式的解法

x
4
0
3x 5 x 4
x
x
x
5 3 4 1 2
x4,
4. x23x10 x4
解:
x2 3x10 0 x4 0
x 5或 x 2
x
4
x2 3x 10 (x 4)2
x
26 5
x
5,
26 5
不等式解法的两个极其重要的思想:
⒈转化:即将绝对值不等式即其他不等式向代数 不等式或代数不等式组转化,再对其求解.
一.一次不等式和不等式组的解法 二.二次不等式的解法 三.高次不等式的解法 四.分式不等式的解法 五.绝对值不等式的解法 六.无理不等式的解法
一元一次不等式和不等式组的解法
一元一次不等式即为形如ax>b的不等式。
当a>0 则x> b a
当a<0 则x< b a
当a=0 且b 0 则为
当a=0 且b<0 则为R
解:1.当a=0时,不等式为:-x>0,解集为:{x|x<0}
2. 当a≠0时,不等式为:(ax-1)(x-a)>0, (1)当a>0时,不等式为:(x-1/a)(x-a)>0,
①a>1,a>1/a,解集为:{x|x<1/a或x>a}, ② 0<a<1,a<1/a,解集为:{x|x<a或x>}, ③ a=1,a=1/a=1,解集为:{x|x∈R且x≠1}; (2)当a<0时,(x-1/a)(x-a)<0, ①-1<a<0,a>1/a,解集为:{x|1/a<x<a} ②a<-1,a<1/a,解集为:{x|a<x<1/a}, ③a=-1,a=1/a=-1,解集为:x∈Φ。
列表法: f(x)的根把实数集分成若干个区间,

解不等式的方法

解不等式的方法

解不等式的方法解不等式是代数学中的重要内容,它在数学建模、优化问题、函数图像等方面都有着重要的应用。

在解不等式的过程中,我们需要掌握一些基本的方法和技巧,下面我将为大家介绍几种解不等式的常用方法。

一、一元一次不等式的解法。

对于一元一次不等式ax+b>c,我们可以按照以下步骤来解题:1. 将不等式转化为等价的形式,即ax+b-c>0;2. 根据a的正负情况进行讨论:a. 若a>0,则不等式的解集为x>-b/a+c;b. 若a<0,则不等式的解集为x<-b/a+c。

二、一元二次不等式的解法。

对于一元二次不等式ax^2+bx+c>0,我们可以按照以下步骤来解题:1. 求出二次函数的判别式Δ=b^2-4ac的值;2. 根据Δ的正负情况进行讨论:a. 若Δ>0,则二次函数有两个不等实根,即x的取值范围为x<x1或x>x2;b. 若Δ=0,则二次函数有两个相等的实根,即x的取值范围为x=x1=x2;c. 若Δ<0,则二次函数无实根,即不等式无解。

三、绝对值不等式的解法。

对于绝对值不等式|ax+b|<c,我们可以按照以下步骤来解题:1. 分情况讨论:a. 若a>0,则不等式的解集为-b<c<ax+b;b. 若a<0,则不等式的解集为-b<c<-ax-b。

四、分式不等式的解法。

对于分式不等式f(x)>0,我们可以按照以下步骤来解题:1. 求出分式的定义域;2. 求出分式的零点;3. 根据零点的正负情况进行讨论:a. 若零点为实数且大于0,则不等式的解集为定义域内使分式大于0的实数;b. 若零点为实数且小于0,则不等式的解集为空集。

五、不等式组的解法。

对于不等式组{f(x)>0, g(x)>0},我们可以按照以下步骤来解题:1. 求出每个不等式的解集;2. 将每个不等式的解集取交集,得到不等式组的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

不等式的解法高中数学公式

不等式的解法高中数学公式

不等式的解法高中数学公式
高中数学常见的不等式解法有如下几种公式:
1. 二次函数法:
对于一元二次不等式,可以将其转化为二次函数的求解问题。

首先对不等式中的二次项与常数项进行合并,得到一个一元二次函数。

然后通过求解二次函数的根或者根的位置来确定不等式的解集。

2. 直接法:
对于一些简单的不等式,可以直接通过对不等式进行变形,化简得到最终结果。

常见的直接法有加减法、乘除法等。

3. 分段讨论法:
对于一个包含多个不等式的复合不等式,可以将复合不等式拆分成若干个简单的不等式,并通过讨论每个简单不等式的解集的情况来确定复合不等式的解集。

4. 取模法:
对于一些涉及取模的不等式,可以通过取模运算的性质来进行求解。

通过去除不等式中的取模运算,将其转化为普通的不等式,进而求解得到最终结果。

5. 绝对值法:
对于一些含有绝对值的不等式,可以通过绝对值的性质来进行求解。

通过分情况讨论绝对值的取值范围,进而求解得到最终结果。

以上是高中数学中常见的不等式解法公式,通过灵活应用这些公式,可以有效地解决各种不等式问题。

不等式的类型及解法

不等式的类型及解法

不等式的类型及解法一、一元一次不等式一元一次不等式是指只含有一个未知数的一次方程,形如ax+b>0或ax+b<0的不等式,其中a和b为已知实数,且a≠0。

解法:1. 将不等式转化为等式,即ax+b=0,求得方程的解x0。

2. 根据a的正负性,将解x0进行分类讨论:- 当a>0时,若x>x0,则ax+b>0;若x<x0,则ax+b<0。

- 当a<0时,若x>x0,则ax+b<0;若x<x0,则ax+b>0。

二、一元二次不等式一元二次不等式是指含有一个未知数的二次方程,形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,且a≠0。

解法:1. 将不等式转化为等式,即ax^2+bx+c=0,求得方程的解x1和x2。

2. 根据a的正负性和二次函数的凸凹性,将解x1和x2进行分类讨论:- 当a>0时,若x1<x<x2,则ax^2+bx+c>0;若x<x1或x>x2,则ax^2+bx+c<0。

- 当a<0时,若x<x1或x>x2,则ax^2+bx+c>0;若x1<x<x2,则ax^2+bx+c<0。

三、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,形如|f(x)|>g(x)或|f(x)|<g(x),其中f(x)和g(x)为已知函数。

解法:1. 对于|f(x)|>g(x),将不等式拆分为两个不等式:f(x)>g(x)和f(x)<-g(x)。

2. 分别解出这两个不等式的解集,然后求并集即为原不等式的解集。

四、分式不等式分式不等式是指含有分式的不等式,形如f(x)/g(x)>0或f(x)/g(x)<0,其中f(x)和g(x)为已知函数。

解法:1. 将分式不等式转化为分子和分母的符号相同的不等式:f(x)g(x)>0或f(x)g(x)<0。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法
基本不等式是数学中一种重要的概念,它可以帮助我们解决许多复杂的问题。

基本不等式的公式有许多,其中最常用的是加法不等式、乘法不等式、减法不等式和比较不等式。

加法不等式的公式是:若a、b是任意实数,则有a+b≥0。

加法不等式的解法是:若a、b是
任意实数,则可以将a+b≥0转化为a≥-b,从而得出a的取值范围。

乘法不等式的公式是:若a、b是任意实数,则有ab≥0。

乘法不等式的解法是:若a、b是任
意实数,则可以将ab≥0转化为a≥0或b≥0,从而得出a、b的取值范围。

减法不等式的公式是:若a、b是任意实数,则有a-b≥0。

减法不等式的解法是:若a、b是
任意实数,则可以将a-b≥0转化为a≥b,从而得出a的取值范围。

比较不等式的公式是:若a、b是任意实数,则有a>b或a<b。

比较不等式的解法是:若a、b
是任意实数,则可以将a>b或a<b转化为a-b>0或a-b<0,从而得出a的取值范围。

基本不等式的公式和解法可以帮助我们解决许多复杂的问题,它们在生活中也有着重要的作用。

比如,当我们在购物时,可以利用基本不等式的公式和解法来比较价格,从而节省购物费用。

此外,基本不等式的公式和解法还可以帮助我们解决许多其他的问题,比如计算投资回报率、计算贷款利息等。

总之,基本不等式的公式和解法对我们的生活娱乐有着重要的意义,它们可以帮助我们解决许多复杂的问题,节省购物费用,计算投资回报率和贷款利息等。

不等式的解法

不等式的解法

不等式的解法一、简单的一元高次不等式的解法: 1.一元二次不等式的一般解法:1)形如:(x -a ) · (x -b )>0 等价于⎩⎨⎧〉-〉-00b x a x 或⎩⎨⎧〈-〈-00b x a x 。

2)形如:(x -a ) · (x -b )<0 等价于⎩⎨⎧〈-〉-0b x a x 或 ⎩⎨⎧〉-〈-0b x a x 。

2.简单的一元高次不等式的穿针引线法:一元高次不等式f(x)>0(或<0)用穿针引线法(或数轴标根法、根轴法、区间法)求解。

用此法解一元高次不等式,先将不等式化为一端为零,一端为一次因式(或二次因式不可分解因式)之积,然后求出零点,并在数轴上依次标出,再用光滑曲线从右至左,自上而下依次通过这些零点。

则大于零(小于零)的不等式的解集对应着曲线在数轴上方(下方)部分的实数x 的取值集合。

【注意事项】分解因式后,各因式中x 的系数一定要化为正数;画线时,遇奇数次重根一次穿过,遇偶数次重根穿而不过;考查各重根是否在解集内,再决定其去留。

【典型例题】解不等式:1) x 2-2x-3>0; 2) (x+2)·(x+1)2·(x-1)3·(x-2)≤0. 【解析】1)不等式x 2-2x-3>0 可化为(x-3)(x+1)>0 它等价于⎩⎨⎧〉+〉-0103x x 或 ⎩⎨⎧〈+〈-0103x x 即 x >3 或x <-1。

还可以用穿针引线法解答:令x 2-2x-3=0 ,即 (x-3)(x+1)=0. 则零点分别为 -1,3.将零点依次标在数轴上,并画出光滑的曲线,如图所示: + + -1 3因为不等式大于零,所以取X 轴上方的阴影部分。

则不等式的解集为: x >3 或x <-1。

2)用穿针引线法解答:令 (x+2)·(x+1)2·(x-1)3·(x-2)=0 ,则零点分别为:-2,-1,1,2,将零点依次标在数轴上,并画出光滑的曲线,如图所示:X-2 -1 1 2故原不等式的解集为{x|x ≤-2或1≤x ≤2或x=-1} 。

高中数学各类不等式的解法

高中数学各类不等式的解法

不等式的中档题主要是各类不等式的解法。

从涉及题目的类型来看,有整式不等式,分式不等式,含有绝对值符号的不等式,对数不等式等等。

从解题方法看,主要有因式分解法、换元法等等。

从数学思想来看,主要是转化思想和分类讨论的思想。

例如:对数不等式的解法,就是利用转化的数学思想,结合对数函数的单调性,把它转化为我们所熟悉的代数不等式,只要我们充分注意转化过程中的等价性,完全可以掌握这类问题的解法。

分类讨论的思想在不等式的解法中频频出现。

比如对数式的底数中字母的取值就影响到函数的增减性,需要分类讨论;含有绝对值符号的不等式在去掉绝对值符号时,需要对绝对值符号内的解析式的取值进行讨论。

有一些应用问题中间也涉及到一些不等式的解法,在依据题意建立了数学模型之后,主要的任务就是解一个不等式,关于这个不等式的解,除去上面提到的注意事项之外,特别要注意实际问题对未知数取值的限制,把这种限制与不等式的解集取交集得到的才是问题的正确解答。

例1、解不等式。

解析:令,则或(1)当或时,原不等式化为∴∴(2)当时,原不等式化为∴或∴综合(1)、(2)知,原不等式的解集为例2、解关于的不等式:()解析:原不等式等价于:(1)若,或,不等式的解集为空集(2)若,即时,不等式解集为(3)若,即或时,不等式的解集为综上知:或时,解集为空集;时,解集为{};或时,解集为{}。

例3、解关于的不等式:解析:原不等式变形为:∴∴等价于(1)若,∴(2)若,原不等式化为(3)若,原不等式化为∴或综上,时,时,;时,或例4、已知关于的不等式的解集为M;(1)当时,求集合M;(2)若,求实数的取值范围。

解析:(1)当时,原不等式可化为:即∴ M为(2)由于即∴或∴的取值范围是例5、解关于的不等式:。

解析:原不等式变形为:(1)时,(2)时,不等式变形为当时,或当时,当时,,当时,综上,时,时,或时,时,时,例6、解关于的不等式:解析:原不等式化为即当时,此时不等式的解集为当时,不等式无解当时,,此时不等式的解集为综上,时,时,无解;时,例7、已知函数(1)试判断函数的奇偶性;(2)解不等式:。

不等式的解法全集

不等式的解法全集

不等式的解法1. 一元一次不等式的解法解不等式 a x > b当a>0时的解集为 当a<0时的解集为当a=0时且0≥b 时,解集为 当a=0时且b<0时,解集为注意:若不等式0)(2<>++c bx ax 中a<0。

那么在解不等式时, 先把二次项系数化为正数情况,在利用上边的解法去解例题一: ○1 63192≥-x x ○2 0422≤--<x x○30652>+-x x ○40962>+-x x ○5012>++x x2. 简单的一元高次不等式的解法一元高次不等式f(x)>0用数轴穿根法解决,其步骤如下(1) 把f(x)分解为若干个因式的积或二次不可分因式之积(x 的系数为正)(2) 讲每个因式的根标在数轴上,从上到下,从右到左一次通过每个点化曲线(奇过偶不过)(3) 根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集例题:○1 (x+3)(x+1)(x-2)>0 ○20)2()5)(4(32<-++x x x○3(-x+2)(x-1)2(x+4)03≤ ○4015223>--x x x3. 绝对值不等式的解法 (1)利用绝对值的性质)0(><a a x ⇔ ⇔><)0(a a x ⇔>)()(x g x f ⇔<)()(x g x f ______________)()(⇔≥x g x f ⇔≤)()(x g x f(2)利用绝对值定义: ⎩⎨⎧=______________x ⎩⎨⎧≥⇔>_________)()()(x f x g x f 或者⎩⎨⎧<_________0)(x f例题:○1 321>-x ○2 512≤-x ○3392+≤-x x○4132+<-+x x ○5 0432≥--x x(4) 含有两个和两个以上绝对值的不等式的解法(零点区间分段)例题:○1 2311≥--+x x ○2 x x x +>-+-321 ○3112-<-x x4.注意:a x g x f >)()(如何求解?例题:○1 01312>+-x x ○2 232532≤-+-x x x ○3 xx 21≥+5.指数不等式的解法)()(x g x f aa> (a>0,a 1≠)当a>1时,)()(x g x f a a >_____________⇔ 当a<1时,)()(x g x f aa>_____________⇔02>++C BaAaxx用换元法 令t ax=例题:○1 212422≤-+x x ○2 2222--->x x x aa6.对数不等式的解法)()(log logx g ax f a> (a>0,a 1≠) 当a>1时,)()(loglogx g ax f a>⎪⎩⎪⎨⎧>>>⇔)()(0)(0)(x g x f x g x f当0<a<1时,)()(loglogx g ax f a>⎩⎪⎨⎧<>>⇔)()(0)(0)(x g x f x g x f若0loglog2>++C x B x A aa令t x a=log例题: ○1 log )(5321-x <log x 2+1 ○2 log )(2221--x x >log )(2221-x7.无理不等式的解法____________)()(⇔>x g x f ____________)()(⇔≥x g x f ____________)()(⇔<x g x f ____________)()(⇔≤x g x f ___________)()(⇔>x g x f __________)()(⇔≥x g x f ___________)()(⇔<x g x f__________)()(⇔≤x g x f ○1x x <-2 ○2 1132-≥+-x x x8.。

四类不等式的解法

四类不等式的解法

考点一 一元二次不等式的解法一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c =0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.两个常用结论(1)ax2+bx+c>0(a≠0)恒成立的条件是(2)ax2+bx+c<0(a≠0)恒成立的条件是三个“二次”的关系一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x轴交点的横坐标,即二次函数的零点.(2)简单分式不等式的解法①变形⇒>0(<0)⇔f(x)g(x)>0(<0);②(2)简单分式不等式的解法①变形⇒>0(<0)⇔f(x)g(x)>0(<0);②变形⇒≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.(3)简单指数不等式的解法①当a>1时,a f(x)>a g(x)⇔f(x)>g(x);②当0<a<1时,a f(x)>a g(x)⇔f(x)<g(x).(4)简单对数不等式的解法①当a>1时,log a f(x)>log a g(x)⇔f(x)>g(x)且f(x)>0,g(x)>0;②当0<a<1时,log a f(x)>log a g(x)⇔f(x)<g(x)且f(x)>0,g(x)>0.变形⇒≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.例1 (2012·江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.答案 9解析 由题意知f(x)=x2+ax+b=2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=2.又∵f(x)<c.∴2<c,即--<x<-+.∴②-①,得2=6,∴c=9.二次函数、二次不等式是高中数学的重要基础知识,也是高考的热点.本题考查了二次函数的值域及一元二次不等式的解法.突出考查将二次函数、二次方程、二次不等式三者进行相互转化的能力和转化与化归的数学思想方法.(1)已知p:∃x0∈R,mx+1≤0,q:∀x∈R,x2+mx+1>0.若p∧q为真命题,则实数m的取值范围是 ( ) A.(-∞,-2) B.[-2,0)C.(-2,0) D.[0,2](2)设命题p:{x|0≤2x-1≤1},命题q:{x|x2-(2k+1)x+k(k+1)≤0},若p是q的充分不必要条件,则实数k的取值范围是__________.答案 (1)C (2)解析 (1)p∧q为真命题,等价于p,q均为真命题.命题p为真时,m<0;命题q为真时,Δ=m2-4<0,解得-2<m<2.故p∧q为真时,-2<m<0.(2)p:{x|≤x≤1},q:{x|k≤x≤k+1},由p⇒q且qD⇒/p,则,∴0≤k≤,即k的取值范围是.1.若实数x、y满足4x+4y=2x+1+2y+1,则t=2x+2y的取值范围是 ( )A.0<t≤2 B.0<t≤4C.2<t≤4 D.t≥4答案 C解析 依题意得,(2x+2y)2-2×2x×2y=2(2x+2y),则t2-2t=2×2x×2y≤2×()2=;即-2t≤0,解得0≤t≤4;又t2-2t=2×2x×2y>0,且t>0,因此有t>2,故2<t≤4,故选C.3.设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则a+b等于 ( )A.7 B.-1 C.1 D.-7答案 D解析 依题意,A=(-∞,-1)∪(3,+∞),又因为A∪B=R,A∩B=(3,4],则B=[-1,4].所以a=-(-1+4)=-3,b=-1×4=-4,于是a+b=-7.故选D.11.求解关于x的不等式ax2-(a+1)x+1<0.解 (1)当a=0时,原不等式变为-x+1<0,此时不等式的解集为{x|x>1}.(2)当a≠0时,原不等式可化为a(x-1)<0.若a<0,则上式即为(x-1)>0,又因为<1,所以此时不等式的解集为{x|x>1或x<}.若a>0,则上式即为(x-1)<0.①当<1,即a>1时,原不等式的解集为;②当=1,即a=1时,原不等式的解集为∅;③当>1,即0<a<1时,原不等式的解集为.综上所述,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为{x|x>1};当0<a<1时,原不等式的解集为;当a=1时,原不等式的解集为∅;当a>1时,原不等式的解集为.考点一 一元二次不等式的解法例1 (2012·江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.答案 9解析 由题意知f(x)=x2+ax+b=2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=2.又∵f(x)<c.∴2<c,即--<x<-+.∴②-①,得2=6,∴c=9.二次函数、二次不等式是高中数学的重要基础知识,也是高考的热点.本题考查了二次函数的值域及一元二次不等式的解法.突出考查将二次函数、二次方程、二次不等式三者进行相互转化的能力和转化与化归的数学思想方法.(1)已知p:∃x0∈R,mx+1≤0,q:∀x∈R,x2+mx+1>0.若p∧q为真命题,则实数m的取值范围是 ( )A.(-∞,-2) B.[-2,0)C.(-2,0) D.[0,2](2)设命题p:{x|0≤2x-1≤1},命题q:{x|x2-(2k+1)x+k(k+1)≤0},若p是q的充分不必要条件,则实数k的取值范围是__________.答案 (1)C (2)解析 (1)p∧q为真命题,等价于p,q均为真命题.命题p为真时,m<0;命题q为真时,Δ=m2-4<0,解得-2<m<2.故p∧q为真时,-2<m<0.(2)p:{x|≤x≤1},q:{x|k≤x≤k+1},由p⇒q且qD⇒/p,则,∴0≤k≤,即k的取值范围是.考点二 利用基本不等式求最值问题例2 (1)(2012·浙江)若正数x,y满足x+3y=5xy,则3x+4y的最小值是 ( )A. B. C.5 D.6(2)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是________.答案 (1)C (2)解析 (1)∵x>0,y>0,由x+3y=5xy得=1.∴3x+4y=(3x+4y)==+≥+×2=5(当且仅当x=2y时取等号),∴3x+4y的最小值为5.(2)方法一 ∵4x2+y2+xy=1,∴(2x+y)2-3xy=1,即(2x+y)2-·2xy=1,∴(2x+y)2-·2≤1,解之得(2x+y)2≤,即2x+y≤.等号当且仅当2x=y>0,即x=,y=时成立.方法二 令t=2x+y,则y=t-2x,代入4x2+y2+xy=1,得6x2-3tx+t2-1=0,由于x是实数,故Δ=9t2-24(t2-1)≥0,解得t2≤,即-≤t≤,即t的最大值也就是2x+y的最大值为.方法三 化已知4x2+y2+xy=1为2+2=1,令2x+y=cos α,y=sin α,则y=sin α,则2x+y=2x+y+y=cos α+sin α=sin(α+φ)≤.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.解题时应根据已知条件适当进行添(拆)项,创造应用基本不等式的条件.(1)已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为 ( )A.1 B. C.2 D.答案 B解析 2x+=2(x-a)++2a≥2·+2a=4+2a,由题意可知4+2a≥7,得a≥,即实数a的最小值为,故选B.(2)(2013·山东)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最小值时,x+2y-z的最大值为 ( ) A.0 B.C.2 D.答案 C解析 由题意知:z=x2-3xy+4y2,则==+-3≥1,当且仅当x=2y时取等号,此时z=xy=2y2.所以x+2y-z=2y+2y-2y2=-2y2+4y=-2(y-1)2+2≤2.所以当y=1时,x+2y-z取最大值2.。

不等式的解法

不等式的解法

2 x 10 0 2 解这个不等式组,得 x 3 x 4 2 x 10
3 1 不 等 式 中 所 含 的 以为 底 的 对 数 函 数 是 减 数 函, 3 2 x 3x 4 0 原 不 等 式 可 化 为
x | x 1或x 4 x | x 5 x | 2 x 7 x | 2 x 1或4 x 7
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.
-c≤ax+b≤c (1)|ax+b|≤c⇔____________.
-c (2)|ax+b|≥c⇔ax+b≥c或ax+b≤ __________________.
2.|ax+b|≤c和|ax+b|≥c(c>0)型不等式的解法:
1.移项,通分把不等式的左边化为0. 2.由积商同号,把分式不等式转化为整式不 等式. 3.若分母大于0可直接去分母. f ( x) 0( 0) f ( x) g ( x) 0( 0) g ( x) f ( x) 0( 0) f ( x) g ( x) 0( 0)且g(x) 0 g ( x)
x | 2 x 1或4 x 7 所以原不等式的解集为
例3.解 不 等 式 4 x
3 2 x1 16 0
解:原不等式可以化为
(2 x )2 6 2 x 16 0
分解因式得 (2 8)(2 2) 0
x x
∵ ∴
2 220
x
∴ 解这个不等式,得 x
类型 一简单绝对值不等式的解法
1 答案: [2,6] 1.不等式 | x-2 | 1的解集是_____. 2

不等式的解法

不等式的解法

不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >ab };当a <0时,解集为{x |x <ab }.2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”.思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3} 解析:在数轴上标出各根.-2 0 3答案:A2.(2003年北京)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1.又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3).又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2.答案:B 4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0,解得-2≤x ≤1.∴-2≤x <1. (文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2},∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310aba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a ,∴a +b =-23或-3. 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,xyy y O = = f x ( )f x ()-3 -2 2 3-再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析 【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x xx+1<0,即322322--+-x xx x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围. 剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f 解得271+-<x <231+.深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n ,则不等式f (x )·g (x )>0的解集是A.(m ,2n )B.(m ,2n )∪(-2n ,-m )C.(2m ,2n )∪(-n ,-m )D.(2m ,2n )∪(-2n ,-2m )解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n ).∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n,-2m ),即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ).由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n <x <-m .3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根,∴-212--m =0+2.∴m =1.4.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________.解析:当x +2≥0,即x ≥-2时.x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23.∴-2≤x ≤23.当x +2<0即x <-2时,x +(x +2)f (x +2)≤5 ⇔x +(x +2)·(-1)≤5⇔-2≤5,∴x <-2.综上x ≤23.5.(2004年宣武二模题)定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1.∴0<x <3.当x =0时,成立.当x <0时,x +2>121-x .x -121-x +2>0.1224122--+--x x x x>0.123322--+x x x>0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}.6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1;由于a2-(-1)=aa 2+,于是当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.综上,当a =0时,x ≤-1;当a >0时,x ≥a2或x ≤-1;当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0,解得y <-3或0<y <3,即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a3}.8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立.于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25.①若-k <-25,则不等式组的整数解集合就不可能为{-2};②若-25<-k ,则应有-2<-k ≤3.∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2.●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解, 这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确. 拓展题例【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax>x (a ∈R ).解法一:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x >0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0;若a >0,则x <0或x >a1.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a 1,+∞). 解法二:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x>0.此不等式与x (ax -1)>0同解. 显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾,∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1.(2)当x <0时,得ax -1<0.若a <0,则x >a1,得a1<x <0;若a =0,则-1<0,得x <0;若a >0,则x <a1,得x <0.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,,即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立.故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.●知识梳理1.|x |>a ⇔x >a 或x <-a (a >0); |x |<a ⇔-a <x <a (a >0).2.形如|x -a |+|x -b |≥c 的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质: ||a |-|b ||≤|a ±b |≤|a |+|b |. 思考讨论1.在|x |>a ⇔x >a 或x <-a (a >0)、|x |<a ⇔-a <x <a (a >0)中的a >0改为a ∈R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.(2003年成都第三次诊断题)设a 、b 是满足ab <0的实数,那么 A.|a +b |>|a -b | B.|a +b |<|a -b | C.|a -b |<||a |-|b || D.|a -b |<|a |+|b | 解析:用赋值法.令a =1,b =-1,代入检验.2.(2004年春季安徽)不等式|2x 2-1|≤1的解集为 A.{x |-1≤x ≤1}B.{x |-2≤x ≤2}C.{x |0≤x ≤2}D.{x |-2≤x ≤0}解析:由|2x 2-1|≤1得-1≤2x 2-1≤1. ∴0≤x 2≤1,即-1≤x ≤1.3.不等式|x +log 3x |<|x |+|log 3x |的解集为 A.(0,1) B.(1,+∞) C.(0,+∞)D.(-∞,+∞)解析:∵x >0,x 与log 3x 异号, ∴log 3x <0.∴0<x <1. 4.已知不等式a ≤||22x x+对x 取一切负数恒成立,则a 的取值范围是____________.解析:要使a ≤||22x x +对x 取一切负数恒成立,令t =|x |>0,则a ≤tt22+.而tt22+≥tt 22=22,∴a ≤22.答案:a ≤225.已知不等式|2x -t |+t -1<0的解集为(-21,21),则t =____________.解析:|2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -21<x <21.∴t =0.●典例剖析【例1】 解不等式|2x +1|+|x -2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x +1=0,x -2=0,得两个零点x 1=-21,x 2=2.解:当x ≤-21时,原不等式可化为-2x -1+2-x >4,∴x <-1.当-21<x ≤2时,原不等式可化为2x +1+2-x >4,∴x >1.又-21<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2>4,∴x >35.又x >2,∴x >2.综上,得原不等式的解集为{x |x <-1或1<x }. 深化拓展若此题再多一个含绝对值式子.如:|2x +1|+|x -2|+|x -1|>4,你又如何去解? 分析:令2x +1=0,x -2=0,x -1=0,得x 1=-21,x 2=1,x 3=2.解:当x ≤-21时,原不等式化为-2x -1+2-x +1-x >4,∴x <-21.当-21<x ≤1时,原不等式可化为2x +1+2-x +1-x >4,4>4(矛盾).当1<x ≤2时,原不等式可化为2x +1+2-x +x -1>4,∴x >1. 又1<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2+x -1>4,∴x >23.又x >2,∴x >2.综上所述,原不等式的解集为{x |x <-21或x >1}.【例2】 解不等式|x 2-9|≤x +3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x |≤a ⇔-a ≤x ≤a 去绝对值.解法一:原不等式⇔(1)⎪⎩⎪⎨⎧+≤-≥-390922x x x ,或(2)⎪⎩⎪⎨⎧+≤-<-.390922x x x ,不等式(1)⇔⎩⎨⎧≤≤-≥≤4333x x x 或⇔x =-3或3≤x ≤4;不等式(2)⇔⎩⎨⎧≥-≤<<-2333x x x 或⇔2≤x <3.∴原不等式的解集是{x |2≤x ≤4或x =-3}.解法二:原不等式等价于⎩⎨⎧+≤-≤+-≥+393032x x x x )(⇔⎪⎩⎪⎨⎧≤≤--≤-≥4333x x x ,或x ≥2⇔x=-3或2≤x ≤4. ∴原不等式的解集是{x |2≤x ≤4或x =-3}. 【例3】 (理)已知函数f (x )=x |x -a |(a ∈R ). (1)判断f (x )的奇偶性;(2)解关于x 的不等式:f (x )≥2a 2. 解:(1)当a =0时, f (-x )=-x |-x |=-x |x |=-f (x ), ∴f (x )是奇函数.当a ≠0时,f (a )=0且f (-a )=-2a |a |.故f (-a )≠f (a )且f (-a )≠-f (a ). ∴f (x )是非奇非偶函数. (2)由题设知x |x -a |≥2a 2, ∴原不等式等价于⎩⎨⎧≥+-<222aax xa x , ①或⎩⎨⎧≥-≥.222a ax xa x , ②由①得⎩⎨⎧≤+-<.0222a ax x a x ,x ∈∅.由②得⎩⎨⎧≥+-≥.02))((,a x a x a x 当a =0时,x ≥0.当a >0时,⎩⎨⎧-≥≤≥,或,a x a x a x 2∴x ≥2a .当a <0时,⎩⎨⎧-≤≥≥,或,a x a x a x 2x≥-a . 综上a ≥0时,f (x )≥2a 2的解集为{x |x ≥2a };a <0时,f (x )≥2a 2的解集为{x |x ≥-a }.(文)设函数f (x )=ax +2,不等式| f (x )|<6的解集为(-1,2),试求不等式)(x f x ≤1的解集.解:|ax +2|<6,∴(ax +2)2<36,即a 2x 2+4ax -32<0.由题设可得⎪⎪⎩⎪⎪⎨⎧-=-=-.2321422aa a ,解得a =-4.∴f (x )=-4x +2.由)(x f x≤1,即24+-x x ≤1可得2425--x x ≥0.解得x >21或x ≤52.∴原不等式的解集为{x |x >21或x ≤52}.●闯关训练夯实基础1.(2003年北京海淀区一模题)已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是A.{a |3<a ≤4}B.{a |3≤a ≤4}C.{a |3<a <4}D.∅解析:由题意知⎩⎨⎧≥+≤-,,5231a a 得3≤a ≤4.2.不等式|x 2+2x |<3的解集为____________. 解析:-3<x2+2x <3,即⎪⎩⎪⎨⎧>++<-+.03203222x x x x ,∴-3<x <1.3.(2004年全国Ⅰ,13)不等式|x +2|≥|x |的解集是____________.解法一:|x +2|≥|x |⇔(x +2)2≥x 2⇔4x +4≥0⇔x ≥-1.解法二: 在同一直角坐标系下作出f (x )=|x +2|与g (x )=|x |的图象,根据图象可得x ≥-1.|解法三:根据绝对值的几何意义,不等式|x +2|≥|x |表示数轴上x 到-2的距离不小于到0的距离,∴x ≥-1.答案:{x |x ≥-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握. 4.(2004年春季北京)当0<a <1时,解关于x 的不等式a 12-x <a x -2.解:由0<a <1,原不等式可化为12-x >x -2.这个不等式的解集是下面不等式组①及②的解集的并集.⎩⎨⎧<-≥-02012x x , ⎪⎩⎪⎨⎧->-≥-≥-.212020122)(,,x x x x解不等式组①得解集为{x |21≤x <2},解不等式组②得解集为{x |2≤x <5}, 所以原不等式的解集为{x |21≤x <5}.5.关于x 的方程3x 2-6(m -1)x +m 2+1=0的两实根为x 1、x 2,若|x 1|+|x 2|=2,求m 的值.解:x 1、x 2为方程两实根,∴Δ=36(m -1)2-12(m 2+1)≥0.∴m ≥253+或m ≤253-.又∵x 1·x 2=212+m>0,∴x 1、x 2同号.∴|x 1|+|x 2|=|x 1+x 2|=2|m -1|.于是有2|m -1|=2,∴m =0或2.∴m =0. 培养能力 6.解不等式212-x≤||1x .解:(1)当x 2-2<0且x ≠0,即当-2<x <2且x ≠0时,原不等式显然成立. (2)当x 2-2>0时,原不等式与不等式组⎪⎩⎪⎨⎧≥->||22||2x xx ,等价.x 2-2≥|x |,即|x |2-|x |-2≥0.∴|x |≥2.∴不等式组的解为|x |≥2,即x ≤-2或x ≥2.∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞). 7.(2003年湖北黄冈模拟题)已知函数f (x )=xx ax122-+的定义域恰为不等式log 2(x +3)+log 21x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+log 21x ≤3得⎪⎩⎪⎨⎧>≤+033log 2x x x ⇔⎪⎩⎪⎨⎧>≤+⇔083x x x x ≥73,即f (x )的定义域为[73,+∞).∵f (x )在定义域[73,+∞)内单调递减,∴当x 2>x 1≥73时,f (x 1)-f (x 2)>0恒成立,即有(ax 1-11x +2)-(ax 2-21x +2>0⇔a (x 1-x 2)-(11x -21x )>0⇔(x 1-x 2)(a +211x x )>0恒成立.∵x 1<x 2,∴(x 1-x 2)(a +211x x )>0⇔a +211x x <0. ∵x 1x 2>499⇒-211x x >-949,要使a <-211x x 恒成立,则a 的取值范围是a ≤-949.8.有点难度哟!已知f (x )=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证: (1)f (0)=f (1);(2)| f (x 2)-f (x 1)|<|x 1-x 2|; (3)| f (x 1)-f (x 2)|<21;(4)| f (x 1)-f (x 2)|≤41.证明:(1)f (0)=c ,f (1)=c ,∴f (0)=f (1). (2)| f (x 2)-f (x 1)|=|x 2-x 1||x 2+x 1-1|.∵0≤x 1≤1,∴0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2).∴-1<x 1+x 2-1<1. ∴| f (x 2)-f (x 1)|<|x 2-x 1|. (3)不妨设x 2>x 1,由(2)知| f (x 2)-f (x 1)|<x 2-x 1而由f (0)=f (1),从而| f (x 2)-f (x 1)|=| f (x 2)-f (1)+f (0)-f (x 1)|≤| f (x 2)-f (1)|+| f (0)- f (x 1)|<|1-x 2|+|x 1|<1-x 2+x 1. ②①+②得2| f (x 2)-f (x 1)|<1,即| f (x 2)-f (x 1)|<21.(4)|f (x 2)-f (x 1)|≤f max -f min =f (0)-f (21)=41.探究创新9.(1)已知|a |<1,|b |<1,求证:|ba ab --1|>1;(2)求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足|a |<1,|b |<1的一切实数a 、b 恒成立;(3)已知|a |<1,若|abb a ++1|<1,求b 的取值范围.(1)证明:|1-ab |2-|a -b |2=1+a 2b 2-a 2-b 2=(a 2-1)(b 2-1).∵|a |<1,|b |<1,∴a 2-1<0,b 2-1<0.∴|1-ab |2-|a -b |2>0.∴|1-ab |>|a -b |,|||1|b a ab --=|||1|b a b a -⋅->1.(2)解:∵|ba ab --λλ1|>1⇔|1-ab λ|2-|a λ-b |2=(a 2λ2-1)(b 2-1)>0.∵b 2<1,∴a 2λ2-1<0对于任意满足|a |<1的a 恒成立.。

各类不等式求解集的方法

各类不等式求解集的方法

版权所有 翻版必究1中公学员内部专用各类不等式求解集的方法在管理类联考中,方程与不等式在历年考试中都是非常重要的一个考点,不等式考试中可能会单独考查,或者会在应用题中考查,考查方式很灵活。

比较重要的是一元二次不等式,绝对值不等式,无理不等式,均值不等式,以及分式不等式。

接下来我给大家讲解一下各类不等式的解法。

一、一元二次不等式解题步骤:①一看:看二次项系数是否为正,若为负化为正②二算:算∆及对应方程的根③三写:写解集,大于号取两端,小于号取中间1. 不等式21(1)37x x x -<-<+的整数解的个数为().(A )1(B )2(C )3(D )4(E )5二、分式不等式解题步骤:①移项、通分将不等号右侧化为0②化除为乘,最后求解(注意舍去使分母为零的情况) 2. 设01x <<,则不等式223211x x ->-的解集是(). (A )02x <(B 12x <<(C )203x <<(D 213x <(E )以上选项均不正确三、无理不等式解题步骤:()g x①将等号两边平方得到2()()f x g x <并求解得到x 的范围②限定()f x 与()g x 的范围,即令()0()0f x g x ≥⎧⎨>⎩并求解得到x 的范围 ③将得到的x 的范围(I )和(II )联立,求交集,即为无理不等式的解集版权所有 翻版必究2中公学员内部专用 3. 1x +.(1)[1,0]x ∈-(2)10,2x ⎤⎛∈ ⎥⎝⎦四、绝对值不等式解题步骤分段讨论法:根据()()0()()()0f x f x f x f x f x ≥⎧=⎨-<⎩,,去绝对值符号,然后再求解。

4. 25|21|x x x -->-.(1)4x >(2)1x <-五、均值不等式集体步骤:①一正:判断是为正值②二定:判断积是否为定值,和是否为定值③三相等:取等求最值5. 若m x =,4n x =-且0m >,0n >,则当x =()时,mn 可以取到最大值为(). (A )2,2(B )2,3(C )1,3(D )2,2-(E )2,4。

高中不等式的解法全集

高中不等式的解法全集

1、一元二次不等式的解法
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
四画:画出对应函数的图象.
五解集:根据图象写出不等式的解集.
规律:当二次项系数为正时,小于取中间,大于取两边.
2、高次不等式的解法:穿根法.
分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.
3、分式不等式的解法:先移项通分标准化,则
规律:把分式不等式等价转化为整式不等式求解.
4、无理不等式的解法:转化为有理不等式求解
规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.
5、指数不等式的解法:
规律:根据指数函数的性质转化.
6、对数不等式的解法
规律:根据对数函数的性质转化.
7、含绝对值不等式的解法:
⑶同解变形法,其同解定理有:
规律:关键是去掉绝对值的符号.
8、含有两个(或两个以上)绝对值的不等式的解法:
规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.
9、含参数的不等式的解法
10、恒成立问题。

基本不等式的解法

基本不等式的解法

基本不等式的解法如下:
方法一:代数方法。

通过变形和化简等操作,将不等式转化为更简单的形式,从而得到不等式的解集。

例如,对于不等式2x + 5 > 3x - 1,可以移项得到2x - 3x > -1 - 5,然后化简为-x > -6,最后根据-x的系数为负数,将不等式两边的符号取相反,得到x < 6。

方法二:图像法。

将不等式转化为图像的形式,通过观察图像来确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将其转化为x > -2。

然后在数轴上标出-2和1、2、3等点,根据不等号的符号确定解集。

方法三:比较法。

通过比较两个不等式的解集来确定它们是否相同。

例如,对于不等式x + 2 > 0和x + 1 > 0,可以通过比较它们的解集来确定它们是否相同。

方法四:同解变形法。

将不等式进行同解变形,使其转化为另一个不等式,然后求解新的不等式。

例如,对于不等式x + 2 > 0,可以将其转化为x + 1 > -1的形式,然后根据同解变形法则得到x + 1 > 0,从而得到原不等式的解集。

需要注意的是,基本不等式的解法有很多种,不同的方法适用于不同的不等式类型和问题背景。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

不等式的求解方法

不等式的求解方法

不等式的求解方法不等式是数学中常见的一个概念,我们常用不等式来描述数值之间的大小关系。

解不等式是求得一组满足给定条件的数值范围,下面将介绍一些常见的不等式求解方法。

1. 图像法图像法是一种直观的解不等式的方法。

对于简单的一元一次不等式,我们可以首先将不等式表示为图像。

例如,对于不等式2x - 3 > 5,可以将其转化为2x - 3 = 5的直线方程,然后将不等式的符号改为大于号,画出不等式的图像。

最后,根据图像确定解集的范围。

2. 代入法代入法是解不等式的一种常用方法。

对于较为复杂的不等式,我们可以通过代入一些特殊的数值来求解。

例如,对于不等式x^2 - 4x > 3,可以先代入x = 0,得到-4 > 3,显然不成立;然后代入x = 5,得到5 > 3,成立。

通过不断尝试代入不同的数值,我们可以确定解集的范围。

3. 分析法分析法是一种使用数值关系进行推理的方法。

对于含有绝对值的不等式,我们可以通过分析绝对值函数的性质来求解。

例如,对于不等式|2x - 3| > 5,可以分别讨论2x - 3 > 5和2x - 3 < -5两种情况,并求解出x的取值范围。

4. 移项法移项法是一种求解含有一元一次不等式的有效方法。

对于形如ax + b > c或ax + b < c的不等式,我们可以通过移项将不等式转化为等式,然后确定解集的范围。

例如,对于不等式3x + 2 > 10,我们可以将其转化为3x = 10 - 2的等式,然后求解出x的取值范围。

5. 函数法函数法是一种基于函数性质求解不等式的方法。

对于含有多个变量的不等式,我们可以将不等式转化为函数的形式,然后利用函数的单调性来确定解集的范围。

例如,对于不等式x^3 - 4x^2 + 5x - 2 > 0,我们可以将其表示为f(x) = x^3 - 4x^2 + 5x - 2 > 0的形式,然后分析函数f(x)的增减性来求解x的取值范围。

求解初中数学常见的不等式

求解初中数学常见的不等式

求解初中数学常见的不等式初中数学中,不等式是一个常见的考察和应用的知识点。

不等式是用来表示两个数量大小关系的一种数学工具,常出现在各种数学题型中,例如算术平均值与几何平均值的关系、等分原理、加减、积等不等式等。

在解题时,我们需要掌握各类不等式的性质和解法,下面将详细介绍几类常见的不等式及其解法。

一、一次不等式一次不等式的形式为ax + b > 0或ax + b < 0。

通过将不等式移项可以得到ax > -b或ax < -b,进而得到x的取值范围。

例如:解不等式2x + 3 > 5解法如下:2x + 3 > 52x > 5 - 32x > 2x > 1所以,不等式2x + 3 > 5的解为x > 1。

二、二次不等式二次不等式的形式为ax² + bx + c > 0或ax² + bx + c < 0。

通过求解二次函数的根,可以将不等式转化为一次不等式的形式。

如果二次函数的两个根分别为α和β,则有:当a > 0时,ax² + bx + c > 0的解集为x < α或x > β;当a < 0时,ax² + bx + c > 0的解集为α < x < β。

例如:解不等式x² - 3x + 2 < 0解法如下:x² - 3x + 2 < 0(x - 1)(x - 2) < 0化简后,得到不等式的零点为x = 1和x = 2。

因为a = 1 > 0,所以解集为1 < x < 2。

所以,不等式x² - 3x + 2 < 0的解为1 < x < 2。

三、三角不等式三角不等式是由三角形的三条边两两不等关系得出的不等式,即对于任意三角形,其任意两边之和都大于第三边,即a + b > c、b + c > a和c + a > b。

不等式的求解方法

不等式的求解方法

不等式的求解方法不等式是数学中一种重要的表达式形式,用于描述数值之间的大小关系。

解不等式是指找到满足不等式条件的数值范围。

本文将介绍常见的不等式求解方法,包括一元一次不等式、一元二次不等式以及绝对值不等式的求解方法。

一、一元一次一元一次不等式是指只含有一个未知数的一次方程。

解一元一次不等式的步骤如下:1. 将不等式转化为等式,即去掉不等号,得到原不等式的一个等价方程。

2. 解这个等价方程得到的解集合即为原不等式的解。

举例说明:解不等式2x + 3 > 7。

首先将不等式转化为等式:2x + 3 = 7。

解得:x = 2。

因此,原不等式的解集合为x > 2。

二、一元二次一元二次不等式是指含有一个未知数的二次方程。

解一元二次不等式的步骤如下:1. 将不等式转化为等式,即去掉不等号,得到原不等式的一个等价方程。

2. 解这个等价方程得到的解集合即为原不等式的解。

3. 根据一元二次函数的图像,确定解集的范围。

举例说明:解不等式x^2 - 4x + 3 > 0。

首先将不等式转化为等式:x^2 - 4x + 3 = 0。

解得:x = 1, x = 3。

根据一元二次函数的图像可以得知,当x < 1或x > 3时,不等式成立。

因此,原不等式的解集合为x < 1或x > 3。

三、绝对值绝对值不等式是指含有绝对值的不等式。

解绝对值不等式的步骤如下:1. 将绝对值不等式拆分为两个不等式,分别考虑绝对值内数值的正值和负值。

2. 解每个不等式得到的解集合即为原绝对值不等式的解。

举例说明:解不等式|2x - 1| > 3。

将绝对值不等式拆分为两个不等式:2x - 1 > 3或2x - 1 < -3。

解第一个不等式得:x > 2。

解第二个不等式得:x < -1。

因此,原不等式的解集合为x < -1或x > 2。

综上所述,本文介绍了一元一次不等式、一元二次不等式以及绝对值不等式的求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、不等式的基本性质 不等式的基本性质有:(1) 对称性或反身性: a>b b<a ;(2) 传递性:若 a>b , b>c ,则 a>c ; (3)可加性: a>b a+c>b+c , 此法则又称为移项法则;(4)可乘性:a>b , 当 c>0 时, ac>bc ;当 c<0 时, ac<bc 。

不等式运算性质(1)同向相加: 若 a>b , c>d , 则 a+c>b+d ; (2)正数同向相乘:若 a>b>0, c>d>0,则 ac>bd 。

特例: (3)乘方法则:若 a>b>0,n ∈N +,则 a n b n ;11(4)开方法则:若 a>b>0,n∈N +,则 a n b n11(5)倒数法则:若 ab>0,a>b ,则 。

ab例 1: 1)、 8 6 与 7 5 的大小关系为.2)、设 n1,且 n 1,则n 3 1与 n 2 n 的大小关系是1≤≤13)已知 , 满足 , 试求 3 的取值范围1≤ 2 ≤ 3例 2. 比较 a12与2aa 1的大小。

例 3.解关于 x 的不等式 m(x 2) x m二、一元二次不等式的解法过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集各类不等式的解法元二次不等式 ax 2bx c 0(a 0) 或 ax 2bx c 0(a. 0) 的求解原理: 利用二次函数的图象通41)(x+1)(x-1)(x-2)>0 2)(-x-1)(x-1)(x-2)<0三、分式不等式与高次不等式的解法 1.分式不等式解法2.高次不等式解法:数轴标根法(奇穿偶切)典型例题例 1 解下列不等式 x - 3 2(1)x +7 <0(2)3+ x <03)x -32-x > 3-x -3 34) x > 1【例题讲解】1.解下列不等式:(1)2x 23x 20 (2)9x 26x 1 0 (3)4x2x5(4)2x 2x 1 02.解不等式组3x 27x 10 0 2x 2x 30(1) 2(2)22x 25x 20 5 x 4x3.若不等式ax 2bx c 0的解集为 (-2,3),求不等式2 cx ax b 0的解集.234.当 k 为何值时,不等式 2kx 2kx 380对于一切实数 x 都成立?(3) x(x-1) 2(x+1) 3(x+2) ≤0 4)( x-3)(x+2)(x-1) 2(x-4)>0不等式 x a(a 0) 的解集是 xx a,或x a例 4 解不等式 2x 1 x 1 1 例 5 解不等式 9 x 26x x 23五、绝对值不等式的解法含有绝对值的不等式的解法关键就在于去掉绝对值 ,而去掉绝对值 ,则需要对绝对值中的零点进行讨论一个零点分两个范围 ,两个零点分三个零点 ,依次类推 . (1)含有一个绝对值:不等式 x a(a 0) 的解集是 x a x a ;5)322x x 15x 0 (6) (x 4)(x 5)2(2 x)3322x 4x 17)1(8)21x2 x23x2 7x 2四、无理不等式的解法解无理不等式的基本方法就是将其转化为有理不等式组,在转化过程中一定要题型Ⅰ: f (x) g(x)型( f (x) g(x) f(x)0) 0 g(x) 定义域例1解不等式⑴ 1x 3x 2 0⑵52x x 1题型Ⅱ : f (x) g(x)型f(x)g(x) f(x) 00或 2[g(x)]2f (x) g(x) 0 0题型Ⅲ:f (x) g(x)型f(x) 0g(x) 0 f(x) [g(x)]例 3 解不等式 2x 23x1 2x般来说 例 2 解不等式 2x 23x 11 2x例 2 解不等式:( 1)|x-3|-|x+1|<1. (2) |x|-|2x +1||>1.例 3 已知函数 f (x )=|x-2|-|x-5|.(I )证明: -3≤f (x ) ≤3; ( II )求不等式 f (x ) ≥2x-8x+15 的解集. 六、指数不等式与对数不等式利用指数函数及对数函数的单调性转化为代数不等式 例 1.解不等式 0.22x x x x 1例 4. a 1时解关于 x 的不等式 log a[a 2 (a 2 ) 1] 0七、基本不等式(也叫均值不等式)1.基本不等式2.常用的几个重要不等式(1)a 2+ b 2≥2ab(a , b ∈ R) (2)ab ≤(a +2 b )2(a , b ∈ R) a 2+ b 2 a +bb a(3)a 2 ≥(a +2b )2(a , b ∈ R) (4)b a + ab ≥2(a , b 同号且不为零 )上述四个不等式等号成立的条件都是 a = b. 3.算术平均数与几何平均数不等式 axbc(c 0) 的解集为x|ax b c, 或ax b c (c 0)(2)含有多个绝对值:零点分段法例 1 解不等式( 1)x 500 5.(2) 2x 5 7 (3)2x3(4)1 | 2x-1 |< 5.(5) |4x-3|>2x+1不等式c(c 0)的解集为 x| c ax b c (c 0);ax b 例 2. 解不等式 log x 45例 3. 解不等式:log a x 1 3 log a x (0 a 1)a+b设 a>0, b>0,则 a, b 的算术平均数为+2,几何平均数为 ab,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.比较法之二(作商法)步骤:作商——变形——判断与 1 的关系——结论例 1 求证:x2 + 3 > 3xab例 2 a ,b R+,且 a b ,求证:a a b b(ab)2a b b a(二)综合法1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.用综合法证明不等式的逻辑关系是: A B1 B2 L B n B3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

例 3 已知a,b, c 是不全相等的正数,求证:例4 已知a,b∈R,证明:log2(2a+2b)≥a b 2.2(三)分析法1.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。

2.用分析法证明不等式的逻辑关系是:B B1 B2 L B n A3.分析法的思维特点是:执果索因。

4.分析法的书写格式:要证明命题 B 为真,只需要证明命题B1 为真,从而有⋯⋯这只需要证明命题B2 为真,从而又有⋯⋯这只需要证明命题 A 为真 .1.比较法之一(作差法)步骤:作差变形——判断与0 的关系——结论而已知 A 为真,故命题 B 必为真。

例 5 求证 3 7 2 5例 6 若a,b,c 是不全等的正数,求证lg a b lg b c lg c a lga lg b lgc.222(四)反证法1. 定义:反证法:一般地,假设原命题不成立,(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误, 从而证明了原命题成立, 这样的证明方法叫做反证法。

2. 反证法证题的基本步骤:1.假设原命题的结论不成立;(假设)2.从这个假设出发,经过正确的推理,推出矛盾;(归缪)3.因此说明假设错误,从而证明了原命题成立. (结论)例7 求证:2, 3, 5 不可能成等差数列.例8、已知x,y 0,且x y 2。

求证: 1 x,1 y中至少有一个小于 2.yx4.利用基本不等式求最值设 x , y 都是正数.(1)如果积 xy 是定值 P,那么当 x = y 时和 x+ y 有最小值 2 P.12(2)如果和 x+y 是定值 S,那么当 x= y 时积 xy 有最大值4S2.练习1.已知两个正数 a,b 的等差中项为 4,则 a, b 的等比中项的最大值为 ( )A . 2 B. 4 C. 8 D. 162.若 a, b∈R,且 ab>0 ,则下列不等式中,恒成立的是 ( )2 2 1 1 2 b aA . a2+ b2>2abB .a+ b≥2ab C.a+b≥ ab D.a+b≥23.若 x+ 2y= 4,则 2x+ 4y的最小值是 ( )A . 4 B. 8 C. 2 2 D . 4 214.当 x>1 时,求函数 f(x) = x+* 1 * 111的最小值.x-15.已知 x, y>0 ,且满足x3+y4= 1,则 xy 的最大值为.6.某公司一年购买某种货物400 吨,每次都购买 x 吨,运费为 4 万元 /次,一年的总存储费用为 4x 万元,要使一年的总运费与总存储费用之和最小,则_______ x= .7. 已知 a、b、 c 为正实数,且 a+b+ c= 1,111求证: ( -1)( - 1)( -1) ≥8.abc八、不等式的证明(一)比较法:。

相关文档
最新文档