人教版七年级下册数学习题:5.3.1平行线的性质练习题
2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)
2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。
人教版七年级数学下册第五章平行线的性质作业练习题(含答案) (97)
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=40°,则∠ACB的度数为.②若∠ACB=128°,则∠DCE的度数为.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.【答案】(1)①140°;②52°;(2)180∘(3)当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【解析】【分析】(1)①根据两角互余,可得∠ACE与∠DCE的关系,根据角的和差,可得答案;②角的和差,可得∠ACE与∠ACB的关系,根据互余的两角的关系,可得∠DCE与∠ACE的关系;(2)根据(1)中的计算结果可得∠ACB+∠DCE=180°,再根据图中的角的和差关系进行推理即可;(3)根据平行线的判定方法可得【详解】解:(1)①由互余∠ACB=90°-∠DCB=90°-40°=50°由角的和差得∠ACB=∠ACE+∠BCE=50°+90°=140°故答案是:140°②∠ACE=∠ACB-∠ECB=128°-90°=38°∠DCE=90°-∠ACE=90°-38°=52°;(2)∠ACB+∠DCE=180°;∵∠ACB=∠ACD+∠DCB=90∘+∠DCB,∴∠ACB+∠DCE=90∘+∠DCB+∠DCE=90∘+90∘=180∘(3)当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【点睛】此题考查余角和补角,解题关键在于掌握余角和补角的性质62.直线a,b,c,d的位置如图所示,已知∠1=∠2,∠3=70°,求∠4的度数.【答案】110°【解析】【分析】由已知得出∠1=∠2,证出a ∥b ,再由平行线的性质即可得出∠4的度数.【详解】解:∵∠1=∠2,∴a ∥b ,∴∠3+∠4=180°,∴∠4=180°﹣∠3=180°﹣70°=110°.【点睛】本题考查了平行线的判定与性质,证出平行线是解决问题的关键.63.如图,AC DF =,AC DF ∥,BC EF ∥, 证明:△ABC ≌△DEF .证明:∵AC DF ∥,BC EF ∥(已知)∴A ∠=∠________,E ∠=∠________( )在△ABC 与△DEF 中,__________()__________()______________()⎧∠=∠⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ( ).【答案】详见解析【解析】【分析】根据平行线的性质求出A ∠=∠EDF ,E ∠=∠ABC ,再由AAS 证明△ABC ≌△DEF 即可.【详解】证明:∵AC DF ∥,BC EF ∥(已知)∴A ∠=∠_EDF_,E ∠=∠_ABC_( 两直线平行,同位角相等 )在△ABC 与△DEF 中,_________________A EDF E ABC AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ( AAS ).【点睛】本题考查了平行线的性质的运用,全等三角形的判定运用,解答时证明三角形全等是关键.64.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F .(1)求证:CD∥EF(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数(3)若BC=6cm,△ABC的面积是12cm2,则点A到直线BC的距离是多少?【答案】(1)见解析;(2)115°;(3)4cm.【解析】【分析】(1)根据CD⊥AB,EF⊥AB可得∠CDB =∠EFB=90°,然后根据平行线的判定定理可得CD∥EF;(2)先根据平行线的判定和性质证明DG∥BC,即可得到∠ACB=∠3=115°;(3)根据三角形面积计算方法即可求出点A到直线BC的距离.【详解】证明:(1)∵CD⊥AB,EF⊥AB (已知)∴∠CDB =∠EFB=90°∴CD∥EF(2)∵CD∥EF∴∠DCB=∠2∵∠1=∠2∴∠1=∠DCB∴DG ∥BC∴∠ACB=∠3=115°(3)设所求距离为h ,则由16122h ⨯= 解得 h=4∴点A 到直线BC 的距离是4cm.【点睛】本题主要考查了平行线的判定和性质,熟练掌握相关性质定理是解题关键.65.如图,点D 在△ABC 的BC 边上,利用直尺和三角板画出图形.(1)过点C 画CE ∥AD 交BA 的延长线于点E ;(2)若∠ADC=80°,则∠DCE=_____________度.【答案】(1)见解析;(2)100.【解析】【分析】(1)根据平行线的画法用直尺和三角板作图即可;(2)根据平行线的性质求解即可.【详解】解:(1)如图所示;(2)∠DCE =180°-∠ADC =100°.【点睛】本题考查平行线的作法以及平行线的性质,熟练掌握两直线平行,同旁内角互补是解题关键.三、填空题66.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是________千米.【答案】8【解析】【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°-∠ABG-∠EBC=180°-48°-42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题考查了方向角,平行线的性质及点到直线的距离,结合生活中的实际问题,将方向角与实际生活相关知识有机结合,体现了数学应用于实际生活的思想.67.如下图所示,CD⊥AB于点D,EF⊥AB于F,∠DGC=84°,∠BCG=96°,则∠1+∠2=______________【答案】180°【解析】【分析】求出DC∥EF,求出∠2+∠BCD=180°,由∠DGC=84°,∠BCG=96°,易证DG∥BC,推出∠1=∠BCD,即可求出答案.【详解】∵CD⊥AB,EF⊥AB,∴DC∥EF,∴∠DCB+∠2=180°,∵∠DGC=84°,∠BCG=96°,∴∠DGC+∠BCG=180°,∴BC∥GD,∴∠1=∠DCB,∴∠1+∠2=180°.故答案为:180°【点睛】本题主要考查了平行线的性质及判定定理,综合运用性质定理是解答此题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.68.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为_____.【答案】32°【解析】【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可.【详解】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故答案为32°【点睛】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.69.如图,已知直线l1∥l2,将等边三角形如图放置,若∠β=20°,则∠α等于_____.【答案】40°【解析】【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【详解】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α,∵△ABC是等边三角形,∴∠BAC =60°,∴∠β=∠BAD =∠BAC ﹣∠α=60°﹣α=20°.∴∠α=40°,故答案为40°.【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA 与l 2交于点E ,运用平行线的性质及三角形外角的性质解决问题.70.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】【分析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.。
【初中数学】人教版七年级下册课时作业(练习题)
人教版七年级下册课时作业(八) [5.3.1 第1课时平行线的性质](646)1.如图,直线a//b,AB⊥BC,如果∠1=48∘,那么∠2=∘.2.如图,直线AB//CD,直线EC分别与AB,CD相交于点A,C,AD平分∠BAC.若∠ACD= 80∘,则∠DAC的度数为.3.如图,直线a//b,∠1=60∘,∠2=40∘,则∠3的度数为.4.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26∘,则∠ACD=.5.如图,AB∥CD,BC∥DE.若∠B=50∘,则∠D的度数是.6.如图,小明从A处出发沿北偏东60∘方向行走至B处,又沿北偏西20∘方向行走至C处,此时需把方向调整到与出发时一致,则应右转度.7.填空:(1)如图AD,BC相交于点O.因为AB//CD(已知),所以=,=.(两直线平行,内错角相等)(2)如图,因为l1//l2(已知),所以∠1=(两直线平行,同位角相等).因为l2//l3,所以∠3+∠4=().(3)如图,因为AB//EF(已知),所以∠A+=180∘(两直线平行,同旁内角互补).因为ED//CB(已知),所以∠DEF=().8.如图,已知AB//CD,AC//BD,则∠1与∠2相等吗?为什么?9.如图,AD//EF,AB//DG.说明∠1=∠2的理由.10.探究题:(1)如图甲,AB//CD,则∠2与∠1+∠3的关系是什么?为什么?(2)如图乙,AB//CD,则∠2+∠4与∠1+∠3+∠5一样大吗?为什么?(3)如图丙,AB//CD,则∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.11.如图,已知直线a//b,若∠1=100∘,则∠2的度数是()A.110∘B.80∘C.70∘D.60∘12.如图,直线AB//CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180∘D.∠3+∠4=180∘13.如图,直线a//b,将一块含30∘角(∠BAC=30∘)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上,若∠1=20∘,则∠2的度数为()A.20∘B.30∘C.40∘D.50∘14.如图,已知l1//AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠315.如图,AD//BC,则一定有()A.∠1=∠2B.∠3=∠4C.∠1=∠2,∠3=∠4D.∠2=∠316.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35∘,那么∠2的度数为()A.45∘B.50∘C.55∘D.60∘17.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等参考答案1.【答案】:42【解析】:因为AB⊥BC,∠1=48∘,所以∠1的余角为42∘.因为直线a//b,所以∠2=42∘.2.【答案】:50∘【解析】:∵AB//CD,∠ACD=80∘,∴∠BAC=100∘.又∵AD平分∠BAC,∴∠DAC=1∠BAC=50∘.2故答案为50∘.3.【答案】:80∘【解析】:如图,因为a//b,所以∠4=∠1=60∘.因为a//b,所以∠5=∠2=40∘.因为∠4+∠3+∠5=180∘,所以∠3=180∘−∠4−∠5=180∘−60∘−40∘=80∘.4.【答案】:128∘5.【答案】:130∘【解析】:∵AB∥CD,∴∠B=∠C=50∘. ∵BC∥DE,∴∠C+∠D=180∘,∴∠D=180∘−50∘=130∘6.【答案】:80【解析】:射线BC与射线AB所夹的锐角是80∘,即在B处相对于原方向左转了80∘,所以欲恢复原行走方向,则需右转80∘.7(1)【答案】∠B;∠C;∠A;∠D(2)【答案】∠2;180∘;两直线平行, 同旁内角互补(3)【答案】∠AEF;∠EFC;两直线平行,内错角相等8.【答案】:解:相等.理由:∵AB//CD,∴∠1=∠CAB.又∵AC//BD,∴∠2=∠CAB,∴∠1=∠2.9.【答案】:解:∵AD//EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵AB//DG(已知),∴∠BAD=∠2(两直线平行,内错角相等),∴∠1=∠2(等量代换).10(1)【答案】解:∠2=∠1+∠3.理由:如图甲,过点E作EF//AB.∵AB//CD,∴AB//CD//EF,∴∠BEF=∠1,∠CEF=∠3,∴∠2=∠BEF+∠CEF=∠1+∠3.(2)【答案】一样大.理由:如图乙,分别过点E,G,M作EF//AB,GH//AB,MN//AB.∵AB//CD,∴AB//CD//EF//GH//MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠HGM+∠5=∠1+∠3+∠5.(3)【答案】一样大.理由:如图丙,分别过点E,G,M,K,P作EF//AB,GH//AB,MN//AB,KL//AB,PQ//AB.∵AB//CD,∴AB//CD//EF//GH//MN//KL//PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.结论:开口朝左的所有角度之和与开口朝右的所有角度之和相等.11.【答案】:B【解析】:如图,∵a//b,∴∠1=∠3=100∘.∵∠2+∠3=180∘,∴∠2=180∘−∠3=80∘.故选B.12.【答案】:D13.【答案】:C14.【答案】:B15.【答案】:A【解析】:两直线平行,内错角相等.16.【答案】:C【解析】:如图,∵AB⊥BC,∠1=35∘,∴∠3=90∘−35∘=55∘.∵a∥b,∴∠2=∠3=55∘.故选 C17.【答案】:D【解析】:∵AO,BO分别是∠BAC,∠ABD的平分线,∴∠BAO=∠CAO=12∠BAC,∠ABO=∠DBO=12∠ABD.∴A选项正确,D选项错误;∵AC∥BD,∴∠ABD+∠BAC=180∘.∴B选项正确;∴∠BAO+∠ABO=12∠BAC+12∠ABD=12×180∘=90∘.∴∠BAO与∠ABO互余,∴C选项正确.故选 D。
人教版七年级数学下册5.3 平行线的性质 同步练习及答案
5.3 平行线的性质同步练习一、选择题1、下列命题中,是真命题的是( )A.在同一平面内,垂直于同一条直线的两条直线平行 B.三角形的一个外角大于它的任何一个内角C. 两条直线被第三条直线所截,同旁内角互补 D.过一点有且只有一条直线与已知直线平行2、如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()第2题图第3题图第4题图第6题图A. ∠B=∠CB. AD∥BCC. ∠2+∠B=180°D. AB∥CD3、如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°4、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°5、如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°6、如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B. 45°C. 50°D. 55°7、如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()第9题图第10题图第11题图第12题图A.75°B.80°C.85°D.95°8、如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°9、如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50° B.70° C.80° D.110°10、在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50° B.45° C.40° D.35°11、把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为()第13题图第14题图第15题图 16题图 17题图A.114° B.124° C.116° D.126°二、填空题12、如图所示,请写出能判定CE∥AB的一个条件.13、把一张长方形纸条沿E,折叠,使,如图所示,则的度数为.14、如下图,在△ABC中,DE∥BC,EF∥AB,则与∠B相等的角有个。
初中数学人教版七年级下册 5.3 平行线的性质 同步练习
2020-2021学年初中数学人教版七年级下册第五章相交线与平行线5.3平行线的性质同步练习一、单选题1.阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b//c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(同位角相等,两直线平行)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).A. ①B. ②C. ③D. ④2.如图,AB//CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为()A. 100°B. 80°C. 50°D. 40°3.将一副直角三角板按如图方式摆放,若直线a//b,则∠1的大小为()A. 45°B. 60°C. 75°D. 105°4.某同学的作业如下框,其中※处填的依据是().A. 两直线平行,内错角相等B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,同旁内角互补5.一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是()A. 10°B. 15°C. 20°D. 25°6.如图,已知AB//CD,∠A=140°,∠E=120°,则∠C的度数是()A. 80°B. 120°C. 100°D. 140°7.如图,AB//CD,点E在BC上,DE=EC,若∠B=35°,则∠BED=()A. 70°B. 145°C. 110°D. 140°8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 14°B. 15°C. 20°D. 30°9.如图,∠1=80°,∠2=80°,∠5=70°,则∠3的大小是( )A. 70°B. 80°C. 100°D. 110°10.如图,l1∥l2,点O在直线l1上,将三角板的直角顶点放在点O处,三角板的两条直角边与l2交于A,B两点,若∠1=35°,则∠2的度数为()A. 35°B. 45°C. 55°D. 65°11.已知AB//CD,CE平分∠ACD,交AB于点E,∠A=124°,则∠1的度数为()A. 56°B. 38°C. 36°D. 28°12.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()A. 130°B. 140°C. 150°D. 160°二、填空题13.下图是可调躺椅示意图(数据如图), AE 与 BD 的交点为 C ,且 ∠A , ∠B , ∠E 保持不变.为了舒适,需调整 ∠D 的大小,使 ∠EFD =110° ,则图中 ∠D 应________(填“增加”或“减少”)________度.14.如图,已知等腰梯形 ABCD 中, AD//BC,BC =3AD ,如果 BC ⃗⃗⃗⃗⃗ =a ,BD⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么 AB ⃗⃗⃗⃗⃗ = ________.15.如图, AC//BD,∠C =72°,∠ABC =70° ,那么 ∠ABD 的度数为________.16.如图,直线l 1∥l 2 , ∠BAE =125°,∠ABF =85°,则∠1+∠2=________.17.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,如果被b 反射出的光线n 与光线m 平行,且 ∠1=37° ,那么 ∠2 的度数为________.18.完成下面的证明:已知:如图,∠AEC=∠A+∠C.求证:AB∥CD.证明:过点E作EF∥AB.∴∠A=▲().∵∠AEC=∠1+∠2,∠AEC=∠A+∠C,∴∠C=∠2.∴▲∥▲().∴AB∥CD().三、综合题19. 如图所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数。
人教版七年级数学下册 5.3.1平行线的性质 习题课件
∵∠ABC=30°,∠BAC=90°,∠1=40°,
∴∠2=180°-30°-90°-40°=20°.
11.(中考·重庆) 如图,直线 EF∥GH,点 A 在 EF 上,AC 交 GH 于点 B. 若∠FAC=72°,∠ACD=58°,点 D 在 GH 上, 求∠BDC 的度数.
解:∵EF∥GH, ∴∠DBC=∠FAC=72°. ∵三角形的内角和为 180°, ∴∠BDC=180°-∠DBC-∠ACD=180°-72°-58°=50°.
8.(中考·滨州) 如图,直线 AB∥CD,则下列结论正确的是( D )
A.∠1=∠2
B.∠3=∠4
C.∠1+∠3=180° D.∠3+∠4=180°
9.(2020·营口) 如图,AB∥CD,∠EFD=64°,∠FEB 的平分 线 EG 交 CD 于点 G,则∠GEB 的度数为( D ) A.66° B.56° C.68° D.58°
4.(2019·深圳) 如图,已知 l1∥AB,AC 为角平分线,下列说法 错.误.的是( B ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3
【点拨】 利用平行线的性质得到∠2=∠4,∠3=∠2, ∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2,则 ∠1=∠2=∠4=∠3,∠5=2∠1,从ቤተ መጻሕፍቲ ባይዱ可对各选项进行判断.
谢谢欣赏
THANK YOU FOR LISTENING
2.(2020·常州) 如图,直线 a,b 被直线 c 所截,a∥b,∠1=140°, 则∠2 的度数是( B ) A.30° B.40° C.50° D.60°
3.(2020·娄底)如图,将直尺与三角尺叠放在一起,如果∠1=28°, 那么∠2 的度数为( A ) A.62° B.56° C.28° D.72°
人教版七年级数学下册第五章平行线的性质作业练习题(含答案) (93)
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,直线a∥b,直线c分别与a,b相交,∠1=55°,则∠2的度数为()A.55°B.105°C.125°D.135°【答案】C【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的性质求出∠2的度数即可.【详解】如图:∵∠1与∠3是对顶角,∠1=55°,∴∠3=55°.∵a∥b,∴∠2=180°﹣∠3=180°﹣55°=125°.故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.22.将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为( )A.45°B.42°C.21°D.12°【答案】D【解析】【分析】直接利用平行线的性质得出∠ACM=∠QPC=42°,进而得出∠ABP的度数.【详解】解:∵PQ∥MN,∴∠ACM=∠QPC=42°,∵∠PCQ=90°,∴∠PQC=48°,∴∠ABP=60°﹣48°=12°.故选D.【点睛】本题考查平行线的性质,正确应用平行线的性质是解题关键.23.如图,直线l1∥l2,且分别与直线l交于C、D两点,把一块含30o角的三角尺按如图所示的位置摆放,若∠1=53o,则∠2的度数是( )A .93oB .97oC .103oD .107o【答案】B【解析】【分析】 依据l 1∥l 2,即可得到∠1=∠3=53°,再根据∠4=30°,即可得出∠2=180°-∠3-∠4=97°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=53°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-53°-30°=97°,故选B .【点睛】此题主要考查了平行线的性质,三角板的特征,角度的计算,熟练掌握是解题的关键.24.如图,已知AE 平分BAC ∠,BE AE ⊥于E ,ED AC ,34BAE ∠=,那么BED ∠=( )A.134B.124C.114D.104【答案】B【解析】【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,然后易求∠BED度数.【详解】解:∵AE平分∠BAC∴∠BAE=∠CAE=34°∵ED∥AC∴∠DEA=180°−34°=146°∵∠AED+∠AEB+∠BED=360°∴∠BED=360°−146°−90°=124°.故选:B.【点睛】本题考查平行线的性质和角平分线的性质.熟知两直线平行,同旁内角互补是解题关键.25.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°【答案】C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.26.一副三角板如图放置,若AB∥DE,则∠1的度数为()A .105°B .120°C .135°D .150°【答案】A【解析】【分析】 利用平行线的性质以及三角形的内角和定理即可解决问题.【详解】解:如图,延长EF 交AB 于点H.AB DE ,BHE E 45?∠∠∴==,1180B EHB 1803045105=﹣﹣=﹣﹣=,∠∠∠∴︒︒︒︒︒故选A.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.如图,E 为BC 上一点,AB ∥DE,∠1=∠2,则AE 与DC 的位置关系是( )A.相交B.平行C.垂直D.不能确定【答案】B【解析】【分析】根据AB∥DE可得∠1=∠AED,再由∠1=∠2可得∠AED=∠2,根据平行线的判定可得AE∥DC.【详解】AB∥DC;∵AB∥DE,∴∠1=∠AED∵∠1=∠2∴∠AED=∠2∴AE∥DC故选B【点睛】此题考查平行线的判定与性质,难度不大28.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=( )A.48°B.42°C.40°D.45°【答案】A【解析】【分析】由互余得出可求得∠3的度数,然后由两直线平行,同位角相等求得∠1的度数.【详解】如图,∵∠2=42°,∴∠3=90°﹣∠2=48°,∴∠1=48°.故选:A.【点睛】考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.29.将一把直尺与一块含30°和60°角的三角板ABC按如图所示的位置放置,直尺的一边恰好经过点A,如果∠CDE=50°,那么∠BAF的度数为()A.15°B.20°C.30°D.40°【答案】B【解析】【分析】先根据∠CDE=50°,得出∠CED=40°,再根据DE∥AF,即可得到∠CAF=40°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】解:由图可得,∠CDE=50°,∠C=90°,∴∠CED=40°,又∵DE∥AF,∴∠CAF=40°,∵∠BAC=60°,∴∠BAF=60°﹣40°=20°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.30.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,2=84°,则∠3的度数为()A.30°B.40°C.45°D.60°【答案】B【解析】【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后根据平角的定义求出∠3即可解决问题.【详解】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣84°﹣56°=40°,故选:B.【点睛】该题主要考查了平行线的性质及其应用,平角的定义,应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.。
人教版七年级数学下册第五章平行线的性质习试(含答案) (47)
人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,已知A C ∠=∠,E F ∠=∠,试说明://AD BC ,【答案】见解析【解析】【分析】由∠E =∠F ,根据内错角相等,两直线平行得AE ∥CF ,根据平行线的性质得∠A =∠ADF ,利用等量代换得到∠ADF =∠C ,然后根据同位角相等,两直线平行可判定AD ∥BC .【详解】证明:∵E F ∠=∠,∵//AE CF ,∵A ADF ∠=∠,∵A C ∠=∠,∵ADF C =∠∠,∵//AD BC ,【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.62.如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?【答案】∠1=∠2,理由见解析【解析】【分析】由∠A+∠ABC=180°,可以判断AD∥BC,进而得到∠1=∠DBC,由BD⊥CD,EF⊥CD,可得BD∥EF,进而得到∠DBC=∠2,于是得出结论.【详解】解:∠1=∠2,理由:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠2,∴∠1=∠2.【点睛】本题考查平行线的性质和判定,掌握平行线的性质和判定是正确得出结论的前提.∠=∠,1∠与2∠互补.63.如图所示,AD与BE相交于点F,A C(1)试说明//AB CE ;(2)若295∠=︒,59C ∠=︒,求E ∠的度数.【答案】(1)见解析;(2)∠E =26°【解析】【分析】(1)先由∠1=∠BFD 得出∠BFD +∠2=180°,故可得出AD ∥BC ,故可得出∠ADE =∠C ,据此可得出∠A =∠ADE ,进而得出结论;(2)直接根据三角形内角和的性质即可得出结论.【详解】(1)∵∠1=∠BFD ,∠1+∠2=180°,∴∠BFD +∠2=180°,∴AD ∥BC ,∴∠ADE =∠C ,∴∠A =∠ADE ,∴AB ∥CE ;(2)∵∠2=95°,∠C =59°,∠E +∠2+∠C =180°∴∠E =180°−95°−59°=26°.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.64.如图,已知EF ∥AB ,1B ∠=∠,求证:EDC DCB ∠=∠.【答案】见解析【解析】【分析】证明∠EDC=∠DCB ,只需具备DE ∥BC 即可,可以考虑证得∠ADE=∠B ,而∠1与这两个角都相等.【详解】证明:∵EF ∥AB ,∴∠1=∠ADE ,∵∠1=∠B ,∴∠ADE=∠B ,∴DE ∥BC ,∴∠EDC=∠DCB .【点睛】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.65. 如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC=3∠BCF ,∠ACF=20°.(1)求∠FEC的度数;(2)若∠BAC=3∠B,求证:AB⊥AC;(3)当∠DAB=______度时,∠BAC=∠AEC.(请直接填出结果,不用证明)【答案】(1)20°;(2)详见解析;(3)50【解析】【分析】(1)先根据CE平分∠BCF,设∠BCE=∠ECF=12∠BCF=x.由∠DAC=3∠BCF可得出∠DAC=6x.根据AD∥EF,AD∥BC,得出EF∥BC,由平行线的性质即可得出x的值,进而得出结论;(2)根据AD∥BC可知∠DAB=∠B,再由∠BAC=3∠B得出∠DAC=4∠B=120°,故∠B=30°,∠BAC=90°,由此可得出结论;(3)根据(1)可得出∠BCF的度数,设∠BAD=∠B=α,由∠BAC=∠AEC 即可得出结论.【详解】解:(1)∵CE平分∠BCF,∴设∠BCE=∠ECF=12∠BCF=x.∵∠DAC=3∠BCF,∴∠DAC=6x.∵AD∥BC,∴∠DAC+∠ACB=180°,∴6x+2x+20°=180°,∴x=20°,即∠BCE=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠BCE=∠FEC=20°;(2)证明:∵AD∥BC,∴∠DAB=∠B,又∵∠BAC=3∠B,∴∠DAC=4∠B,由(1)可得∠BCA=20°×3=60°,∴∠DAC=4∠B=120°,∴∠B=30°,∴∠BAC=30°×3=90°,∴AB⊥AC;(3)由(1)知∠BCE=20°,∴∠BCF=40°.∴∠DAC=3×40°=120°,∵AD∥BC,∴可设∠BAD=∠B=α,∴∠AEC=∠B+∠BCE=α+20°,∠BAC=∠DAC-∠DAB=120°-α,∴当∠BAC=∠AEC时,α+20°=120°-α,解得α=50°,∴∠DAB=50°.故答案为:50.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,难度一般.66.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.n°+35°;(3)见解析.【答案】(1) 35°;(2)12【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.分三种情况讨论,分别过点E作EF∥AB,先由角平分线的定义可得:∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,然后根据平行线的性质即可得到∠BED的度数.【详解】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=12ADC=12×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=12n°+35°;(3)分三种情况:①如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=2∠ABC=2n°,∠CDG=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABE=12n°,∠CDG=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.②如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.③如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=2∠ABC=2n°,∠CDE=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABG=12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.综上所述答案为:∠BED角度改变,其度数为12n°−35°或215°−12n°.【点睛】此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,利用平行线的性质进行推算.三、填空题67.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.【答案】70°.【解析】【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.68.如图,将一个宽度相等的纸条按图所示折叠一下,如果∠1=145°,那么∠2=_____.【答案】107.5°【解析】【分析】根据折叠的性质得到∠3=∠4,由a ∥b ,根据平行线的性质得到∠1=∠3+∠4,∠2+∠3=180°,可计算出∠3=72.5°,则∠2=180°-72.5°=107.5°.【详解】由折叠可得∠3=∠4,∵a∥b,∴∠1=∠3+∠4,∠2+∠3=180°,∴2∠3=145°,∴∠3=72.5°,∴∠2=180°﹣72.5°=107.5°.故答案为:107.5°.【点睛】本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,比较简单.,∠1=∠2,则∠DFE的度数是_______.69.如图已知CD AD【答案】90°【解析】【分析】根据同位角相等两直线平行判定EF∥CD,再根据平行线的性质及垂直的定义得出∥DFE的度数.【详解】解:∥∥1=∥2,∥EF∥CD,∥∥DFE+∥D=180°,又∥CD∥AD,∥∥D=90°,∥∥DFE=180°-90°=90°.故答案为90°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.70.如图,AB∥CD,AD⊥BD,∠A=60°,则∠BDC的度数为__.【答案】30°.【解析】【分析】先根据AB∥CD,∠A=60°,求出∠ADC的度数,再由AD⊥BD得出∠ADB=90°,进而可得出结论.【详解】解:∵AB∥CD,∠A=60°,∴∠BDC=180°﹣60°=120°,∵AD⊥BD,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=120°﹣90°=30°.故答案为:30°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.。
初中数学同步训练必刷题(人教版七年级下册 5
初中数学同步训练必刷题(人教版七年级下册 5.3.1平行线的性质)一、单选题(每题3分,共30分)1.(2022七下·盱眙期末)如图,直线l1//l2,∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.65°【答案】C【知识点】平行线的性质;邻补角【解析】【解答】解:设∠2的同位角为∠3,如图,∵l1∥l2,∴∠2=∠3,∵∠3+∠1=180°,∠1=130°,∴∠3=50°,∴∠2=50°,故答案为:C.【分析】根据邻补角的定义求出∠3的度数,再根据二直线平行,同位角相等,求∠2度数即可. 2.(2022七下·抚远期末)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2的度数为()A.50°B.45°C.40°D.30°【答案】C【知识点】垂线;平行线的性质【解析】【解答】解:如图,标注直线a即直线AH,射线BA即射线BK,∵直线a∥b,∠1=50°,∴∠1=∠CAH=50°,∵直线AB⊥AC,∴∠CAK=90°,∴∠2=90°−∠CAH=40°,故答案为:C【分析】根据平行线的性质可得∠1=∠CAH=50°,由垂直的定义可得∠CAK=90°,利用∠2=90°-∠CAH即可求解.3.(2022七下·鞍山期末)如图,在四边形ABCD中,下列结论正确的是()A.若AB∥DC,则∠DAC=∠ACBB.若AD∥BC,则∠BAC=∠ACDC.若AB∥DC,则∠DAB+∠ABC=180°D.若AD∥BC,则∠ADC+∠DCB=180°【答案】D【知识点】平行线的性质【解析】【解答】解:A.要得出∠DAC=∠ACB,需要AD∥BC,但AB∥DC,无法判定∠DAC=∠ACB,故A不符合题意;B.要得出∠BAC=∠ACD,需要AB∥DC,但AD∥BC,无法判定∠BAC=∠ACD,故B不符合题意;C.由AB∥DC,无法得出∠DAB+∠ABC=180°,故C不符合题意;D.由AD∥BC,根据两直线平行同旁内角互补,得出∠ADC+∠DCB=180°,故D符合题意.故答案为:D.【分析】利用平行线的性质逐项判断即可。
(完整版)七年级数学平行线的性质练习题
(6)
(7)
( 2)已知:如图 7, AB∥ DE,∠ E=65°,则∠ B+∠ C?的度数是( )
A . 135° B . 115° C . 65° D . 35°
-3-
难点 : 能区分平行线的性质和判定 , 平行线的性质与判定的混合应用 .
一、选择题
1. 下列说法 : ①两条直线平行 , 同旁内角互补 ; ②同位角相等 , 两直线平行 ;? ③内错角相等 ,
两直线平行 ; ④垂直于同一直线的两直线平行 , 其中是平行线的性质的是 ( )
A. ① B. ②和③ C. ④ D. ①和④
七年级数学《平行线的性质》练习题
教学目标
1. 经历观察、操作、想像、推理、交流等活动 , 进一步发展空间观念 , 推理能力和有条
理表达能力。
2. 经历探索直线平行的性质的过程 , 掌握平行线的三条性质 , 并能用它们进行简单的推
理和计算 .
重点、难点
重点 : 探索并掌握平行线的性质 , 能用平行线性质进行简单的推理和计算 .
1
A C
A B
D D
B
E C
(1)
(2)
(3)
4. 如图 2 所示 ,AB∥ CD,则与∠ 1 相等的角 ( ∠ 1 除外 ) 共有 ( )
A.5 个 B.4 个 C.3 个 D.2 个
5. 如图 3 所示 , 已知 DE∥ BC,CD是∠ ACB的平分线 , ∠ B=72° , ∠ ACB=40° ,? 那么∠ BDC等
2. 若两条平行线被第三条直线所截 , 垂直 B. 平行 C. 重合 D. 相交
3、如图( 1), a∥ b, a、 b 被 c 所截,得到∠ 1=∠ 2 的依据是( )
平行线的判定与性质练习题
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
人教版七年级数学下册第五章平行线的性质复习试题(含答案) (75)
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,DE BC DF BE ∥,、分别平分ADE ABC ∠、∠,求证:FDE DEB =∠∠.【答案】证明见解析.【解析】【分析】根据平行线的性质与判定,结合角平分线的定义作答.【详解】∵DE ∥BC ,∴∠ADE=∠ABC (两直线平行,同位角相等).又∵DF 、BE 分别平分∠ADE 和∠ABC , ∴1122ADF ADE ABE ABC ∠=∠∠=∠,, ∴ADF ABE =∠∠,∴DF ∥BE (同位角相等,两直线平行),∴∠FDE=∠DEB (两直线平行,内错角相等).【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.42.如图,∠1+∠2=180°,EF ∥BC ,求证:∠3=∠B .【答案】见解析.【解析】【分析】依据∠1+∠2=180°,∠2=∠4,即可得出AB ∥FD ,进而得到∠3=∠AEF ,再根据EF ∥BC ,即可得到∠B=∠AEF ,即可得到∠3=∠B .【详解】∵∠1+∠2=180°,∠2=∠4,∴∠1+∠4=180°,∴AB ∥FD ,∴∠3=∠AEF ,∵EF ∥BC ,∴∠B =∠AEF ,∴∠3=∠B .【点睛】本题主要考查了平行线的判定与性质,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.43.(1)如图//AB CD ,试判断BEF ∠、EFG 、FGD ∠之间的关系.并说明理由.(2)如图//AB CD ,150AEF ∠=︒,60DGF ∠=︒.试判断EF 和GF 的位置关系,并说明理由.【答案】(1)EFG FGD BEF ∠=∠+∠,证明见解析;(2)EF FG ⊥,证明见解析.【解析】【分析】(1)过点F 作AB 的平行线FH ,由平行线的性质可得AB ∥FH ∥CD ,由两直线平行,内错角相等,得到∠BEF=∠EFH ,∠FGD=∠HFG ,所以∠BEF+∠FGD=∠EFH+∠HFG ,即∠EFG=∠FGD+∠BEF .(2)思路同(1)根据∠EFG=∠FGD+∠BEF ,求出∠EFG=90°从而得出EF ⊥FG .【详解】(1)解:EFG FGD BEF ∠=∠+∠证明:过点F 作AB 的平行线FH//AB CD ,//AB FH//CD FH ∴(平行于同一条直线的两条直线互相平行)AB FH(已作)//∴∠=∠(两直线平行,内错角相等)BEF EFHCD FH(已证)//∴∠=∠(两直线平行,内错角相等FGD HFG∴∠+∠=∠+∠(等量代换)BEF FGD EFH HFG∠+∠=∠即:BEF FGD EFG∴∠=∠+∠EFG FGD BEF⊥(2)EF FG证明:过点F作AB的平行线FHAB FHAB CD,////CD FH∴(平行于同一条直线的两条直线互相平行)//∠+∠=︒(平角的定义)AEF BEF180BEF AEF∴∠=︒-∠=︒-︒=︒180********AB FH(已作)//∴∠=∠(两直线平行,内错角相等)BEF EFHCD FH(已证)//FGD HFG∴∠=∠(两直线平行,内错角相等)∴∠+∠=∠+∠(等量代换)BEF FGD EFH HFG∠+∠=∠即:BEF FGD EFG∴∠=∠+∠=︒+︒=︒603090EFG FGD BEF∴⊥(垂直的定义)EF FG【点睛】本题主要考查的是平行线的性质:两直线平行,内错角相等.44.如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.证明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥∴∠ADG=∠C【答案】垂直的定义;EF;两直线平行,同位角相等;BC;两直线平行,同位角相等.【解析】【分析】根据垂直求出∠BDC=∠EFC=90°,根据平行线的判定得出BD∥EF,根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出DG∥BC 即可.【详解】证明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定义∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥BC,∴∠ADG=∠C.两直线平行,同位角相等【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.45.已知:如图,BE∥CF,且BE=CF,若BE、CF分别平分∠ABC和∠BCD.(1)请判断AB与CD是否平行?并说明你的理由.(2)CE、BF相等吗?为什么?【答案】(1)AB∥CD.理由见解析;(2)CE、BF相等.理由见解析.【解析】【分析】根据角平分线的定义,得出∠ABC=2∠1,∠BCD=2∠2,而由BE∥CF 得出∠1=∠2,再根据等量代换得出∠ABC=∠BCD,即可证明AB∥CD;求出∠1=∠2,根据平行线的判定推出即可.【详解】(1)AB∥CD.理由:∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∵BE∥CF,∴∠1=∠2,∴∠ABC=∠BCD,∴AB∥CD;(2)CE、BF相等.理由:∵BE=CF,∠1=∠2,BC=CB,∴△BCE≌△CBF(SAS),∴CE=BF.【点睛】本题考查角平分线的定义,根据平分线的性质证明出∠1=∠2是解题关键.46.如图:∠1=∠2,∠3=108°.求∠4的度数【答案】72°.【解析】【分析】由∠1=∠2,根据同位角相等,两直线平行,即可求得AB∥CD,又由两直线平行,同旁内角互补,即可求得∠4的度数.【详解】解:∵∠1=∠2,∴AB∥CD.∴∠3+∠4=180°,∵∠3=108°,∴∠4=72°.【点睛】此题考查了平行线的判定与性质.注意同位角相等,两直线平行与两直线平行,同旁内角互补.47.如图,射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E.(1)当P在线段AC上运动时(如图1),即∠APC=180∘,则∠AEC=______;(2)当P运动到图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由;(3)当P运动到图3的位置时,(2)中的结论还成立吗?(不要求说明理由)【答案】(1)90°;(2)∠AEC=12∠APC;(3)∠AEC=180°-12∠APC..【解析】【分析】(1)根据∠BAP与∠DCP的平分线AE与CE交于点E,即可得出∠BAE=∠EAC,∠DCE=∠ACE,再利用平行线的性质求出即可;(2)作EM∥BA,PN∥BA,根据平行的传递性,再根据两直线平行内错角相等的性质可求;(3)根据平行的传递性,再根据两直线平行内错角相等的性质以及平角性质即可求出.【详解】解:(1)过E作EF∥AB,∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠BAP与∠DCP的平分线AE与CE交于点E,∴∠BAE=∠EAC,∠DCE=∠ACE,∴∠BAE+∠CEF=90°;∴∠AEC=180°,此时∠AEC为90度;(2)作EM∥BA,PN∥BA,∴∠BAE=∠AEM,∠MEC=∠ECD,∠APN=∠BAP,∠NPC=∠PCD,∵∠BAE=∠EAP,∠PCE=∠ECD,又∵∠AEC=∠AEM+∠MEC,∠APC=∠APN+∠NPC,∴∠AEC=12∠APC;(3)作EW∥AB,EP∥AB,同理即可得出:2∠AEC=360°-∠APC,∴∠AEC=180°-12∠APC.【点睛】此题主要考查了平行线的性质以及平行线的传递性等知识,解题的关键是正确作出辅助线,然后根据两直线平行内错角相等的性质解此类题.48.如图,已知∠BDG+∠EFG=180°,∠DEF=∠B,试判断∠AED与∠C的大小关系,并加以说明.解:∠AED=∠C.理由:∠∠EFD+∠EFG=180°( ),∠BDG+∠EFG=180°(已知)∠∠BDG =∠EFD ( ),∠BD∠EF( ),∠∠BDE+∠DEF =180°( ).又∠∠DEF=∠B( ),∠∠BDE+∠B =180°( ),∠DE∠BC( ),∠∠AED=∠C( ).【答案】见详解.【解析】【分析】做此题的关键是找出图中角与角的关系,即同位角,内错角,同旁内角等.利用平行线的性质和判定填空.【详解】】解:∠AED=∠C.理由如下:∵∠EFD+∠EFG=180°,(邻补角的定义)∠BDG+∠EFG=180°,(已知)∴∠BDG=∠EFD.(同角的补角相等)∴BD∥EF.(内错角相等,两直线平行)∴∠BDE+∠DEF=180°.(两直线平行,同旁内角互补)又∵∠DEF=∠B,(已知)∴∠BDE+∠B=180°.(等量代换)∴DE∥BC.(同旁内角互补,两直线平行)∴∠AED=∠C.(两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定和性质,熟记定理是解题的关键.49.如图,直线CD与直线AB相交于C,根据下列语句画图,并填空.(1)过点P作PQ∥CD,交AB于点Q(尺规作图);(2)过点P作PR⊥CD,垂足为R.(3)在(1)(2)的条件下,若∠ACD=65°,则∠PQB=____度,∠RPQ=____度.【答案】(1)见详解;(2)见详解;(3)故答案为115,90.【解析】【分析】(1)平移CD使它经过点P即可得到PQ;(2)过点P作PR⊥DC于R;(3)先根据平行线的性质得∠PQA=∠ACD=65°,则利用邻补角计算∠PQB,根据垂直定义得∠PRC=90°,然后利用平行线的性质求∠RPQ=90°.【详解】解:(1)如图,PQ为所作;(2)如图,PR为所作;(3)在图中,∵PQ∥CD,∴∠PQA=∠ACD=65°,∴∠PQB=180°-65°=115°,∵PR⊥CD,∴∠PRC=90°,∵PQ∥CD,∴∠RPQ+∠PRC=180°,∴∠RPQ=90°.故答案为115,90.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.50.如图,已知12180∠+∠=︒,B DEF ∠=∠;那么DE 与BC 平行吗?试说明理由.请将下面的推理过程补充完整.解:DE BC ∥,理由如下:12180∠+∠=︒(已知)2180DHE ∠+∠=︒(平角的定义)1DHE ∴∠=∠( )∴ ( )B ∴∠= (两直线平行,同位角相等)B DEF ∠=∠(已知)DEF ∴∠= ( )DE BC ∴∥(内错角相等,两直线平行)【答案】见解析.【解析】【分析】由于∠1+∠2=180°,2180DHE ∠+∠=︒,则1DHE ∠=∠,根据内错角相等,∠,由于∠B=两直线平行得到AB∥EF,则利用平行线的性质得∠B=EFC∠,于是根据平行线的判定得到DE∥BC.∠DEF,所以∠DEF=EFC【详解】证明:12180∠+∠=︒(已知)2180∠+∠=︒(平角的定义)DHE∴∠=∠(同角的补角相等)1DHE∴AB EF (内错角相等,两直线平行)∠(两直线平行,同位角相等)∴∠=EFCB∠=∠(已知)B DEF∠( 等量代换)DEF∴∠=EFC∴∥(内错角相等,两直线平行)DE BC∠;故答案为:同角的补角相等;AB;EF;内错角相等,两直线平行;EFC ∠;等量代换.EFC【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.。
人教版七年级数学下册第5章同步分层练习(含答案) :5.3.1平行线的性质
人教版七年级数学下册第5章同步课时练习5.3.1 平行线的性质★基础练习★【知识点1】平行线的性质11.如图,直线a,b被直线m所截,若a∥b,∠2=62°,则∠1=()A.62°B.108°C.118°D.128°2.已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【知识点2】平行线的性质23.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°4.如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.90°C.70°D.50°第1页(共7页)2【知识点3】平行线的性质35.如图,点E在AC的延长线上,AB∥CD,下列结论错误的是()A.∠3=∠4 B.∠A=∠DCEC.∠1=∠2 D.∠A+∠2+∠3=180°6.如图,AB∥CD,∠1=56°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.152°C.116°D.124°★提升练习★7.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1的度数是()A.15°B.25°C.35°D.65°8.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°9.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()第3页(共7页)A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°10. 如图,将一张长方形纸片沿EF 折叠后,使得点A 、B 分别落在点A 、B 的位置,如果∠2=56°,那么∠1=()A .56°B .58°C .62°D .68°11. 如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=46°,则∠1的大小为()A .14°B .16°C .90°﹣αD .α﹣44°12. 如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点,连接AC 、BC .若∠ABC =54°,则∠1的度数为()A .36°B .54°C .60°D .72°13.如图,l 1∥l 2,l 4∥l 3,若∠1=50°,则∠2=.14. 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2= °.15.如图,将一张长方形的纸片沿折痕EF翻折,使点C、D分别落在点M、N的位置,且∠BFM= 1∠EFM,则∠AEN的度数为.216.如图所示,已知AD∥BC,BE平分∠ABC,∠A=110°.求∠ADB的度数.17.如图,AB∥CD,∠CEF=60°,∠ECD=125°,求∠A的度数.18.如图,AB∥CD,AC交BD于点O,∠A=40°,∠D=45°.求∠1和∠2的度数.★拓展探究突破练习★19.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.第5页(共7页)参考答案1.C .2.B .3.D .4.A .5.A .6.B .7.B .8.B .9.D .10.C .11.B . 12.D .13.50°.14.55.15.36°.16. 解:如图所示:∵AD ∥BC ,∴∠A +∠ABC =180°,∠ADB =∠CBD , 又∵∠A =110°,∴∠ABC =180°﹣110°=70°, 又∵BE 平分∠ABC , ∴∠CBD = 1²A 捸ᗂ2∴∠CBD = 1 × 11ᗂ° = 捸捸°,2 ∴∠ADB =55°.17. 解:如图,过点E 作EG ∥AB , ∵AB ∥CD , ∴EG ∥CD , ∴∠GEC +∠C =180°∴∠GEC =180°﹣125°=55° ∵EG ∥AB∴∠A =∠FEG =∠FEC +∠CEG =60°+55°=115°. 答:∠A 的度数为115°.18. 解:∵AB ∥CD ,∴∠1=∠A , ∵∠A =40°, ∴∠1=40°,又∵∠2=∠D +∠1,∠D =45°, ∴∠2=85°,由上可得,∠1的度数是40°,∠2的度数是85°. 19.解:(1)①∵AM ∥BN ,∠A =64°, ∴∠ABN =180°﹣∠A =116°, 故答案为:116°; ②∵AM ∥BN , ∴∠ACB =∠CBN ,故答案为:CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.第7页(共7页)。
人教版数学七年级下册 第5章 5.3平行线的性质同步测试试题(一) (1)
平行线的性质同步测试试题(一)一.选择题1.下列命题中,是真命题的是()A.对角线相等且互相垂直的四边形是矩形B.对角线互相垂直的四边形是菱形C.有一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的菱形是正方形2.下列命题:①三点确定一个圆;②圆中90°的角所对的弦是直径;③长度相等的弧是等弧;④等弧所对的弦相等.其中真命题有()A.4个B.3个C.2个D.1个3.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的四边形是矩形C.对角线垂直且相等的平行四边形是正方形D.一组对边平行的四边形是平行四边形4.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的矩形是正方形C.16的平方根是±4D.有一组邻边相等的四边形是菱形5.如图,AB∥CD,BF平分∠ABE,且BF⊥DE垂足为F,则∠ABE与∠EDC的数量关系是()A.∠ABE=∠EDC B.∠ABE+∠EDC=180°C.∠EDC﹣∠ABE=90°D.∠ABE+∠EDC=90°6.给出下列命题:①弦是直径;②圆上两点间的距离叫弧;③长度相等的两段弧是等弧;④圆心角的度数与它所对的弧的度数相等;⑤圆是轴对称图形,不是中心对称图形;⑥直径是弦.其中正确的个数为()A.1B.2C.3D.47.下列命题中,是真命题的是()A.﹣1的平方根是1B.5是25的一个平方根C.(﹣4)2的平方根是﹣4D.64的立方根是±48.如图,直线y=kx+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)(x1<x2),直线AB交x轴于C(x0,0),下列命题:①=;②当x1<x<x2时,kx+b>;③若M(t,s)为线段AB的中点,则t=x0,其中真命题有()A.0个B.1个C.2个D.3个9.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=()A.116°B.122°C.128°D.142°10.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是同旁内角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个二.填空题11.“平行四边形两组对边分别相等”的逆命题是命题.(填“真”或“假”)12.命题“如果ab=0,则a=0”的逆命题是.13.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.14.如图,a∥b,c,d是截线,∠1=80°,则∠2+∠3﹣∠4=°.15.如图,直线AB∥CD,AE平分∠BAC,AE⊥AF,若∠ACD=110°,则∠F AG=.三.解答题16.如图,DE平分∠ADF,DF∥BC,点E,F在线段AC上,点A,D,B在一直线上,连接BF.(1)若∠ADF=70°,∠ABF=25°,求∠CBF的度数;(2)若BF平分∠ABC时,求证:BF∥DE.17.如图,EF∥AD,∠1=∠2,将求证∠CDG=∠B的过程填写完整.证明:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2()∴∠1=()∴AB∥DG()∴∠CDG=()18.完成下列推理,并填写完理由.已知,如图,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.解:∵∠BAE+∠AED=180°(已知)∴∥()∴∠BAE=又∵∠M=∠N(已知)∴∥()∴∠NAE=()∴∠BAE﹣∠NAE=﹣()即∠1=∠219.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系.解:CD⊥AB,∵DG⊥BC,BC⊥AC(已知),∴∠DGB=∠=90°(垂直定义).∴DG∥AC().∴∠2=∠.,∴∠1=∠(等量代换).∴EF∥(同位角相等,两直线平行).∴∠AEF=∠ADC().∵EF⊥AB,∴∠AEF=90°.∴∠ADC=90°.即:CD⊥AB.参考答案与试题解析一.选择题1.【解答】解:A、对角线相等且互相平分的四边形是矩形,原命题是假命题;B、对角线互相平分且垂直的四边形是菱形,原命题是假命题;C、有一组对边相等,一组对角相等的四边形不一定是平行四边形,原命题是假命题;D、对角线相等的菱形是正方形,是真命题;故选:D.2.【解答】解:不共线的三点确定一个圆,所以①为假命题;圆中90°的圆周角所对的弦是直径,所以②为假命题;长度相等的弧不一定等弧,能完全重合的弧为等弧,所以③为假命题;等弧所对的弦相等,所以④为真命题.故选:D.3.【解答】解:A、有一组邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线垂直且相等的平行四边形是正方形,所以C选项正确;D、一组对边平行且相等的四边形是平行四边形,所以D选项错误.故选:C.4.【解答】解:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故原命题错误,不符合题意;B、对角线垂直的矩形是正方形,故原命题错误,不符合题意;C、16的平方根是±4,正确,符合题意;D、有一组邻边相等的平行四边形是菱形,故原命题错误,不符合题意,故选:C.5.【解答】解:过F点作FG∥AB,∵AB∥CD,∴FG∥CD,∴∠BFG=∠ABF,∠DFG+∠CDF=180°,∵BF⊥DE,∴∠BFD=90°,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠BFG+∠DFG+∠CDF=∠ABF+180°,∴90°+∠CDE=∠ABE+180°,即∠EDC﹣∠ABE=90°.故选:C.6.【解答】解:①弦不一定是直径,原命题是假命题;②圆上任意两点间的部分叫弧,原命题是假命题;③在同圆或等圆中,长度相等的两段弧是等弧,原命题是假命题;④圆心角的度数与它所对的弧的度数相等,是真命题;⑤圆是轴对称图形,也是中心对称图形,原命题是假命题;⑥直径是弦,是真命题.故选:B.7.【解答】解:A、﹣1没有平方根,原命题是假命题,不符合题意;B、5是25的一个平方根,是真命题,符合题意;C、(﹣4)2的平方根是±4,原命题是假命题,不符合题意;D、64的立方根是4,原命题是假命题,不符合题意;故选:B.8.【解答】解:∵点A(x1,y1),B(x2,y2)在双曲线y=(x>0)上,∴x1y1=x2y2=m2+1,∴=,所以①正确;∵当x1<x<x2时,直线y=kx+b在双曲线y=(x>0)上方,∴kx+b>,所以②正确;∵M(t,s)为线段AB的中点,∴t=,∵kx+b=,∴kx2+bx﹣m2﹣1=0,∴x1+x2=﹣,把C(x0,0)代入y=kx+b得kx0+b=0,∴x0=﹣,∴x1+x2=x0,∴t=x0,所以③正确.故选:D.9.【解答】解:∵∠1=64°,∴∠3+∠4=180°﹣64°=116°,∵AE平分∠BAC,∴∠3=∠4=116°÷2=58°,∵AC∥BD,∴∠2+∠4=180°,∴∠2=180°﹣58°=122°.故选:B.10.【解答】解:∵∠AMF与∠DNF不是同旁内角,∴①错误;∵AB∥CD,GP∥AB,∴AB∥CD∥GP,∴∠PGM=∠CNM=∠DNF,∠BMN=∠HNG,∠AMN+∠HNG=180°,故②正确;∵HG⊥MN,∴∠HNG+∠GHN=90°,∴∠BMN+∠GHN=90°,故③正确;∵∠CHG=∠MNH+∠HGN,∴∠MNH=∠CHG﹣90°,∴∠AMN+∠HNG=∠AMN+∠CHG﹣90°=180°,∴∠AMG+∠CHG=270°,故④正确,故选:C.二.填空题(共5小题)11.【解答】解:“平行四边形两组对边分别相等”的逆命题是“两组对边分别相等的四边形是平行四边形”,是真命题,故答案为:真.12.【解答】解:命题“如果ab=0,则a=0”的逆命题是“如果a=0,则ab=0”,故答案为:如果a=0,则ab=0.13.【解答】解:∵∠1=50°,∴∠DBE=180°﹣∠1=180°﹣50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC==65°.故答案为:65.14.【解答】解:如图所示:∵∠1=80°,∴∠4=100°,∵a∥b,∴∠3=∠5,∴∠2+∠3=∠2+∠5=180°,∴∠2+∠3﹣∠4=180°﹣100°=80°.故答案为:80°.15.【解答】解:∵AE⊥AF,∴∠EAF=90°,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠ACD=110°,∴∠BAC=180°﹣∠ACD=70°,∵AE平分∠BAC,∴∠CAE=35°,∴∠F AG=180°﹣∠CAE﹣∠EAF=180°﹣35°﹣90°=55°,故答案为:55°.三.解答题(共4小题)16.【解答】解:(1)∵DF∥BC,∴∠ABC=∠ADF=70°,∵∠ABF=25°,∴∠CBF=70°﹣25°=45°;(2)证明:∵DF∥BC,∴∠ABC=∠ADF,∵BF平分∠ABC,DE平分∠ADF,∴∠ADE=ADF,∠ABF=ABC,∴∠ADE=∠ABF,∴BF∥DE.17.【解答】证明:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠CDG=∠B(两直线平行,同位角相等).故答案为:∠3,两直线平行,同位角相等;已知;∠3,等量代换;内错角相等,两直线平行;∠B,两直线平行,同位角相等.18.【解答】解:∵∠BAE+∠AED=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAE=∠AEC,又∵∠M=∠N(已知),∴AN∥EM(内错角相等,两直线平行),∴∠NAE=∠MEA(两直线平行,内错角相等),∴∠BAE﹣∠NAE=∠CEA﹣∠MEA(等量减等量,差相等),即∠1=∠2.故答案为:AB,CD,同旁内角互补,两直线平行;∠AEC;AN,EM,内错角相等,两直线平行;∠MEA,两直线平行,内错角相等;∠CEA,∠MEA,等量减等量,差相等.19.【解答】解:CD⊥AB,∵DG⊥BC,BC⊥AC(已知),∴∠DGB=∠ACB=90°(垂直定义).∴DG∥AC(同位角相等,两直线平行).∴∠2=∠ACD.,∴∠1=∠ACD(等量代换).∴EF∥CD(同位角相等,两直线平行).∴∠AEF=∠ADC(两直线平行,同位角相等).∵EF⊥AB,∴∠AEF=90°.∴∠ADC=90°.即:CD⊥AB.故答案为:ACB;同位角相等,两直线平行;ACD;ACD;CD;两直线平行,同位角相等..。
2020--2021学年人教版数学七年级下册第五章:5.3.1 平行线的性质
平行线的性质一.平行线的判定和性质综合--平行的判定1.如图,CE平分∠BCD,DE平分∠ADC,当∠CED=______°时,AD∥BC.2.如图,已知∠EAC=90∘,∠1+∠2=90,∠1=∠3,∠2=∠4.则DE与BC______(填位置关系)3.如图,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,当∠BED的度数为______度时,AB∥CD.4.已知:如图EF⊥AB于点O,FG交CD于点P,当∠1=30°时,当∠EFG的度数为______度时,AB∥CD5.如图,已知直线c和a、b分别交于A、B两点,点P在直线c上运动.若P点在AB两点之间运动,试探究:当∠1、∠2和∠3之间满足的数量关系是∠2=______时,a∥b.二.平行线的性质--同位角1.如图,直线c与直线a,b相交,且a∥b,∠1=60°,则∠2的度数是()2.如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为______°.3.如图,已知AB∥CD,GM∥HN, GM平分∠EGB,若∠MGB=40°.则∠NHD=______°4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是()三.平行线的性质--内错角1.如图,l1∥l2,∠1=110∘,则∠2的度数是()2.如图,直线AB,CD被直线EF所截,AB∥CD,AG平分∠BAE交CD于点G,∠2=30°,则∠1=______度3.一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为()4.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠B=60°,∠EAD=45°,若AE∥BC,则∠CAD=______度四.平行线的性质--同旁内角1.如图,a∥b,直线c与a,b相交,∠1=120∘,则∠2=______°2.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=______度3.如图,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数()4.将一副三角板如图放置,∠ABE=30°,∠DAC=45°,若DA∥BC,则∠EBC=______度.五.平行线的性质综合--角度计算1.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______°2.如图,直线AB∥CD//EF.若CF平分∠ECD,且满足CF∥BE,∠ECD=80°,则∠ABE的度数为______度.3.如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,则图中∠EGF=______°.4.如图,AC∥BD,∠A=60°,∠C=62°,则∠2=______°,∠3=______°,∠1=______°5.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.若∠O=40°,则∠ECF的度数为______度;∠OCG=______度.六.平行线的性质综合--找相等的角1.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()2.如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有______个.3.如图,AB∥EF∥CD,GH∥PN,MN∥HK,则图中与∠CHM相等的角(∠CHM 除外)共有()4.如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有______个七.平行线的性质综合--拐弯问题1.如图,安装某管道,需经过两次拐弯,若要求拐弯后的管道与拐弯前的管道平行,第一次拐弯处的∠B=142°,那么第二次拐弯处的∠C=______°.2.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠C)的度数是()3.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于()4.如图,某学员在广场上练习驾驶汽车,第一次向左拐弯15度行驶一段后,第二次向左拐弯13度,再次行驶一段后,那么第三次要向______拐弯______度,则行驶方向与原来行驶方向相同.八.平行线的性质综合--折叠问题1.将长方形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将长方形ABFE与长方形EFCD分别沿折痕MN 和PQ折叠,使点A、点D都与点F重合,展开纸片,若∠AMN=60°,则∠MFP=______°.2.如图,将长方形纸片ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点P,若∠AEB′=32°,则∠C′FC的度数为______°.3.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=______°.4.如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB =32°,则下列结论中:①∠C′EF=32°,②∠AEC=116°,③∠BGE=64°,④∠BFD=116°,正确的有______.(按从小到大的序号填写)九.平行线的性质综合--三角板问题1.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )2.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )3.将直尺和直角三角板按如图方式摆放,已知∠1=35∘,则∠2的大小是( )4.将直尺和直角三角板按如图方式摆放,AB//EF,已知∠1=55∘,则∠2的度数是______度.5.将一副三角板如图放置,使点A在EF上,BC∥EF,则∠ACE的度数为______度.6.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为______度.十.平行线的性质综合--铅笔型1.判断:如图,AB∥CD,∠A+∠E+∠C=180°.______(填“对”或“错”)2.小芳给自己家的小狗乐乐做了一个小木屋,其侧面如图所示.AE//CF,若她已测出∠A=135°,∠C=125°,由于受条件影响,屋顶的∠B的度数无法测出.哥哥看到后说,不用测量,他能算出∠B=______°3.如图,l//m,∠1=115∘,∠2=95∘,则∠3=______°.4.如图,已知AB∥CF,CF∥DE,∠1=120°,∠2=105°,则∠3=______°.5.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,∠2=______°.十一.平行线的性质综合--锯齿型1.如图,直线AB∥CD,∠1=25∘,∠F=90∘,则∠2的度数为( ).2.如图,已知直线m∥n,∠1=36°,∠2=90°,则∠3的度数为( )3.如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为( )4.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BED=80∘,则∠BFD的度数为______°.5.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35∘,那么∠BED的度数为______度.十二.平行线的性质综合--牛角型1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠DEF=120∘,∠CDE=25∘,则∠BCD的度数是()2.如图,AB//CD,∠B=160°,∠D=120°,则∠E=______°.3.如图,AB//DE,∠ABC=60∘,∠CDE=150∘,则∠BCD=______°.4.如图所示,AB//CD//EF,若∠ABC=50°,∠BCE=20°,则∠CEF=______°.5.如图,EF//AD,AD//BC,CE平分∠BCF,∠DAC=114°,CE、CF是∠ACB 的三等分线,则∠EFC=______°.十三.平行线的性质综合--锄头型1.如图,直线AB//CD,∠B=50∘,∠C=40∘,则∠E等于______度.2.如图,已如AB//CD,若∠A=25∘,∠E=40∘,则∠C=______度.3.如图,直线EF//GH,点A在EF上,AC交GH于点B,若∠EAB=110∘,∠C=60∘,点D在GH上,则∠BDC的度数为______度.4.如图,BC//DE,若∠A=35∘,∠C=24∘,则∠E等于______度.5.如图,a//b,c⊥d,∠1=25∘,则∠2=______度.十四.平行线的性质综合--模型综合1.如图所示,AB∥CD,∠C=125∘,∠E=80∘,则∠A=______°.2.如图,AB//CD,∠P=90∘,∠C=140°,则∠A+∠E的度数为( )3.如图,正五边形ABCD中,11∥12,∠1-∠2的度数为______°(提示:正五边形的每个内角都是108°)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为( )5.如图所示,已知 FC∥AB∥DE,∠α:∠D:∠B=2:3:4,则∠B=______度.6.如图,AB//CD,∠ABE和∠CDE的平分线相交于点F,若∠E=30°,则∠F=______°十五.平行线的性质综合--几个角之间的数量关系1.如图所示,AB∥CD,且点E在射线AB与CD之间,则∠A+∠C______∠AEC (填大于、小于、等于)2.如图,AB∥CD,点E在AB与CD的上方,则∠1+∠2-∠E=______°.3.如图,直线m∥n,则∠1、∠2、∠3、∠4间的数量关系是( )十六.平行线的判定和性质综合--反射问题1.如图,两条平行光线射向平面镜面后被反射,其中一条光线AB反射后的光线是BC,此时∠1=∠2=46°,另一条光线的反射光线EF与镜面的夹角∠3的度数为( )2.根据光反射定律,射到平面镜上的光线与被反射出的光线与平面镜的夹角相同,如图,已知∠AOB的两边OA、OB均为平面反光镜,∠AOB=36°,在OB 上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是( )3.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为( )4.如图,两平面镜OA,OB的夹角为∠O,入射光线CD平行于OB入射到镜面OA上,经两次反射后的反射光线EF恰好平行于OA,则∠O的度数为______度.5.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=38°,则∠2=______°,∠5=______°十七.平行线的判定和性质综合--角度计算1.如图,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E=45°,则∠1=______°.2.如图,已知∠1=∠2,∠B=40°,则∠3=______度.3.如图,已知∠1=∠2=∠3=62°,则∠4=()4.如图,∠1=∠2=30°,∠A=60°,则∠ADB=______度.5.如图在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠2-∠1=30°,∠DEF=∠EFC,∠C =50°,则∠3=______°.6.如图,∠ABC=∠ACB=70°,且∠EAC=2∠ABC,AD平分∠EAC,BD平分∠ABC.则∠ADB=______°.。
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)(4)
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,将一块含有30。
角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果7 2=60 °,那么/1的度数为C. 40D. 30【答案】D【解析】【分析】先根据平行线的性质得出/FHE的度数,再根据外角的性质求出/1的度数即可.【详解】.「△GEF是含30。
角的直角三角板,・•/ FGE=30 °,/ 2=60 °,・•/ FHE=/2=60・./ 1=/FHE-/G=30 °,故选D.32 .如图,直线l i和直线12被直线l所截,已知11的,〃1 = 70°,则//2 =A. 110 °B. 90°C. 70 °D. 50【答案】C【解析】试题分析:根据平行线的性质得出N= z3,然后根据对顶角相等得出4= 4=70 °,即可得力=4=70 °,故答案选C.考点:平行线的性质.33.如图,一块含30岁角的直角三角板ABC的直角顶点A在直线DE上, 且BC//DE ,则等于()A. 30,B. 45C. 60。
D. 90P【答案】A【解析】试题分析:由图可知£=30:,又ZBC//DE , 2c4£ =-C = 30:.故选A.考点:平行线的性质、含30,锐角的直角三角形.34.如图,直线AB /CD,直线EF与AB , CD相交于点E, F, /BEF的平分线与CD相交于点N .若//1=63。
,则/2=()A. 64°B. 63°C. 60 °D. 54【答案】D【解析】试题分析:zAB/CD, 4=63 °, /BEN=/1=63°, zEN 平分zBEF, /BEF=2zBEN=126 °, Z 2=180 - zBEF=180 - 126 =54 °,故选D .考点:平行线的性质.35 .如图,直线a /b, //1=75 °, /2=35 °, WJ 3的度数是()A. 75°B. 55°C. 40 °D. 35【答案】C【解析】试题分析:如图,根据平行线的性质可得/= 4=75 °,然后根据三角形的外角等于不相邻两内角的和,可知4= Z2+ 后,因此可求得Z3=75 -35 =40【解析】【分析】【详解】解:•FE-DB, • ・• ・DEF=90 . .・1=50 °, v .D=90 -50 =40 °, •AB.・・・・2= -D=40故选C.【点睛】本题考查平行线的性质. //1 =50 °,则口2的度数是( C. 40D. 30° •CD, 故选C考点:平行线的性质,三角形的外角性质0 A. 60 B. 50°12, 13 交于一点,直线 1441,若//1=124 °, 12=88 °,D. 56°【答案】B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补)可求4=56 °,然后借助平角的定义求得z3=180 °-z2-4=36 :故选B考点:平行线的性质38 .如图,直线a, b 被直线e, d 所截,若/1= 2 优=125 °,则必的度数为( C. 46 o A. 26 37 .如图,直线1i, B. 36°A. 55°B. 60°C. 70 °D. 75 °【答案】A【解析】试题分析:/1= z2,4zb,/3的对顶角+ 4=180 o, z3的对顶角=&=125 °,/ 4=180 o-125 o=55 o,故选A.考点:平行线的性质与判定.39 .车库的电动门栏杆如图所示, BA垂直于地面AE于A , CD平行于地面AE,贝U //ABC + //BCD的大小是(A. 150B.180C.270D.360【解析】【分析】过B作BF-AE,则CD「BF-AE.根据平行线的性质即可求解. 【详解】解:过B 作BF-AE,则CD-BFiAE..BCD+ -1=180又.AB.AE,-AB-BF.・・•・ABF=90 ;.ABC+ .BCD=90 +180 =270故选C.>-D二fA E【点睛】本题主要考查了平行线的性质,两直线平行,同旁内角互补.正确作出辅助线是解题的关键.40 .如图,AB//CD//EF, AF // CG,则图中与/ A (不包括/A)相等的角有()£A.1个B.2个C. 3个D.4个【答案】D【解析】【分析】由平行线的性质,可知与/A相等的角有/ ADC、/AFE、/EGC、/ GCD.【详解】解:.「AB//CD,「• / A= / ADC ;. AB // EF,. A=/AFE;. AF // CG,・./ EGC=/AFE= / A;. CD // EF,・./ EGC=/DCG= / A;所以与/A相等的角有/ADC、/AFE、/EGC、/GCD四个, 故选:D【点睛】本题考查平行线的性质找到相等关系的角是解题的关键.。
人教版七年级数学 下册 5.3平行线的性质 单元测试题 有答案
5.3平行线的性质一选择题1、有下列四个命题:①对顶角相等;②等角的补角相等;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中是真命题的有()A.4个B.3个C.2个D.1个2、如图,AB∥CD,CD⊥EF,若∠1=125°,则∠2=()A.25°B.35°C.55°D.65°3、如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A.45°B.35°C.55°D.125°4、如图,直线l1∥l2,l3⊥l4.有三个结论:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是()A.只有①正确B.只有②正确C.①和③正确D.①②③都正确5、如图,△ABC中,BD是∠ABC的角平分线,DE∥BC交AB 于点E,,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35 º B.70º C.100 º D.110 º6、如图,AD∥EF∥BC,EG∥BD,和∠1相等的角有()A. 4个B.5个C.6个D.7个7、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50°B.30°C.20°D.15°二填空题1、填空:如图所示,已知∠1+∠2=180°,∠3=∠B,求证:∠AED=∠ACB证明:∵∠1+∠2=180°(已知)∠1+__=180°(邻补角的定义)∴∠2=_____(同角的补角定义)∴AB∥EF()∴∠3=___(已知)∴∠B=____(等量代换)∴DE∥BC()∴∠AED=∠ACB()2、完成下面的证明.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC.证明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 ()∴∠3=∠4(等量代换).∴_________∥_______()∴∠C=∠ABD ()∵∠C=∠D ()∴∠D=∠ABD ()∴AC∥DF ()3、小明在学习三角形知识时,发现如下三个有趣的结论:在直角△ABC中,∠A =90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是_______;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是 ________ ;如图③,M为边AC延长线上一点,则BD、MF的位置关系是______________ (2)请在图①、图②、或图③中任选两种情况,给出证明.我选图___________来证明.三解答题1、将下列命题改写成“如果……那么……”的形式(1)直角都相等;(2)等量代换;(3)末位数是5的整数能被5整除;(4)三角形的内角和是180°.2、判断下列命题是真命题还是假命题,并说明理由.(1)两个锐角的和是钝角;(2)点P到A、B两点的距离相等,则P是线段AB的中点;(3)不相等的角不是对顶角;(4)若∠1+∠2=90°,∠3+∠2=90°,则∠1=∠3.3、如图,AD∥BC,BD平分∠ABC.求证:AB=AD.4、如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC。
人教版七年级数学下册第五章平行线的性质作业复习试题(含答案) (49)
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=______【答案】130°【解析】试题解析:如图,∵l1∥l2,∴∠3=∠1=50°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-50°=130°.82.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠E CA的度数为40°,则∠GFB的度数为___________.【答案】70°【解析】【分析】【详解】试题解析:∵∠ECA =40°,∴∠ECD =180°-∠ECA =140°,∵CD 平分∠ECF ,∴∠DCF =12∠ECF=12×140°=70°,∵CD ∥GF ,∴∠GFB =∠DCF =70°.故答案为:70°.83.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是______度.【答案】76【解析】2=51=802=1001+5=1803476a b ∠∠∠︒∠︒∴∠∠︒∴∴∠=∠=︒,,84.如图,AB∥EF,∠C=60°,∠A=α,∠E=β,∠D=γ,则α、β、γ的关系是______.【答案】β+γ﹣α=60°【解析】试题解析:过点C作CM∥AB,过点D作DN∥AB,∵AB∥EF,∴AB∥CM∥DN∥EF,∴∠BAC=α,∠DCM=∠CDN,∠FED=γ,∴β+γ-α=60°.85.如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=_____°.【答案】50°【解析】试题解析:DE∥BC,∠ADE=80°,∴∠ABC=∠ADE=80°,∵DC平分∠BDC,∴∠BDC=12∠BDE=50°.∴∠BCD=180°-80°-50°=50°86.如图,把一个的直角三角尺的直角顶点放在直尺的一边上,已知∠A=30°则∠1+∠2=______°.【答案】150【解析】试题解析:如图,根据题意得:∠1=∠3,∠2=∠4+∠5∴∠1+∠2=∠3+∠4+∠5∴∠1+∠2=∠ACB+∠ABC=180°-30°=150°87.如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2=__________度.【答案】55【解析】试题分析:如图,先根据AB∥CD,∠1=110°求出∠3=180°-∠1=180°-110°=70°,再根据图形翻折变换的性质即可求出∠2=(180°-∠3)÷2=(180°-70°)÷2=55°.点睛:此题主要考查了翻折变换的性质,解题关键是明确翻折后线段的长度和角的大小不变.注意重叠部分的相等,且要注意平行线的性质的应用.88.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是_____,理由_____.【答案】PN, 垂线段最短【解析】【详解】∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为PM,垂线段最短.89.已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D 分别作DF∥AC交AB所在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是__.【答案】80或100【解析】分为三种情况:第一种情况:如图所示:∵∠A=80°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=80°;第二种情况:如图所示:∵∠BAC=80°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=80°,∠FDE+∠E=180°,∴∠FDE=100°;第三种情况:如图所示:∵∠BAC=80°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=80°,∠FDE+∠E=180°,∴∠FDE=100°;故答案是:80°或100°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质练习题
1、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )
A.180°
B.360°
C.540°
D.720°
2、若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
3、同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直 B.互相平行 C.相交 D.无法确定
4、若两条平行线被第三条直线所截,则一组同位角的平分线互相( )
A.垂直
B.平行
C.重合
D.相交
5、如图所示,如果AB∥CD,那么().
A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5
C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8
6、下列图形中,由AB‖CD ,能得到∠1=∠2的是()
7、如图,AB ,CD 被EF 所截,AB//CD. 按要求填空: 若∠1=120°,则∠2=____°( ); ∠3=___- ∠1=__°( )
8、如图,AB ∥CD ,AD ∥BC ,如果∠B=50°,那么∠
D= 。
9、如图所示,直线a ,b 被c ,d 所截,且c ⊥a ,c ⊥b ,∠1=70°,则∠2= 度.
10、一大门的栏杆如图所示,BA 垂直于
地面AE 于
A ,CD 平行于地面AE ,则∠ABC +∠BCD = 度.
A
E
F
C D
11、如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.
12. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.
(1) (2) (3) (4)
13、已知:如图,∠AOB 、∠BOC 互为邻补角,OE 平分∠AOB ,OF 平分∠BOC.求证:
OE ⊥OF.
14、如图,直线DE 经过点A ,DE ∥BC ,∠B=44°,∠C=85°.⑴求∠DAB 的度数;⑵求∠EAC 的度数;⑶求∠BAC 的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?
E
D
C B
A
P
D
C
B
A P D
C
B
A
P D
C
B A P
D
C
B A A
D
E
B
C
D
C
B
A
15、如图,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,求∠CAD,∠ACD 的度数.
16、如图:已知 ∠1= ∠ 2求证:∠ BCD+ ∠ D=180︒
17、如图,已知AB ∥DE ,BC ∥EF ,∠B=60°,求∠E 的度数。