(word完整版)八年级数学二次根式的化简求值练习题及答案
专题训练 二次根式化简求值有技巧(含答案)

专题练习(一)二次根式化简求值有技能(含答案)【1 】► 类型之一 应用二次根式的性质a2=|a|化简 对于a2的化简,不要盲目地写成a,而应先写成绝对值的情势,即|a|,然后再依据a 的符号进行化简.即a2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0).1.已知a =2-3,则a2-2a +1=( )A .1-3B.3-1 C .3-3D.3-32.当a <12且a ≠0时,化简:4a2-4a +12a2-a=________. 3.当a <-8时,化简:|(a +4)2-4|.4.已知三角形的双方长分离为3和5,第三边长为c,化简:c2-4c +4-14c2-4c +16. ► 类型之二 逆用二次根式乘除法轨则化简 5.当ab <0时,化简a2b 的成果是( ) A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2;(2)(-16)×(-49); (3) 2.25a2b;(4)-25-9;(5)9a34. ► 类型之三 应用隐含前提求值7.已知实数a 知足(2016-a )2+a -2017=a,求a -12016的值. 8.已知x +y =-10,xy =8,求x y +y x 的值. ► 类型之四 巧用乘法公式化简9.盘算:(1)(-4-15)(4-15);(2)(26+32)(32-26); (3)(23+6)(2-2);(4)(15+4)2016(15-4)2017.► 类型之五 巧用整体思惟进行盘算10.已知x =5-26,则x2-10x +1的值为( )A .-306B .-186-2C .0D .10611.已知x =12(11+7),y =12(11-7),求x2-xy +y2的值. 12.已知x >y 且x +y =6,xy =4,求x +yx -y 的值.► 类型之六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a,b,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a_详解详析1.[解析]B a2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a. 3.解:当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8).∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分化因式,就可以应用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8.∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32c -6. 5.[解析]A 由ab <0,可知a,b 异号且a ≠0,b ≠0.又因为a2≥0,且a2b ≥0,所以a <0,b>0.所以原式=-a b.[点评] 逆用二次根式的乘除法轨则进行化简时,症结是留意轨则成立的前提,还要留意二次根式的总体性质符号,即化简前后符号要一致.6.解:(1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a2·b =1.5a ·b =3a 2b. (4)原式=259=259=53. (5)原式=9a34=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.所以原前提转化为a -2016+a -2017=a,即a -2017=2016.所以a =20162+2017. 所以a -12016=20162+20162016=2017. [点评] 解决此题的症结是从已知前提中发掘出隐含前提“a -2017≥0”,如许才干对(2016-a )2进行化简,从而求出a 的值.8.解:依题意可知x <0,y <0. 所以原式=x2xy +y2xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,所以原式=-(-10)8=522. [点评] 解决此题的症结是从已知前提中剖析出x,y 的正负性,如许才干对请求的式子进行化简和求值.假如盲目地化简代入,那么将会得出-522这个错误成果. 解答此题还有一个技能,那就是对x y +y x进行变形时,不要按通例化去分母中的根号,而是要依据已知前提的特色对它进行“通分”. 9.解:(1)原式=(-15)2-42=15-16=-1.(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)=15-4.[点评] 应用乘法公式化简时,要擅长发明公式,经由过程符号变形.地位变形.公因式变形.联合变形(添括号).指数变形等,变出乘法公式,就可以应用公式进行化简与盘算,事半功倍.10.[解析]C 原式=(x -5)2-24. 当x =5-26时,x -5=-26,∴原式=(-26)2-24=24-24=0.故选C.[点评] 解答此题时,先对请求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行盘算要简略得多. 11.解:因为x +y =11,xy =14[(11)2-(7)2]=1, 所以x2-xy +y2=(x +y)2-3xy =(11)2-3=8.[点评] 这类问题平日视x +y,xy 为整体,而不是直接代入x,y 的值进行盘算.12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y,所以x-y=20=25,所以原式=(x+y)2(x)2-(y)2=x+y+2xyx-y=6+425= 5.[点评] 此题需先整体求出x-y的值,然后再整体代入变形后的代数式盘算.13.[解析]A 因为(3-2)(3+2)=1,所以a=3-2=13+2.同理,b=12+3,c=15+2.当分子雷同时,分母大的分式的值反而小,所以a>b>c.故选A.[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.是以,比较大小时,可把3-2转化为13+2,从而转化为分母大小的比较。
二次根式化简练习题含答案

20. . . 下载可编辑二次根式化简练习题含答案(培优)一)判断题: (每小题 1 分,共 5分)( 2)2ab =- 2 ab .⋯⋯⋯⋯⋯3 -2 的倒数是 3 + 2.( )(x 1) = ( x 1) .⋯( )132 aa 3b 、 是同类二次根式.⋯(3 x b1, 9 x 2 都不是最简二次根式. (3每小题 2 分,共 20 分) 1______ 时,式子 1 有意义.x31.2. 3.4. 5. ab 、8x ,二)填空题: 6.当x 10 25化简-15 2 ÷a - a 21的有理化因式是 当 1<x <4时, |x -4|+ x 22x 1=10.方程 2(x -1)=x +1的解是 _______ 7.8. 9.27 12a 3ab c 2d 211.已知 a 、b 、c 为正数, d 为负数,化简ab c 2d 212.比较大小:- 1 ____________ - 1 .2 7 4 313.化简: (7-5 2 ) 2000· ( -7- 5 2 ) 2001= ___ 14.若 x 1+ y 3=0,则(x -1) 2+( y +3) 2=15.x ,y 分别为 8- 11 的整数部分和小数部分,则 三)选择题: (每小题 3 分,共 15 分)16.已知 x 3 3x (A )x ≤02=- x x 3 ,则⋯⋯⋯⋯⋯⋯B )x ≤- 3 (C )x ≥- 317.若 x < y < 0,(A )2x18.若 0< x < 1,19.A )化简2 2xy - y=)D )- 3≤x ≤0 x 22xy y 2+ x 22xy y 2=⋯⋯B )2y(C )-2x(D )- 2y12(x )24 等于⋯⋯⋯x(xxB )- 2 x( a < 0) 得A )当 a < 0 , b < 0 时,- a + 24-C) - 2xD )2xB )- a( C )- a ab- b 可变形为⋯⋯⋯D ) aA )( a b )2 (B )- ( a b )2(C )( a b )2 (D ) (a b )2四)计算题: (每小题 6 分,共 24分)21.( 5 3 2 )( 5 3 2 );22.五)求值: (每小题 7分,共 14 分)3724.( a +b ababa+bab b ab aa b)(a ≠ b ). ab25.已知 x =y =32 32,求xy32x xy 3 2 2 32x y x y的值.26.当 x =1- 2 时,求2x x 2a 2+1 2 2 2 2 2x x x a x a的值.2x六、解答题: (每小题 8分,共 16 分)27.计算( 2 5 +1)( 1 + 1 + 1 +⋯+ 1 ).1 2 2 3 3 4 99 100(一)判断题: (每小题 1 分,共 5分)1、【提示】 ( 2) =| - 2| = 2.【答案】×.2、【提示】 1 = 3 2 =-( 3 + 2).【答案】×.3 2 3 43、【提示】 (x 1)2 =|x -1|,( x 1) 2 =x - 1( x ≥ 1).两式相等,必须 x ≥1.但等式左边 x 可取任何数.【答案】×.132 a4、【提示】 1 a 3b 、化成最简二次根式后再判断. 【答案】√.3 x b5、9 x 2是最简二次根式. 【答案】×.(二)填空题: (每小题 2 分,共 20分)6、【提示】 x 何时有意义? x ≥0.分式何时有意义?分母不等于零. 【答案】 x ≥0且 x ≠9.7、【答案】- 2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】( a - a 21 )( ______ )= a 2- ( a 21)2.a +a 21 .【答案】 a +a 21.9、【提示】 x 2-2x +1=( )2,x -1.当 1<x <4时,x -4,x -1 是正数还是负数?x - 4是负数, x -1是正数.【答案】 3.10、【提示】把方程整理成 ax = b 的形式后, a 、b 分别是多少? 2 1, 2 1.【答案】 x =3+2 2 . . . 下载可编辑 . .28.若 x ,y 为实数,且1y = 1 4x + 4x 1 +2xy2y的值.x11、【提示】c2d2=|cd|=-cd.【答案】ab +cd.【点评】∵ ab=( ab)2(ab>0),∴ ab-c2d2=(ab cd )(ab cd ).12、【提示】 2 7=28 ,4 3=48 .1 1 1【答案】<.【点评】先比较28,48 的大小,再比较1,1的大小,最后比较-1与28 48 28 1-的大小.4813、【提示】(-7-5 2 )2001=(-7-5 2 )2000·(______ )[ -7-5 2.](7-5 2)·(-7-5 2 )=?[1 .] 【答案】-7-5 2.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】x 1≥0,y 3≥0.当x 1+y 3=0 时,x+1=0,y-3=0.15、【提示】∵ 3< 11 <4,∴ ___________ < 8-11 <__________ .[4 ,5] .由于8-11 介于 4 与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11 ] 【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题 3 分,共15 分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴ x22xy y2=(x y)2=|x-y| =y-x.x22xy y2=(x y)2=| x+y| =-x-y.【答案】C.【点评】本题考查二次根式的性质a2=|a| .1 2 1 2 1 2 1 218、【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- < 0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0< x<1时,x-1< 0.x19、【提示】 a =a a =a · a =| a| a =- a a .【答案】C.20、【提示】∵ a<0,b<0,∴ -a>0,-b>0.并且-a=( a)2,-b=( b)2,ab=( a)( b).【答案】C.【点评】本题考查逆向运用公式( a)2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0时,a 、b 都没有意义.(四)计算题:(每小题 6 分,共24分)21、【提示】将5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( 5 3)-( 2)=5-2 15 +3-2=6-2 15 .22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 11)-4( 11 7)-2(3 7)=4+11-11-7-3+7=1.16 11 11 7 9723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.解】原式=( a 2 n - ab m m 1n b 21 2a 2b 2 m 1 2 - + b 2 ab 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式= a ab b ab ÷ a a( a b) b b( a b) (a b)(a b) a a 2b 2 ab ab ab ab b ab( a b)( a b) a 2 a ab b ab b 2 a 2 b 2ab( a b)( a b) ab( a b)( a b) =- aab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值: (每小题 7分,共 14 分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x = 3 2 = ( 3 2) 32 2 = 5+ 2 6 , y = 3 2 = ( 3 2)2 =5-2 6 . 32 ∴ x +y =10,x -y =4 6,xy =52-(2 6 )2=1. x 3 xy 2 = x(x y)(x y) = x y x 2 y 3 x 2 y(x y)2 xy(x y) 化简后,根据解题的需要,先分别求出“ 4 3 2 x y 2x y 【点评】本题将 x 、 y 过程更简捷. 4 6 =1 10x +y ”、26 . 5x -y ”、“xy ”.从而使求值的26、【提示】注意: 22x +a = x 2+a 2-x x 2 ( x 2 a 2 )2, a 2 =x 2 22a x 2 x 2 a 2(2xx2 2 2 2x a ( x aa 2) x( xx 2a 2 (x 2 a 2 -x ),x 2- x x -2x x 2a 2+1x) x( x 2 a 2 x)x 2 a 22a 2x)=- x ( x 2a 2- x ).a 2 ( x x 22x x 2 a 2 ( x 2 a 2 )2x x2 a 2( x 2 a 2x x 21.当 x x =1- 2 时,原式= 2a 2x)x x 2a 2x 2=(x 2 a 2)2 x x 2 a 2 =x 2 a 2( x 2a 2 x) x) xx 2a 2(x 2a 2x) x x 2a 2( x 2a 2x)1=- 1 - 2 .【点评】本题如果将前两个“分式”分拆成两个“分12式”之差, 那么化简会更简便.即原式=11 =( ) 2 2 2 2 x a x x ax 2- ( 122xax a 2 ( x 2 a 2 x) 1)+1 = 1 xx 2 a 2x2x x 2 a2+ 1 x( x 2 a 2 x)x a六、解答题: (每小题 8分,共 16 分)27、 提示】先将每个部分分母有理化后,再计算. 2 1 3 2 4 3解】原式=( 2 5 + 1) 21 [ ( 2 100 + + +⋯+ 3 2 4 3 1 )+( 3 2 )+ 1) 100 99 ) 100 994 3 )+⋯+( 100 99 ) ]=(2 5 +1) =(2 5 +1) =9(2 5 +1). 【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为 整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 28、 提示】要使 y 有意义,必须满足什么条件? 1 4x 4x 0] 你能求出 x , 0. y 的值吗? 141.]2. 1 4x解】要使 y 有意义,必须 [4x 1 ,即14∴1.4.(x y )2( yx )1 y =2 x = 1 .当 4 x = 1 时, 41 y = 2(y y x|∵ x = 2 y 原式= 2 114 = 2 .【点评】解本题的关键是利用二次根式的意义求出 又∵ x2 yyx-xyy x |-|x原式= x y - yxxyyxy )2-x) -1x = 4y当xx<y .yx y = 1时,212x 的值,进而求出 y 的值.。
二次根式的化简练习题(带答案)

二次根式的化简题集一、二次根式的性质1.若、为实数,且满足,则的值为.【答案】【解析】∵,∴,,∴.【标注】【知识点】非负性的应用2.,那么.【答案】【解析】∵原式,∴,,,∴.【标注】【知识点】二次根式的性质3.若,则的值为.【答案】【解析】,,,,,.故答案为:.【标注】【知识点】二次根式的性质4.已知,则.【答案】【解析】,由二次根式的非负性可知,,∴,,∴.【标注】【知识点】利用二次根式非负性化简求值5.已知,求值.【答案】.【解析】∵;.∴;.∴.∴原式.【标注】【知识点】二次根式的性质6.代数式的最大值为,此时与的关系是.【答案】 ;【解析】∵,∴.当时,取得最大值.【标注】【知识点】算术平方根的双重非负性7.已知,则的值为.【答案】【解析】,.,,,,,,.故答案为:.【标注】【知识点】二次根式的性质8.已知实数,满足:,则.【答案】【解析】∵,∴,∴.【标注】【知识点】二次根式的性质9.已知实数满足,求的值.【答案】【解析】由,可得,∵,∴,∴,∴,∴,可得:,解得:.【标注】【知识点】利用二次根式非负性化简求值二、二次根式的化简A. B. C. D.1.若,则满足的条件是().【答案】D【解析】∵,∴,∴.【标注】【知识点】二次根式的性质2.若时,试化简.【答案】.【解析】∵;;.∴原式.【标注】【知识点】二次根式的性质A. B. C. D.3.已知,化简二次根式的正确结果是().【答案】A【解析】根据题意,,得和同号,又∵中,∴,∴,,则原式.故选:.【标注】【知识点】把根号外的因式化到根号内4.已知是整数,则正整数的最小值为 .【答案】【解析】∵,若是整数,则也是整数;∴的最小正整数值是.故答案为:.【标注】【知识点】已知二次根式的值为整数确定字母的取值范围5.已知是整数,则满足条件的最小正整数是 .【答案】【解析】,∵是正整数,∴的最小值应为,此时.【标注】【知识点】已知二次根式的值为整数确定字母的取值范围(1)(2)6.不改变根式的值,把根号外的因式移到根号内.. .【答案】(1)(2)【解析】(1)(2).故答案为:.由可知,∴.故答案为:.【标注】【知识点】把根号外的因式化到根号内7.先化简再求值:当时,求的值,甲乙两人的解析如下:甲的解析为:原式乙的解析为:原式.两种解析中,的解析是错误的,错误的原因是未能正确地运用二次根式的性质:.【答案】甲 ;【解析】甲的解析是错误的.理由:∵时,,∴原式,,,,.【标注】【知识点】二次根式的性质8.将下列式子分母有理化:①.②(a>0).③.④.【答案】见解析.【解析】①.②.③.④.【标注】【知识点】分母、分子有理化9.化简.【答案】【解析】∵,∴.故答案为:.【标注】【知识点】多重二次根式10.化简:.【答案】.【解析】令,∴∵,∴,∴.故答案为:.【标注】【知识点】多重二次根式三、化简求值1.已知:,,求的值.【答案】.【解析】∵,,∴,,,∴,∴.【标注】【知识点】二次根式直接化简求值2.已知:,,求代数式的值.【答案】.【解析】,,∴,,∴,即代数式的值为.【标注】【知识点】二次根式的化简求值——共轭二次根式类。
初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。
A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。
【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
(完整版)二次根式化简练习题含答案,推荐文档

(-2)2 ab ab 3 3 (x -1)2 ab a 3b 9 + x 2 x - 32512a 3a 2 -1 x 2 - 2x+1 24 32 2 y -3 11 x 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 +4 x (x + 1 )2- 4 x- a 3- a - a a ab a a - a - a •二次根式化简练习题含答案(培优)(一)判断题:(每小题 1 分,共 5 分)1. =-2 .…………………( )2. -2 的倒数是 +2.() 3. = ( x -1)2.…()4. 、1 、 - 31是同类二次根式.…( )5 , 都不是最简二次根式.( ) 3(二)填空题:(每小题 2 分,共 20 分)16. 当 x时,式子有意义.15 7. 化简- 8÷ = . 8. a -的有理化因式是.9.当 1<x <4 时,|x -4|+ = .10.方程 (x -1)=x +1 的解是 .ab - c 2d 211.已知 a 、b 、c 为正数,d =.1112.13.化简:(7-5 )2000·(-7-5 )2001=.14. 若 x +1 + =0,则(x -1)2+(y +3)2= .15. x ,y 分别为 8-的整数部分和小数部分,则2xy -y 2= .(三)选择题:(每小题 3 分,共 15 分)16.已知 =-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若 x <y <0,则 + =………………………()(A )2x (B )2y (C )-2x (D )-2y18.若 0<x <1,则 -等于………………………()2 2(A )(B )-(C )-2x(D )2xx x19.化简 a( a <0 ) 得………………………………………………………………()(A ) (B )- (C )- (D ) 20.当 a <0,b <0 时,-a +2 -b 可变形为………………………………………( )(A ) ( + b )2(B ) - (- b )2(C ) (+ - b )2(D ) (- - b )22 ax b 2 10 27 a5325324 - 11 11 -7aa ab -a3 + 2 3 - 2 3 - 2 3 + 223 +7mnab(四)计算题:(每小题6 分,共24 分)21.(-+)(--);22.5-4-2;ab n2 2n23.(a-+m ma b ;m24.(+a)÷(b a +b+-)(a≠b).(五)求值:(每小题7 分,共14 分)x3 -xy225.已知x=,y=,求x4 y + 2x3 y2 +x2 y3的值.x 2x -x2 +a2 1 26.当x=1-六、解答题:(每小题8 分,共16 分)b ab +b5 (-2)2 3 (x -1)2 a 3b 9 + x 2 x a a 2 -1 a 2 -1 a 2 -1 2 c 2d 2ab ab ab 7 28 3 48 28 48 2 2 2 2 2 2 x - 2 + yy x2 111127.计算(2 +1).28.若 x ,y 为实数,且 y = 1- 4x + 4x -1 + 1.求2 - 的值.(一)判断题:(每小题 1 分,共 5 分) 1、【提示】 =|-2|=2.【答案】×. 1 2、【提示】=3 + 2 =-(+2).【答案】×. 3 - 43、【提示】 =|x -1|, ( 数.【答案】×. x -1)2 =x -1(x ≥1).两式相等,必须 x ≥1.但等式左边 x 可取任何4、【提示】1 、- 3化成最简二次根式后再判断.【答案】√. 5、 是最简二次根式.【答案】×.(二)填空题:(每小题 2 分,共 20 分) 6、【提示】 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0 且 x ≠9. 7、【答案】-2a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a - )( )=a 2- ( a 2 -1)2 .a + .【答案】a + . 9、【提示】x 2-2x +1=( )2,x -1.当 1<x <4 时,x -4,x -1 是正数还是负数?x -4 是负数,x -1 是正数.【答案】3. 10、【提示】把方程整理成 ax =b 的形式后,a 、b 分别是多少? 11、【提示】 =|cd |=-cd .-1, +1.【答案】x =3+2 . 【答案】 +cd .【点评】∵ ab = ( ab )2 (ab >0),∴ ab -c 2d 2=( + cd ) ( - cd ).12、【提示】2 = ,4 = .1 1 1 【答案】<.【点评】先比较 ,113、【提示】(-7-5 )2001=(-7-5 )2000·()[-7-5 .](7-5 )·(-7-5 )=?[1.]【答案】-7-5 .x + 2 + y y x 3 - 22a x b2y - 3 y - 3 11 11 11 11 x 2 - 2xy + y 2 (x - y )2 (x + y )2 a 2- a 3 - a ⋅ a 2 - a a 2- a - a ab (-a )(-b ) a b 3 15 15 11 11 7 7 n ⋅ m m n a + ab + b - ab a + b 5 5 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】 x +1 ≥0, ≥0. 当 x +1 + =0 时,x +1=0,y -3=0. 15、【提示】∵ 3< <4,∴<8- <.[4,5].由于 8- 介于 4 与 5之间,则其整数部分 x =?小数部分 y =?[x =4,y =4- ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题 3 分,共 15 分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴= =|x -y |=y -x .= =|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质 =|a |.18、【提示】(x - 1 )2+4=(x + 1 )2,(x + 1 )2-4=(x - 1)2.又∵ 0<x <1,x x x x1 1 ∴ x + >0,x - <0.【答案】D .xx【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当 0<x <1 1 时 ,x - <0.x19、【提示】 = = · =|a | =-a .【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a = ( - a )2 ,-b =( - b )2 , = . 【答案】C .【点评】本题考查逆向运用公式( a )2 =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为 a <0,b <0 时, 、 都没有意义.(四)计算题:(每小题 6 分,共 24 分)21、【提示】将 - 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( - )2- ( 2)2 =5-2 +3-2=6-2 . 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 + 11) - 4( 11 + 7 ) - 2(3 - 7 ) =4+ - - -3+ =1. 16 -1111- 79 - 723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2ab n - m m 1 )· a 2b 2 = 1- 1 mn ⋅ m + n b 2 mab n ma 2b 2 11 1 a2 - ab +1=-+ = .b 2aba 2b 2a 2b224、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式= ÷3 m n m nm ⋅m n nx 2 + 2xy + y 2 a a ( a - b ) - b b ( a + b ) - (a + b )(a - b )ab ( a + b )( a - b )a b3 63 - 23 + 23 664 6x2 +a2x2 +a2x2 +a2x2 +a2x2 +a222xx2 +a2 ( x2 +a2 -x)2x -x2 +a2x( x2 +a2 -x) x2 +a253 3 99555ab ( a - b )( a + b )-ab (a +b)4 100= a =a +b=a +ba +b=·=-+.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7 分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.2【解】∵x( +2) =5+2 ,y==( -2)2 =5-2 .∴ x+y=10,x-y=4 6 ,xy=52-(2 )2=1.x3 -xy 2 x(x +y)(x -y) x -y 2=x 4 y + 2x3 y 2 +x 2 y 3x2 y(x +y)2=== 6 .xy(x +y) 1⨯10 5【点评】本题将x、y 化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=( x2+a2 )2,∴ x2+a2-x =(-x),x2-x =-x(-x).x 1=x 2 - 2x x 2 +a 2 + ( x 2 +a 2 )2 +x x 2 +a 2 -x 2 ( x2 +a2 )2 -x x2 +2x x 2 +a 2 (1x 2 +a 2 -x)1x x2 +a2 ( x2 +a2 -x)=.当x=1-1-.【点评】本题如果将前两个“分式”分拆成两个“分x式”之差,那么化简会更简便.即原式=-+1=( 1 1 --1 ) 1 1 .六、解答题:(每小题8 分,共16 分)x x27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 +1)( 2 -1 + 3 - 2 + 4 - 3 +…+100 - 99 )2 -1 3- 2 4 -3 100 - 99=(2 +1)[(=(2 +1)(=9(2 +1).2 -1)+(--1 ))+(-)+…+(-)]【点评】本题第二个括号内有99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.a +bx2 +a2 ( x2 +a2 -x)x x2 +a2 ( x2 +a2 -x)2100x yy xy x y x x y xy⎧x = 128、【提示】要使 y 有意义,必须满足什么条件?⎧[1⎨- 4x ≥ 0 ] 你能求出 x ,y 的值吗?[⎨ 4 ]⎩4x -1 ≥0. ⎧ 1⎪ y = 1 . ⎩ 2 x ≤ ⎧1 - 4x ≥ 0 4 1 1 1 【解】要使 y 有意义,必须[⎨⎩4x - 1 ≥ 0 , 即⎨⎪ 1 x ≥ .∴ x = 4.当 x = 时4 ,y = .2又∵=| + - |-| =- |∵ ⎩ 4 -x = 1 ,y = 1 ,∴x y< . 42 yx∴ 原式= - =2 当 x 1 y 1 + + = , = 时 , 421 原式=2 4 =1 2.【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出 y 的值.x y 2 ( y )2 y x x + x + 2 + y y x x - 2 + y y x ( y )2y x x - y xx y“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
初中数学二次根式化简求值专项训练含答案

初中数学二次根式化简求值专项训练含答案初中数学二次根式化简求值专项训练含答案姓名:__________班级:__________考号:__________一、解答题(共20题)1、先化简,再求值:,其中.2、先化简,再求值:其中.3、三边分别为a、b、c,化简4、先化简,再求值:2(a-)(a+)-a(a-6)+6,其中a=-1.5、2、先化简再求值:,其中。
6、已知,求的值7、先化简:,其中。
8、先化简,再求值:,其中9、先化简,再求值:,其中,.10、先化简,再求值:,其中.11、已知:,,求的值.12、先化简,再求值:,其中.13、已知,求的值.14、先化简,再求值()·(),其中15、当,求代数式的值.16、先化简,再求值:,其中17、先化简再求值:,其中18、化简:,并求当时的值.19、先化简,再求值:+6-2x将你喜欢的x值代入求值。
20、先化简,再求值:,其中x=+2.============参考答案============一、解答题1、2、3、4、原式=2(a2-3)-(a2-6a)+6=2a2-6-a2+6a+6=a2+6a当a=-1时,原式=(-1)2+6(-1)=3-2+6-6=4-3.5、解:原式当时,上式6、解:由已知得:且<7、先化简:,其中原式=2分代入,得?1分8、解:原式==当时,原式9、解:原式当,时,原式10、解:原式=?=?=. 当时,原式=?=?=.11、解:原式= =.当,时,原式=.12、解:原式=?…………………4分.…………………8分13、??(求出m、n的值各得1分)14、解:原式=…………………………………………………………3分=………………………………………………………………………6分当时,原式=.15、解:∵∴=116、17、解:原式=(-×=×=-??=-=-?18、解:原式=?=+=)=.当时,原式=.19、原式=320、解:原式=………………………1分=…………………………4分=-…………………………5分将x=+2代入,原式==--1.…………7分…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………。
专题训练。二次根式化简求值有技巧(含答案)

专题训练。
二次根式化简求值有技巧(含答案)专题训练(一):二次根式化简求值有技巧(含答案)类型之一:利用二次根式的性质a^2=|a|化简对于a^2的化简,不要盲目地写成a,而应先写成绝对值的形式,即|a|,然后再根据a^2的符号进行化简。
即a=|a|=(a>0)时,a;(a<0)时,-a。
1.已知a=2-3,则a^2-2a+1=()A。
1-3 B。
3-1 C。
3-3 D。
3+3解析:a^2-2a+1=(2-3)^2-2(2-3)+1=3-4+1=0,故选D。
2.当a<0且a≠0时,化简:(22a^2-a)÷(a^2-4a+3)=________。
解析:22a^2-a=a(22a-1),a^2-4a+3=(a-1)(a-3),所以原式=-(22a-1)÷(a-1)=-2a+3,答案为3-2a。
3.当a<-8时,化简:|(a+4)^2-4|。
解析:(a+4)^2-4=(a+2)(a+6),所以原式=|a+6|-2,当a<-8时,a+6<0,所以原式=-a-4.4.已知三角形的两边长分别为3和5,第三边长为c,化简:c^2-4c+4.解析:根据勾股定理,c^2=3^2+5^2=34,所以c^2-4c+4=(c-2)^2=32.类型之二:逆用二次根式乘除法法则化简5.当ab<0时,化简a^2b的结果是()A。
-ab B。
a-b C。
-a-b D。
ab解析:当ab<0时,a和b的符号不同,所以a^2b的符号为负数,即-a^2b。
6.化简:(1) (-5)^2×(-3)^2;(2) (-16)×(-49);(3) (-25)÷9a^3.解析:(1) (-5)^2×(-3)^2=225;(2) (-16)×(-49)=784;(3) (-25)÷9a^3=-25÷(3a)^3=-25/27a^3.类型之三:利用隐含条件求值7.已知实数a满足(2016-a)^2+a-2017=a,求a的值。
(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。
二次根式化简练习题含答案

20. . . 下载可编辑二次根式化简练习题含答案(培优)一)判断题: (每小题 1 分,共 5分)( 2)2ab =- 2 ab .⋯⋯⋯⋯⋯3 -2 的倒数是 3 + 2.( )(x 1) = ( x 1) .⋯( )132 aa 3b 、 是同类二次根式.⋯(3 x b1, 9 x 2 都不是最简二次根式. (3每小题 2 分,共 20 分) 1______ 时,式子 1 有意义.x31.2. 3.4. 5. ab 、8x ,二)填空题: 6.当x 10 25化简-15 2 ÷a - a 21的有理化因式是 当 1<x <4时, |x -4|+ x 22x 1=10.方程 2(x -1)=x +1的解是 _______ 7.8. 9.27 12a 3ab c 2d 211.已知 a 、b 、c 为正数, d 为负数,化简ab c 2d 212.比较大小:- 1 ____________ - 1 .2 7 4 313.化简: (7-5 2 ) 2000· ( -7- 5 2 ) 2001= ___ 14.若 x 1+ y 3=0,则(x -1) 2+( y +3) 2=15.x ,y 分别为 8- 11 的整数部分和小数部分,则 三)选择题: (每小题 3 分,共 15 分)16.已知 x 3 3x (A )x ≤02=- x x 3 ,则⋯⋯⋯⋯⋯⋯B )x ≤- 3 (C )x ≥- 317.若 x < y < 0,(A )2x18.若 0< x < 1,19.A )化简2 2xy - y=)D )- 3≤x ≤0 x 22xy y 2+ x 22xy y 2=⋯⋯B )2y(C )-2x(D )- 2y12(x )24 等于⋯⋯⋯x(xxB )- 2 x( a < 0) 得A )当 a < 0 , b < 0 时,- a + 24-C) - 2xD )2xB )- a( C )- a ab- b 可变形为⋯⋯⋯D ) aA )( a b )2 (B )- ( a b )2(C )( a b )2 (D ) (a b )2四)计算题: (每小题 6 分,共 24分)21.( 5 3 2 )( 5 3 2 );22.五)求值: (每小题 7分,共 14 分)3724.( a +b ababa+bab b ab aa b)(a ≠ b ). ab25.已知 x =y =32 32,求xy32x xy 3 2 2 32x y x y的值.26.当 x =1- 2 时,求2x x 2a 2+1 2 2 2 2 2x x x a x a的值.2x六、解答题: (每小题 8分,共 16 分)27.计算( 2 5 +1)( 1 + 1 + 1 +⋯+ 1 ).1 2 2 3 3 4 99 100(一)判断题: (每小题 1 分,共 5分)1、【提示】 ( 2) =| - 2| = 2.【答案】×.2、【提示】 1 = 3 2 =-( 3 + 2).【答案】×.3 2 3 43、【提示】 (x 1)2 =|x -1|,( x 1) 2 =x - 1( x ≥ 1).两式相等,必须 x ≥1.但等式左边 x 可取任何数.【答案】×.132 a4、【提示】 1 a 3b 、化成最简二次根式后再判断. 【答案】√.3 x b5、9 x 2是最简二次根式. 【答案】×.(二)填空题: (每小题 2 分,共 20分)6、【提示】 x 何时有意义? x ≥0.分式何时有意义?分母不等于零. 【答案】 x ≥0且 x ≠9.7、【答案】- 2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】( a - a 21 )( ______ )= a 2- ( a 21)2.a +a 21 .【答案】 a +a 21.9、【提示】 x 2-2x +1=( )2,x -1.当 1<x <4时,x -4,x -1 是正数还是负数?x - 4是负数, x -1是正数.【答案】 3.10、【提示】把方程整理成 ax = b 的形式后, a 、b 分别是多少? 2 1, 2 1.【答案】 x =3+2 2 . . . 下载可编辑 . .28.若 x ,y 为实数,且1y = 1 4x + 4x 1 +2xy2y的值.x11、【提示】c2d2=|cd|=-cd.【答案】ab +cd.【点评】∵ ab=( ab)2(ab>0),∴ ab-c2d2=(ab cd )(ab cd ).12、【提示】 2 7=28 ,4 3=48 .1 1 1【答案】<.【点评】先比较28,48 的大小,再比较1,1的大小,最后比较-1与28 48 28 1-的大小.4813、【提示】(-7-5 2 )2001=(-7-5 2 )2000·(______ )[ -7-5 2.](7-5 2)·(-7-5 2 )=?[1 .] 【答案】-7-5 2.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】x 1≥0,y 3≥0.当x 1+y 3=0 时,x+1=0,y-3=0.15、【提示】∵ 3< 11 <4,∴ ___________ < 8-11 <__________ .[4 ,5] .由于8-11 介于 4 与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11 ] 【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题 3 分,共15 分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴ x22xy y2=(x y)2=|x-y| =y-x.x22xy y2=(x y)2=| x+y| =-x-y.【答案】C.【点评】本题考查二次根式的性质a2=|a| .1 2 1 2 1 2 1 218、【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- < 0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0< x<1时,x-1< 0.x19、【提示】 a =a a =a · a =| a| a =- a a .【答案】C.20、【提示】∵ a<0,b<0,∴ -a>0,-b>0.并且-a=( a)2,-b=( b)2,ab=( a)( b).【答案】C.【点评】本题考查逆向运用公式( a)2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0时,a 、b 都没有意义.(四)计算题:(每小题 6 分,共24分)21、【提示】将5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( 5 3)-( 2)=5-2 15 +3-2=6-2 15 .22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 11)-4( 11 7)-2(3 7)=4+11-11-7-3+7=1.16 11 11 7 9723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.解】原式=( a 2 n - ab m m 1n b 21 2a 2b 2 m 1 2 - + b 2 ab 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式= a ab b ab ÷ a a( a b) b b( a b) (a b)(a b) a a 2b 2 ab ab ab ab b ab( a b)( a b) a 2 a ab b ab b 2 a 2 b 2ab( a b)( a b) ab( a b)( a b) =- aab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值: (每小题 7分,共 14 分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x = 3 2 = ( 3 2) 32 2 = 5+ 2 6 , y = 3 2 = ( 3 2)2 =5-2 6 . 32 ∴ x +y =10,x -y =4 6,xy =52-(2 6 )2=1. x 3 xy 2 = x(x y)(x y) = x y x 2 y 3 x 2 y(x y)2 xy(x y) 化简后,根据解题的需要,先分别求出“ 4 3 2 x y 2x y 【点评】本题将 x 、 y 过程更简捷. 4 6 =1 10x +y ”、26 . 5x -y ”、“xy ”.从而使求值的26、【提示】注意: 22x +a = x 2+a 2-x x 2 ( x 2 a 2 )2, a 2 =x 2 22a x 2 x 2 a 2(2xx2 2 2 2x a ( x aa 2) x( xx 2a 2 (x 2 a 2 -x ),x 2- x x -2x x 2a 2+1x) x( x 2 a 2 x)x 2 a 22a 2x)=- x ( x 2a 2- x ).a 2 ( x x 22x x 2 a 2 ( x 2 a 2 )2x x2 a 2( x 2 a 2x x 21.当 x x =1- 2 时,原式= 2a 2x)x x 2a 2x 2=(x 2 a 2)2 x x 2 a 2 =x 2 a 2( x 2a 2 x) x) xx 2a 2(x 2a 2x) x x 2a 2( x 2a 2x)1=- 1 - 2 .【点评】本题如果将前两个“分式”分拆成两个“分12式”之差, 那么化简会更简便.即原式=11 =( ) 2 2 2 2 x a x x ax 2- ( 122xax a 2 ( x 2 a 2 x) 1)+1 = 1 xx 2 a 2x2x x 2 a2+ 1 x( x 2 a 2 x)x a六、解答题: (每小题 8分,共 16 分)27、 提示】先将每个部分分母有理化后,再计算. 2 1 3 2 4 3解】原式=( 2 5 + 1) 21 [ ( 2 100 + + +⋯+ 3 2 4 3 1 )+( 3 2 )+ 1) 100 99 ) 100 994 3 )+⋯+( 100 99 ) ]=(2 5 +1) =(2 5 +1) =9(2 5 +1). 【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为 整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 28、 提示】要使 y 有意义,必须满足什么条件? 1 4x 4x 0] 你能求出 x , 0. y 的值吗? 141.]2. 1 4x解】要使 y 有意义,必须 [4x 1 ,即14∴1.4.(x y )2( yx )1 y =2 x = 1 .当 4 x = 1 时, 41 y = 2(y y x|∵ x = 2 y 原式= 2 114 = 2 .【点评】解本题的关键是利用二次根式的意义求出 又∵ x2 yyx-xyy x |-|x原式= x y - yxxyyxy )2-x) -1x = 4y当xx<y .yx y = 1时,212x 的值,进而求出 y 的值.。
八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
初中数学《二次根式的化简求值》专项练习(含答案)

二次根式的化简求值一 、解答题(本大题共12小题)1.已知1x =,求2211()21x x x x x x x+-÷--+的值.2.已知a b ==的值.3.已知13a =- ,12b =4.先化简,再求值222x y xy x y x y x y +++--,其中x =-y =. 5.2011+6.先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =. 7.先化简,再求值:2221412211m m m m m m --⋅÷+-+-,其中m =.8.已知x =,y =2y x x y ++的值.9.32x x +=+,求35(2)242x x x x -÷----10.已知12a =,12b =,求代数式225a ab b -+的值.11.已知x =,y =求代数式22353x xy y -+的值.12.已知a 、b 、c 0,ab a c ab==,a c -二次根式的化简求值答案解析一 、解答题1.原式=21[](1)(1)x x x x x x +-⋅--222(1)(1))1[](1)(1)x x x x x x x +---=⋅=--,当1x =时,原式12=-. 2.原式=2b a b=-,当a b ==时,原式6=-=-.3.由题可知,0b a ->,∴原式13a =- ,12b =时, 原式=115231622+==⨯.4.原式222()()22()()()()()()()()()()()x x y y x y xy x xy y xy xy x y x y x y x y x y x y x y x y x y x y x y x y x y -+-+++++=++===+-+-+-+-+--.当x =-y =时,原式15==. 5.原式=2[1)(20122(12⨯---=-⨯-=-6.原式222441444xx x x x =+++---23x =- .当x =时 ,原式227153344=-=-=⎝⎭ .7.2221412211m m m m m m --⋅÷+-+-21(2)(2)(1)(1)(1)(2)2(1)m m m m m m m m m --+=⋅⋅-+=+-+-22m m =--,当m =时,原式21-=8.当分母中含有根号时,要先化简再求值.x =231)+=,y =231)=-,∴2y x x y++222(3336===+-=.9.原式12(3)x =-+ 32x x +=+,213x x +∴=+,即1113x -=+13x ∴-=+; ∴原式=.10.12a =,12b =,a b ∴+,11(75)42ab =⨯-=,∴原式=2()7a b ab +-,将a b +=11(75)42ab =⨯-=,∴原式17777222-⨯=-=.11.先将x ,y 化简,多项式可用x+y 及xy 的形式表示,为此求出x+y ,xy ,最后整体代值计算.353x -==-+,5y ==+10x y ∴+=,1xy =222223533()53()11x xy y x y xy x y xy -+=+-=+-将x+y =10,xy =1代入,得原式2310111289=⨯-⨯=.12.20,,0a a a a +=-∴≤;又1,,ab ab ab ab=∴=且0,0a b ≤∴≤;又,0c c =∴≥. 0;0;0a b a c c b ∴+≤-≤-≥.-∴a c=-++----=-++-+-+=.b a b ac c b b a b a c c b b()()。
二次根式化简练习题含答案

二次根式化简练习题含答案二次根式化简练题含答案(培优)一)判断题:(每小题1分,共5分)1.(−2)2ab=-2ab.(正确)2.3-2的倒数是3+2.(错误)3.(x-1)2=(x-1).(错误)4.ab、xb、1/3a3b、-2a/xb是同类二次根式.(正确)5.8x、1/9+ x2都不是最简二次根式.(正确)二)填空题:(每小题2分,共20分)6.当x=0时,式子1/(x-3)有意义.7.化简-15/8÷1025/2712a3= -3a3/205.8.a-a2-1的有理化因式是a/(a+1).9.当1<x<4时,|x-4|+x2-2x+1= (x-3)2.10.方程2(x-1)=x+1的解是x=3.11.已知a、b、c为正数,d为负数,化简(ab-c2d2)/(ab+cd2)2= (ab-cd2)/(ab+cd2)2.12.比较大小:-1/27-1/43<0<-1/27+1/43.13.化简:(7-5√2)2000·(-7-5√2)2001= 1/5.14.若x+1+y-3=0,则(x-1)2+(y+3)2=26.15.x,y分别为8-11的整数部分和小数部分,则2xy-y2=-0.15.三)选择题:(每小题3分,共15分)16.已知x3+3x2=-xx+3,则x≤-3.17.若x<y<√2,则x-2xy+y+x+2xy+y=2y.18.若0<x<1,则(x-√2)2+4-(x+√2)2-4=-2x.19.化简a/(a3-b3)=-1/b.20.当a<1/2,b<1/2时,-a+2ab-b可变形为-(a-b)2.四)计算题:(每小题6分,共24分)21.(5-3+2)(5-3-2)=0.22.5/(4-11)-24/(11-7)=-1/3.23.(a2-1)/(a-1)+(a-1)/(a2-1)=2a/(a-1).24.(a+5)/(4-11)-(11-7)/(24-7)=-a/3b.第一段没有明显的格式错误,但需要改写:给定一个分式 $\frac{m^2n}{a^2b^2}$,将其化简得到$\frac{n}{a+b} \cdot \frac{m}{a-b}$(当 $a \neq b$ 时)或者$\frac{2m}{a+b}$(当 $a=b$ 时)。
二次根式化简练习题含答案

20. . . 下载可编辑二次根式化简练习题含答案(培优)一)判断题: (每小题 1 分,共 5分)( 2)2ab =- 2 ab .⋯⋯⋯⋯⋯3 -2 的倒数是 3 + 2.( )(x 1) = ( x 1) .⋯( )132 aa 3b 、 是同类二次根式.⋯(3 x b1, 9 x 2 都不是最简二次根式. (3每小题 2 分,共 20 分) 1______ 时,式子 1 有意义.x31.2. 3.4. 5. ab 、8x ,二)填空题: 6.当x 10 25化简-15 2 ÷a - a 21的有理化因式是 当 1<x <4时, |x -4|+ x 22x 1=10.方程 2(x -1)=x +1的解是 _______ 7.8. 9.27 12a 3ab c 2d 211.已知 a 、b 、c 为正数, d 为负数,化简ab c 2d 212.比较大小:- 1 ____________ - 1 .2 7 4 313.化简: (7-5 2 ) 2000· ( -7- 5 2 ) 2001= ___ 14.若 x 1+ y 3=0,则(x -1) 2+( y +3) 2=15.x ,y 分别为 8- 11 的整数部分和小数部分,则 三)选择题: (每小题 3 分,共 15 分)16.已知 x 3 3x (A )x ≤02=- x x 3 ,则⋯⋯⋯⋯⋯⋯B )x ≤- 3 (C )x ≥- 317.若 x < y < 0,(A )2x18.若 0< x < 1,19.A )化简2 2xy - y=)D )- 3≤x ≤0 x 22xy y 2+ x 22xy y 2=⋯⋯B )2y(C )-2x(D )- 2y12(x )24 等于⋯⋯⋯x(xxB )- 2 x( a < 0) 得A )当 a < 0 , b < 0 时,- a + 24-C) - 2xD )2xB )- a( C )- a ab- b 可变形为⋯⋯⋯D ) aA )( a b )2 (B )- ( a b )2(C )( a b )2 (D ) (a b )2四)计算题: (每小题 6 分,共 24分)21.( 5 3 2 )( 5 3 2 );22.五)求值: (每小题 7分,共 14 分)3724.( a +b ababa+bab b ab aa b)(a ≠ b ). ab25.已知 x =y =32 32,求xy32x xy 3 2 2 32x y x y的值.26.当 x =1- 2 时,求2x x 2a 2+1 2 2 2 2 2x x x a x a的值.2x六、解答题: (每小题 8分,共 16 分)27.计算( 2 5 +1)( 1 + 1 + 1 +⋯+ 1 ).1 2 2 3 3 4 99 100(一)判断题: (每小题 1 分,共 5分)1、【提示】 ( 2) =| - 2| = 2.【答案】×.2、【提示】 1 = 3 2 =-( 3 + 2).【答案】×.3 2 3 43、【提示】 (x 1)2 =|x -1|,( x 1) 2 =x - 1( x ≥ 1).两式相等,必须 x ≥1.但等式左边 x 可取任何数.【答案】×.132 a4、【提示】 1 a 3b 、化成最简二次根式后再判断. 【答案】√.3 x b5、9 x 2是最简二次根式. 【答案】×.(二)填空题: (每小题 2 分,共 20分)6、【提示】 x 何时有意义? x ≥0.分式何时有意义?分母不等于零. 【答案】 x ≥0且 x ≠9.7、【答案】- 2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】( a - a 21 )( ______ )= a 2- ( a 21)2.a +a 21 .【答案】 a +a 21.9、【提示】 x 2-2x +1=( )2,x -1.当 1<x <4时,x -4,x -1 是正数还是负数?x - 4是负数, x -1是正数.【答案】 3.10、【提示】把方程整理成 ax = b 的形式后, a 、b 分别是多少? 2 1, 2 1.【答案】 x =3+2 2 . . . 下载可编辑 . .28.若 x ,y 为实数,且1y = 1 4x + 4x 1 +2xy2y的值.x11、【提示】c2d2=|cd|=-cd.【答案】ab +cd.【点评】∵ ab=( ab)2(ab>0),∴ ab-c2d2=(ab cd )(ab cd ).12、【提示】 2 7=28 ,4 3=48 .1 1 1【答案】<.【点评】先比较28,48 的大小,再比较1,1的大小,最后比较-1与28 48 28 1-的大小.4813、【提示】(-7-5 2 )2001=(-7-5 2 )2000·(______ )[ -7-5 2.](7-5 2)·(-7-5 2 )=?[1 .] 【答案】-7-5 2.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】x 1≥0,y 3≥0.当x 1+y 3=0 时,x+1=0,y-3=0.15、【提示】∵ 3< 11 <4,∴ ___________ < 8-11 <__________ .[4 ,5] .由于8-11 介于 4 与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11 ] 【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题 3 分,共15 分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴ x22xy y2=(x y)2=|x-y| =y-x.x22xy y2=(x y)2=| x+y| =-x-y.【答案】C.【点评】本题考查二次根式的性质a2=|a| .1 2 1 2 1 2 1 218、【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- < 0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0< x<1时,x-1< 0.x19、【提示】 a =a a =a · a =| a| a =- a a .【答案】C.20、【提示】∵ a<0,b<0,∴ -a>0,-b>0.并且-a=( a)2,-b=( b)2,ab=( a)( b).【答案】C.【点评】本题考查逆向运用公式( a)2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0时,a 、b 都没有意义.(四)计算题:(每小题 6 分,共24分)21、【提示】将5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( 5 3)-( 2)=5-2 15 +3-2=6-2 15 .22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 11)-4( 11 7)-2(3 7)=4+11-11-7-3+7=1.16 11 11 7 9723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.解】原式=( a 2 n - ab m m 1n b 21 2a 2b 2 m 1 2 - + b 2 ab 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式= a ab b ab ÷ a a( a b) b b( a b) (a b)(a b) a a 2b 2 ab ab ab ab b ab( a b)( a b) a 2 a ab b ab b 2 a 2 b 2ab( a b)( a b) ab( a b)( a b) =- aab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值: (每小题 7分,共 14 分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x = 3 2 = ( 3 2) 32 2 = 5+ 2 6 , y = 3 2 = ( 3 2)2 =5-2 6 . 32 ∴ x +y =10,x -y =4 6,xy =52-(2 6 )2=1. x 3 xy 2 = x(x y)(x y) = x y x 2 y 3 x 2 y(x y)2 xy(x y) 化简后,根据解题的需要,先分别求出“ 4 3 2 x y 2x y 【点评】本题将 x 、 y 过程更简捷. 4 6 =1 10x +y ”、26 . 5x -y ”、“xy ”.从而使求值的26、【提示】注意: 22x +a = x 2+a 2-x x 2 ( x 2 a 2 )2, a 2 =x 2 22a x 2 x 2 a 2(2xx2 2 2 2x a ( x aa 2) x( xx 2a 2 (x 2 a 2 -x ),x 2- x x -2x x 2a 2+1x) x( x 2 a 2 x)x 2 a 22a 2x)=- x ( x 2a 2- x ).a 2 ( x x 22x x 2 a 2 ( x 2 a 2 )2x x2 a 2( x 2 a 2x x 21.当 x x =1- 2 时,原式= 2a 2x)x x 2a 2x 2=(x 2 a 2)2 x x 2 a 2 =x 2 a 2( x 2a 2 x) x) xx 2a 2(x 2a 2x) x x 2a 2( x 2a 2x)1=- 1 - 2 .【点评】本题如果将前两个“分式”分拆成两个“分12式”之差, 那么化简会更简便.即原式=11 =( ) 2 2 2 2 x a x x ax 2- ( 122xax a 2 ( x 2 a 2 x) 1)+1 = 1 xx 2 a 2x2x x 2 a2+ 1 x( x 2 a 2 x)x a六、解答题: (每小题 8分,共 16 分)27、 提示】先将每个部分分母有理化后,再计算. 2 1 3 2 4 3解】原式=( 2 5 + 1) 21 [ ( 2 100 + + +⋯+ 3 2 4 3 1 )+( 3 2 )+ 1) 100 99 ) 100 994 3 )+⋯+( 100 99 ) ]=(2 5 +1) =(2 5 +1) =9(2 5 +1). 【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为 整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 28、 提示】要使 y 有意义,必须满足什么条件? 1 4x 4x 0] 你能求出 x , 0. y 的值吗? 141.]2. 1 4x解】要使 y 有意义,必须 [4x 1 ,即14∴1.4.(x y )2( yx )1 y =2 x = 1 .当 4 x = 1 时, 41 y = 2(y y x|∵ x = 2 y 原式= 2 114 = 2 .【点评】解本题的关键是利用二次根式的意义求出 又∵ x2 yyx-xyy x |-|x原式= x y - yxxyyxy )2-x) -1x = 4y当xx<y .yx y = 1时,212x 的值,进而求出 y 的值.。
初二数学下册知识点《二次根式的化简求值150题含解析》

初二数学下册知识点《二次根式的化简求值150题含解析》一、选择题(本大题共34小题,共102.0分)1.满足的整数x的个数是( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题主要考查的二次根式的化简,将不等式的左边分子分母同乘以(),将不等式的右边分子分母同乘以(),最后对化简后的根式进行估计其整数范围,进而求出问题的解,本题解题关键是二次根式的化简以及常见根式的值.【解答】解:将不等式的左边分子分母同乘以,右边分子分母同乘以,得:,即<x<,,满足<x<的整数x只有4、5、6、7、8、9,即满足的整数x的个数有6个,故选C.2.若,,则a2b-ab2的值是( )A. 6B.C.D. 17【答案】B【解析】【分析】本题主要考查的是代数式的值,因式分解的应用,二次根式的化简求值的有关知识,由题意将给出的式子进行变形,然后代入求值即可.【解答】解:原式=ab(a-b),把,代入原式,原式===,故选B.3.已知m、n是方程x2+2x+1=0的两根,则代数式的值为()A. 9B. ±3C. 3D. 5【答案】C【解析】解:∵m、n是方程x2+2x+1=0的两根,∴m+n=-2,mn=1,∴====3.故选C.根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到m+n=-2,mn=1,再变形得,然后把m+n=-2,mn=1整体代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-,x1•x2=.也考查了二次根式的化简求值.4.化简的结果是( )A. 6x-6B. -6x+6C. -4D. 4【答案】D【解析】【分析】本题考查了因式分解-运用公式法,二次根式的化简,完全平方公式的运用等相关知识点.熟练掌握完全平方公式解本题的关键.【解答】解:∵有意义∴3x-5≥0∴3x-1>0原式==3x-1-3x+5=4故选D.5.下列计算:①;②;③;④.其中结果正确的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】本题考查了二次根式的乘法、二次根式的化简求值、平方差公式的知识点,解题关键点是熟练掌握这些运算法则.根据二次根式的性质对(1)(2)(3)进行判断;根据二次根式的乘法和平方差公式对(4)进行计算后判断.【解答】解:①,计算结果正确;②,计算结果正确;③,计算结果正确;④,计算结果正确.∴正确的个数有4个.故选D.6.已知a=2,b=-1,则代数式的值为( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的化简求值有关知识,解决本题的关键是先根据二次根式的性质对其进行化简.首先对该式进行化简,然后再代入求值即可.【解答】解:∵a=2,b=-1,∴原式====.故选C.7.若,则的值为( )A. 1B. -1C. ±1D. 以上结果均不正确【答案】A【解析】【分析】本题主要考查的是二次根式的化简求值的有关知识,由题意将式子进行变形,最后代入求值即可.【解答】原式==,把代入原式,原式====1.故选A.8.若,,则的值为( )A. B. C. D.【答案】D【解析】【分析】本题考查的根式的化简求值,掌握好化简求值的方法是解题关键.因为,所以可以先求y-x和xy的值,再整体代入求值即可.解:∵,,∴y-x=,xy=,,故选D.9.设,,用含a,b的式子表示,下列表示正确的是( )A. B. 3ab C. D.【答案】A【解析】【分析】此题主要考查二次根式的化简,直到被开方数开不尽为止.先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,∵=a,=b,∴=0.3ab=.故选A.10.若,x≥1,则( )A. ±2B.C.D.【答案】C【解析】【分析】本题主要考查了二次根式的化简求值,理解完全平方公式的结构,根据已知求得()2是解题的关键.把=两边平方求得的值,然后求得()2的值,最后开方即可.【解答】解:∵,∴,即,∴,∴,∵x≥1,∴,∴.11.若,则的值为()A. B. C. D. 或【答案】A【解析】【分析】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.先根据已知代入x2-x=1,再整体代入所求计算.【解答】解:∵∴x2-x=(x-1)x===1∴原式===.故选A.12.若a=1+,b=1-,则代数式的值为()A. 3B. ±3C. 5D. 9【答案】A【解析】【分析】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选A.13.已知x=,y=,则x2+xy+y2的值为()A. 16B. 20C. 2D. 4【答案】A【解析】解:∵x=,y=,∴x+y=2,xy=()()=4,由题可知:=x2+y2+2xy-xy,=(x+y)2-xy,=(2)2-4=16.故选:A.先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.本题考查了二次根式的化简求值,需要同学们对完全平方公式灵活运用能力.14.已知,,,则的结果是A. B. C. D.【答案】B【解析】解:∵x+y=-5,xy=3,∴x<0,y<0,∴原式=x+y=+(x<0,y<0)=+=-2,当xy=3时,原式=-2.故选B.由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式=+=-2,然后把xy=3代入计算即可.本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.15.已知,则的值为()A. 5B. 6C. 3D. 4【答案】A【解析】【分析】此题主要考查代数式求值以及二次根式的混合运算.首先把a和b化简,然后代入计算即可.【解答】解:∵a==,b==,∴==5.故选A.16.若,,则代数式的值为A. B. C. D. 4【答案】B【解析】解:∵a+=6,0<a<1,∴-<0,则(-)2=a-2=6-2=4,∴-=-2;故选B.根据a+=6,0<a<1,判断出-<0,再把要求的式子进行配方,即可求出答案.此题考查了二次根式的化简求值,关键是根据已知条件判断出-<0,从而得出正确答案.17.化简的结果是:()A. 1B. 2x-3C. 3D. 3-2x【答案】A【解析】【分析】本题主要考查了二次根式的非负性、二次根式的化简的知识点,解题关键点是熟练掌握这些计算法则.先利用二次根式的非负性得出x≤1,从得可知x-2≤-1,再进行化简,即可解答.【解答】解:∵1-x≥0,∴x≤1,∴x-2≤-1,∴原式=-(x-2)-(1-x)=-x+2-1+x=1.故选A.18.已知,则的值为()A. a2-2B. a2C. a2-4D. 不确定【答案】A【解析】解:∵∴()2=a2即x+2+=a2∴x+=a2-2故选A.把已知的式子两边同时平方即可求解.本题主要考查了二次根式的化简和完全平方公式,对公式的正确理解运用是解决本题的关键.另外,本题还可对x+进行配方来解答,即.所以在二次根式的化简求值题中,若能根据题目的特点灵活选择适当的方法,将会给解题带来很大的简便.19.已知则 =()A. B. ﹣ C. D.【答案】C【解析】【分析】本题主要考查完全平方公式及二次根式的化简求值,由平方关系:()2=()2-4,先代值,再开平方.【解答】解:∵,∴()2=()2-4=()2-4=7-4=3,∴=,故选C.20.若,0<x<1,则()A. B. -2 C. ±2 D.【答案】A【解析】【分析】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.把已知条件两边平方得到(+)2=6,再根据完全平方公式得到(-)2+4=6,则利用二次根式的性质得|-|=,然后根据0<x<1,去绝对值即可.【解答】解:∵+=,∴(+)2=6,∴(-)2+4=6,∴|-|=,∵0<x<1,∴-=-.故选A.21.已知,则的值是( )A. B. 2 C. 1 D. -1【答案】A【解析】【分析】本题考查的是二次根式的定义有关知识,首先根据题意求出x,y,然后再进行计算即可解答.【解答】解:由题意可得:,解得x=1,把x=1代入求出y=2,原式=.故选A.22.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简-|a+b|的结果是()A. 2aB.C. 2bD.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及二次根式的化简求值,观察函数图象找出a >0、b<0、a+b>0是解题的关键.根据一次函数图象与系数的关系结合当x=1时y>0,即可得出a>0、b<0、a+b>0,进而可得出a-b>0,依此即可得出-|a+b|=(a-b)-(a+b)=-2b,此题得解.【解答】解:观察函数图象可知:a>0,b<0,a+b>0,∴a-b>0,∴-|a+b|=(a-b)-(a+b)=-2b.故选D.23.若a=,b=,则a2+b2+ab的值是()A. 2B. 4C. 5D. 7【答案】B【解析】解:∵a=,b=,∴a+b=+=,ab=•=1,∴a2+b2+ab=(a+b)2-ab=()2-1=5-1=4,故选B.根据a、b的值可以求得a+b和ab的值,从而可以解答本题.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.24.阅读下面的解题过程:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即,,则(a≥b).根据上述的方法化简为()A. B. C. D.【答案】A【解析】【分析】此题主要考查了二次根式的化简,正确应用完全平方公式是解题关键.直接利用完全平方公式化简求出答案.【解答】解:===.故选A.25.已知x=-6,则代数式x2+5x-6的值为()A. 2+3B. 5-5C. 3-2D. 5-7【答案】D【解析】解:∵x=-6,∴x2+5x-6=(x+6)(x-1)=(-6+6)×(-6-1)=×(-7)=5-7.故选:D.直接把x的值代入进而求出答案.此题主要考查了二次根式的化简求值,正确应用公式是解题关键.26.已知a=2,则代数式的值等于()A. -3B. 3-C. 4-3D. 4【答案】A【解析】解:当a=2时,=2-=2-=2-3-2=-3.故选A.27.已知x+y=+,xy=,则x2+y2的值为()A. 5B. 3C. 2D. 1【答案】A【解析】【分析】本题考查了二次根式的化简求值,解答本题的关键在于先对原式进行恰当的化简然后代入求值,由(x+y)2=x2+y2+2xy,得出x2+y2=(x+y)2-2xy,再带入已知数据求解即可.【解答】解:x2+y2=(x+y)2-2xy=()2-2=3+2+2-2=5.故选A.28.计算的值是()A. -2B. 2或-2C. 4D. 2【答案】D【解析】解:=2,故选:D.直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.29.当x=-1时,代数式x2-1的值是()A. 1B. 2C. 2-D. -2【答案】C【解析】解:当x=-1时,x2-1=(-1)2-1=3-2-1=2-2.故选C.先把x的值代入x2-1中,然后利用完全平方公式计算.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.30.已知,则的值为()A. B. C. D.【答案】D【解析】【分析】本题考查了代数式的值,根据可得,再求平方根可得答案.【解答】解:根据可得,则的值为.故选D.31.如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+=()A. B. C. D. 2【答案】C【解析】解:由题意得:x=1-(-1)=2-,∴原式=-x+=-2++=2-2+=2-2+=2-2+=2-2+2+=3.故选:C.根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.要能根据对称的性质确定x的值,熟练进行绝对值的化简和二次根式的分母有理化以及加减乘除运算.32.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=,其中n为正整数,用含n的代数式表示S为()A. nB.C. n2D.【答案】D【解析】【分析】本题考查了二次根式的化简求值,求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=,=,=,=,故选D.33.如果等式()2=x成立,那么x为()A. x≤0B. x=0C. x<0D. x≥0【答案】B【解析】【分析】本题考查了二次根式的概念和偶次方的非负性.式子叫二次根式,运用定义可以求出x≤0,又因为平方具有非负性,因此x≥0,所以可得x=0,从而得出答案.【解答】解:∵成立,∴,∴x=0,故选B.34.已知a=2+,则(a-1)(a-3)的值为()A. 24B.C. 2D. 4【答案】D【解析】解:∵a=2+,∴(a-1)(a-3)=a2-4a+3=(a-2)2-1=(2+-2)2-1=5-1=4,故选D.先根据多项式乘以多项式进行计算,再根据完全平方公式变形,最后代入求出即可.本题考查了整式的乘法,二次根式的混合运算的应用,主要考查学生的化简和计算能力,题目比较典型,难度适中.二、填空题(本大题共29小题,共87.0分)35.当-1<a<0时,则________.【答案】2a【解析】【分析】本题主要考查因式分解的应用和二次根式的化简求值。
(完整版)八年级数学二次根式的化简求值练习题及答案

解析:由m=1+ 可得m-1= ,两边平方得m2-2m+1=2,所以m2-2m=1;
7m2-14m+a=7(m2-2m)+a=7+a;
同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;
所以(7+a)×(-4)=8,解得a=-9.
答案:C
小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.
答案:解:(1)( - )2=11-2× × +3=14-2 ,
( -2)2=10-2× ×2+4=14-2 .
∵33<40,∴ < ,∴-2 >-2 ,∴14-2 >14-2 ,
∴( - )2>( -2)2.又∵ - >0, -2>0,∴ - > -2.
(2) = = ,
= = .
∵ = < ,
∴ < ,
二次根式的化简求值
练习题
温故而知新:
分母有理化
分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.
例 1计算:(1) ;
(2) ;
(3) .
解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)已知a= ,b= ,求 的值.
解析:a= ,同理b= ;
a + b= + =10,a b=( )( )=1,然后将所要求值的式子用a &答案:解:因为a= ,b= ,
所以a + b= + =10,a b=( )( )=1.
举一反三:
4.设a= -1,则3a3+12a2-6a-12=()
A. 24 B. 25 C. D.
解析:由a= -1得a+1= ,两边平方得a2+2a+1=7,所以a2+2a=6,所以3a3+12a2-6a-12=3a(a2+2a)+6a2-6a-12=3a×6+6a2-6a-12=6a2+12a-12=
(1)4+ 的有理化因式是___________.
解析:因为(4+ )(4- )=42-( )2=9,所以4+ 的有理化因式是4- .
答案:4- ;
(2)计算: .
解析: , , .
答案:解:原式=2- + - =2.
(3)计算: .
解析: ,将各个分式分别分母有理化后再进行计算.
答案:解:原式=( )( )
所以 = = = .
小结:分母有理化是我们处理二次根式问题时常用的一种方法,在有关二次根式化简求值的题目中我们经常会用到.利用平方差公式进行分母有理化是常用方法.如:( + )( - )=a-b,(a+ )(a- )=a2-b, ( +b)( -b)=a-b2.
举一反三:
2.如图,数轴上与1, 对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x- |+ =( )
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.
3.已知 , , ,则下列结论中正确的是( )
A.a>b>cB.c>b>a
C.b>a>cD.b>c>a
A.-5B.5C.-9D.9
解析:由m=1+ 可得m-1= ,两边平方得m2-2m+1=2,所以m2-2m=1;
7m2-14m+a=7(m2-2m)+a=7+a;
同理可得n2-2n=1,3n2-6n-7=3(n2-2n)-7=3-7=-4;
所以(7+a)×(-4)=8,解得a=-9.
答案:C
小结:观察所给等式和m,n的值,我们可以发现,对m,n稍作变形便可整体代入.整体思想是解决这类较复杂求值问题常用的思想方法.当然我们也可以直接把m,n的值直接代入,然后解方程求出a的值,这样计算量要大很多.
解析: ,
, ;
∵0< ,∴a>b>c.
例4(2013·襄阳)先化简,再求值: ,其中 , .
答案:解:原式= =
= .
∵ , ,∴a+b=2,a-b= ,
∴原式= = .
例5已知实数x,y满足 ,则3x2-2y2+3x-3y-2011的值为()
A.-2012 B.2012 C.-1 D.1
解析:观察所给等式特点可将等式变形为 ,将等式右边分母有理化得 ①;
1.若 , ,则xy的值是( )
A. B.
C.m + nD.m-n
解析:xy= = = .
例2阅读材料:“黑白双雄,纵横江湖;双剑合璧,天下无敌.”这是武侠小说的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(2+ )(2- )=1,( + )( - )=3,它们的积不含根号,我们就说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:如 = = , = = ,像这样,通过分子、分母同乘一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
二次根式的化简求值
练习题
温故而知新:
分母有理化
分母有理化是二次根式化简的一种常用方法,通过分子、分母同乘一个式子把根号中的分母化去或把分母中的根号化去叫分母有理化.
例 1计算:(1) ;
(2) ;
(3) .
解析:(1)式进行简单分组,然后利用平方差公式和完全平方公式计算;(2)利用平方差公式计算;(3)先将分子、分母在实数范围内因式分解,然后再约分.
A. B.
C. D. 2
解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1, ,所以点C表示的数为2- ,即x=2- ,故|x- |+ =|2- - |+ =2 -2+ =3 .
例3比较大小:(1) - 与 -2;(2) - 与 - .
解析:(1)用平方法比较大小;(2)用倒数法比较大小.
答案:解:(1)( - )2=11-2× × +3=14-2 ,
( -2)2=10-2× ×2+4=14-2 .
∵33<40,∴ < ,∴-2 >-2 ,∴14-2 >14-2 ,
∴( - )2>( -2)2.又∵ - >0, -2>0,∴ - > -2.
(2) = = ,
= = .
∵ = < ,
∴ < ,
6(a2+2a)-12=6×6-12=24.
同理可得 ②;
①+②得 ,所以 ;
①-②得 ,所以 ;
3x2-2y2+3x-3y-2011=3x2-2x2+3x-3x-2011=x2-2011=2012-2011=1.
答案:D
小结:本题有一定的技巧性,解题关键在于对所给等式进行变形,然后对变形所得到的两个等式进行简单的加减运算便可得到我们所需要的条件.本题也可以根据变形得到的两个等式的特点得出x=y的结论,然后代入原来的等式,进而求出x,y的值,最后带入求值.
举一反三:
5.观察分析下列数据,寻找规律:0, , ,3,2 , , ,……那么第10个数据应是_________.
解析:0= , = , = , = ,2 = , = , = ,…, ,所以第10个数据是 .
6.(2013·孝感)先化简,再求值: ,其中x= ,y= .
例6已知m=1+ ,n=1- ,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于( )
答案:解:(1)原式= =
=12- +6-18= .
(2)原式= =
= .
(3)原式= = .
小结:(1)二次根式的混合运算常常用到幂的运算法则和乘法公式,有时题目中条件不明显,要善于变形,使之符合乘法公式,幂的运算法则特点,从而简化计算.
(2)二次根式的计算和化简灵活运用因式分解能使计算简便.
举一反三: