全等三角形培优训练一(整理)

合集下载

全等三角形培优材料1 - 副本

全等三角形培优材料1 - 副本

FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . 求证∠A =∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。

5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.AD C B1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .求证DC ∥AB .2.如图,△ABC ≌△A B C ''',AD ,A D ''分别是△ABC ,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。

求证:△AFD ≌△CEB .6.已知,如图,AB=AC ,AD=AE ,∠1=∠2。

求证:△ABD ≌△ACE .C EDBAE B CFD A BC D 2 AC B ED1H F ED CB A 7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.11.证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:首先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)AB E F12.证明:如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.13.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF . 14.已知:E 是正方形ABCD 的边长AD 上一点,BF 平分∠EBC ,交CD 于F ,求证BE=AE+CF.(提示:旋转构造等腰)15.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。

全等三角形培优竞赛训练题

全等三角形培优竞赛训练题

全等三角形培优竞赛训练题全等三角形是初中几何中的重要内容,它不仅是证明线段和角相等的重要工具,也是解决许多几何问题的基础。

在培优竞赛中,全等三角形的题目往往具有较高的难度和综合性,需要我们熟练掌握全等三角形的判定定理和性质,并具备灵活运用知识的能力。

下面我们就来一起探讨一些全等三角形培优竞赛训练题。

一、基础巩固1、已知:如图 1,AB = AC,AD = AE,求证:∠B =∠C。

证明:在△ABD 和△ACE 中,AB = AC,∠A =∠A,AD = AE,所以△ABD≌△ACE(SAS)所以∠B =∠C2、如图 2,点 D 在 AB 上,点 E 在 AC 上,AB = AC,AD = AE。

求证:BE = CD。

证明:在△ABE 和△ACD 中,AB = AC,∠A =∠A,AE = AD,所以△ABE≌△ACD(SAS)所以 BE = CD二、能力提升1、已知:如图 3,在△ABC 中,∠ACB = 90°,AC = BC,AE 是 BC 边上的中线,过 C 作 CF⊥AE 于 F,过 B 作 BD⊥BC 交 CF 的延长线于 D。

求证:(1)AE = CD;(2)若 BD = 5cm,求 AC 的长。

证明:(1)因为 CF⊥AE,所以∠DCB +∠DBC = 90°,又因为∠ACB = 90°,所以∠EAC +∠AEC = 90°,而∠AEC =∠DCB(对顶角相等),所以∠EAC =∠DBC。

在△CBD 和△CAE 中,∠DBC =∠EAC,BC = AC,∠DCB =∠ECA = 90°,所以△CBD≌△CAE(ASA)所以 AE = CD(2)因为△CBD≌△CAE,所以 BD = CE。

因为 AE 是 BC 边上的中线,所以 CE = 1/2BC。

又因为 AC = BC,BD = 5cm,所以 AC = 10cm2、如图 4,在△ABC 中,∠B = 60°,△ABC 的角平分线 AD、CE 相交于点 O。

《全等三角形》培优练习题

《全等三角形》培优练习题

A B C D E F O 《全等三角形》培优练习题一、在较复杂图形中寻找所需全等三角形解决问题例1、已知:如图,△ABD 和△BEC 均为等边三角形,M 、N 分别为AE 和DC 的中点,那么 △BMN 是等边三角形吗?说明理由.【对应练习】1、已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,∠BAC=∠DAE ,,连接BE CD M N ,,,分别为BE CD ,的中点.(1)当点B A D ,,在一条直线上,试说明:AM=AN ;(2)将A D E △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请 判断AM=AN 是否成立?并说明你的理由; (3)在旋转的过程中,设直线BE 与CD 相交于点P ,当90°<∠BAC<180°时,请直接 写出∠CPB 与∠MAN 之间的数量关系. 二、通过证两次三角形全等解决问题例2、已知:如图,AB 、CD 交于O 点,且OA=OB ,OC=OD ,过O 作直线,交AC 于E ,交BD 于F 。

求证:OE=OF 。

【对应练习】2、如图,在Rt △AEB 和Rt △AFC 中,∠E =∠F =90°,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB ,AE =AF .求证:MB=NCABC EM F DN C E N D A B M 图①C A EM B D N 图②O B A C DE 三、通过转化命题或添作辅助线减少证明三角形全等的次数,简化解题过程例3、已知AB=AC, ∠ABE=∠ACD, 求证: BD=CE.【对应练习】3、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。

四、动点问题例4、如图,△ABC 是边长为5cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1cm/s .当点P 到达点B 时,P ,Q 两点停止运动,设点P 的运动时间为t (s ).(1)当t 为何值时,△PBQ 是直角三角形?(2)连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请求出它的度数.例5、如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.【对应练习】4、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上由B 点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q和点P都以3cm/s的速度运动,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点P的运动速度为2cm/s,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度和运动时间t.5、如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动,且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.。

word完整版全等三角形培优含答案推荐文档

word完整版全等三角形培优含答案推荐文档

三角形培优练习题1已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2 已知:BC=DE,/ B= / E,/ C= / D , F 是CD 中点,求证:A 3 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC4 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C5 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BE6如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD ,且点E在AD上。

求证:BC=AB+DC。

7 已知:AB=CD,/ A= / D,求证:/ B= / C8.P 是/ BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD , BD=5 , AC=7,求DC10.如图,已知AD // BC ,Z PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD + BC=AB.11如图,△ ABC中,AD是/ CAB的平分线,且AB=AC+CD,求证:/ C=2/ B12 如图:AE BC交于点M F 点在AMk, BE// CF, BE=CF求证:人皿是厶ABC的中线。

E13已知:如图,AB=AC, BD AC, CE AB,垂足分别为D、E, BD、CE相交于点F。

求证:BE =CD.C14在厶ABC中,ACB 90 , AC BC,直线MN经过点C,且AD MN于D ,BE MN于E •⑴当直线MN绕点C旋转到图1的位置时,求证:① ADC也CEB :②DE AD BE ;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,15 如图所示,已知AE! AB, AF丄AC, AE=AB AF=AC 求证:(1) EC=BF ( 2) EC丄BF请给出证明;若不成立,说明理由B C16.如图,已知AC // BD , EA、EB分别平分/ CAB和/ DBA , CD过点E,贝U AB与AC+BD 相等吗?请说明理由17.如图9所示,△ ABC是等腰直角三角形,/ ACB = 90°, AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC = Z BDE .图9全等三角形证明经典(答案)1. 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52 证明:连接BF 和EF。

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。

全等三角形专题培优(带答案)

全等三角形专题培优(带答案)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。

全等三角形培优专题训练

全等三角形培优专题训练

全等三角形培优专题训练第一篇:全等三角形培优专题训练做最适合你的数学培训八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B、F、C、DCA在同一条直线上.EAEP MN⑴求证:AB⊥ED;⑵若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF =CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是()3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.DFFBDBFCDBEDCAEACBF__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训4、如图,四边形ABCD中,AB∥CD,AD∥BC,O为对角线AC 的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F 在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCFAEBMONCDF5、在△ABC中,高所在直线AD和BE交于H点,且BH=AC,则∠ABC=_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等;⑵有两边及第三边上的高对应相等的两个三角形全等;⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例._________________________________________________________________ _______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP 与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥AC FAADQPEBCE3、(2012〃阜新中考)如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠D AC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD、CE 有怎样的数量关系和位置关系?问明理由.BEABDCDC①AEDBC②__________________________________________ ____________________________________________________________________ __周老师·数学培优做最适合你的数学培训4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.BDAEBDC①AEC②______________________________________________ __________________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DF3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?EBCDOABCDAFEAEBDPC_____________________________________ ____________________________________________________________________ _______周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=AC3、(2014〃襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AE BEDCABDCAABDC____________________________________________ ____________________________________________________________________做最适合你的数学培训AFE4、(竞赛014)△ABC中,D为BC的中点,DE⊥DF交AB,AC于点E,F.求证:BE+CF>EF6、(竞赛015)例:已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.求证:AC=BFBDCAEFDBC___________________________________________________ _____________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等.补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.1、已知A C∥BD,EA,EB分别平分∠CAB和∠DBA,点E在CD上.求证:AB=AC+BD2、在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE =½(AB+AD).求证∶∠B+∠D=180°3、如图,已知△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F.求证:∠ADB=∠CDF________________________________________________________________ ________________________________________________BFCAECDABADEBCED周老师·数学培优做最适合你的数学培训4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.CBABDCDAE____________________________________________________ ____________________________________________________________做最适合你的数学培训八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012〃“华罗庚杯”)如图,在△ABC中,AC=½AB,AD平分∠BAC,且AD=BD 求证:CD⊥ACACBD__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛〃014〃3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP 交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A(E)EAEAQllBC(F)PFPBClBFCP Q__________________________________________________________________ ______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线).由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心.二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法.三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1).②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5).⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7).⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).AAACBDAFAEGDBDBC图2B图1CD图3DCBC_____________________________________________________________ ___________________________________________________周老师·数学培优做最适合你的数学培训AACFEBDC图4BFEDECF图5ADBA1D2B3A1APFC'D'DAD2CB图6EF∠1+∠2+∠3=90°∠1+∠2=90°-½∠BCBEC图7B图8CD四、真题训练1、(2011〃鄂州〃竞赛〃018 〃重庆中考)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=_____________.BCDAP2、(竞赛〃019)如图,∠B=∠C =90°,M是BC的中点,DM平分∠ADC.求证:AM平分∠DAB DCMAB_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训3、(竞赛〃019)如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.AED1求证:CE= BD 2BCA4、如图,在△ABC中,AD平分∠BAC,BD=CD 求证:∠B=∠C5、如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB于E,若AB=10cm,则△DBE的周长是多少?ABDCAECDB6、(2011,恩施中考)AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为多少?BEFGDC_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训7、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.求证:BE=CF8、在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°⑴求证:DE=DF ⑵如果把最后一个条件改为AE>AF,且∠AED +∠AFD=180°,那么结论还成立吗?9、如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE与CF 交于点D 求证:点D在∠BAC的平分线上.10、如图,在四边形ABCD 中,对角线AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD >CB-CD B.AB-AD=CB-CD C.AB-AD<CB-CD D.AB-CD与CB-CD的大小关系不确定BCAAEBGCFDAFEBDCBFDAECD______________________________ ____________________________________________________________________ ______________周老师·数学培优做最适合你的数学培训11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛〃019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

全等三角形专题培优(带答案)

全等三角形专题培优(带答案)

全等三角形专题培优测验总分: 110 分测验时光: 120 分钟卷I(选择题)一.选择题(共 10 小题,每小题2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不消失的是()B.在一个三角形中,假如双方相等,那么它们所对的角也相等C.同位角相等,两直线平行3.已知:如图,,,,则不准确的结论是()B.C.D.4.如图,是的中位线,延伸至使,衔接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴.轴的正半轴上分离截取.,使;再分离以点.为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角等分线上; ②;③;④.准确的有()7.如图,直线..″暗示三条互订交叉的公路,现筹划建一个加油站,请求它到三条公路的距离相等,则可供选择的地址有()8.如图,是的角等分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()卷II(非选择题)二.填空题(共 10 小题,每小题2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,衔接,将线段绕点顺时针偏向扭转得到线段(扭转角为),衔接.特例剖析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探讨:请从下列,两题中任选一题作答,我选择________题.:如图,当时,求的度数;:如图,当时,①猜测的度数与的关系,用含的式子暗示猜测的成果,并证实猜测;②在图中将“点为边上的一点”改为“点在线段的延伸线上”,其余前提不变,请直接写出的度数(用含的式子暗示,不必证实)12.如图,正方形纸片的边长为,点.分离在边.上,将.分离沿.折叠,点.正好都落在点处,已知,则的长为________.13.在中,为的等分线,于,于,面积是,,,则的长为________.14.在中,,的垂直等分线与地点的直线订交所得到锐角为,则等于________.15.如图,等分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点动身沿射线偏向,在射线上活动.在点活动的进程中,贯穿连接,并认为边在射线上方,作等边,贯穿连接.当________时,;请添加一个前提:________,使得为等边三角形;①如图,当为等边三角形时,求证:;②如图,当点活动到线段之外时,其它前提不变,①中结论还成立吗?请解释来由.17.如图,从圆外一点引圆的两条切线,,切点分离为,.假如,,那么弦的长是________.18.如图,在中,,,是的等分线,等分交于,则________.19.浏览下面材料:小聪碰到如许一个有关角等分线的问题:如图,在中,,等分,,求的长.小聪思虑:因为等分,所以可在边上取点,使,衔接.如许很轻易得到,经由推理能使问题得到解决(如图).请答复:是________三角形.的长为________.参考小聪思虑问题的办法,解决问题:如图,已知中,,,等分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证实,则还需填补前提:________.三.解答题(共 7 小题,每小题10 分,共 70 分)21.如图,已知为等边三角形,为延伸线上的一点,等分,,求证:为等边三角形.22.尺规作图(不请求写作法,保存作图陈迹)如图,作①的等分线; ②边上的中线;22.一块三角形外形的玻璃决裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和本来的三角形全等.(不请求写作法,保存作图陈迹.不克不及在原图上作三角形)22.如图:在正方形网格中有一个,按请求进行下列绘图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,贯穿连接,点在边地点直线上,过点作交于点.如图,若为边中点,交延伸线于点,,,,求;如图,若点在边上,为中点,且等分,求证:;如图,若点在延伸线上,为中点,且,问中结论还成立吗?若不成立,那么线段..知足如何的数目关系,请直接写出结论.24.如图,直线与轴.轴分离交于.两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延伸线订交于点,与轴订交于点,且,在平移的进程中,①为定值;②为定值.在这两个结论中,有且只有一个是准确的,请找出准确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.26.如图,点,在上,,,,与交于点.求证:;试断定的外形,并解释来由.27.如图,已知点是等分线上一点,,,垂足为.吗?为什么?是的垂直等分线吗?为什么?答案11.[“”,“”][“”]12.[“”]13.[“”]14.[“或”]15.[“”]16.[“;”][ "添加一个前提,可得为等边三角形;故答案为:;①∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴;②成立,来由如下;∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴." ]17.[“”]18.[“”]19.[ "解:是等腰三角形,在与中,,∴,∴,,∵,∴,∴,∴是等腰三角形;" ][ "的长为,∵中,,,∴,∵等分,∴,在边上取点,使,衔接,则,∴,∴,∴,在边上取点,使,衔接,则,∴,,∵,∴,∴,∵,∴." ]\"go题库\"20.[“”]21.证实:∵为等边三角形,∴,,即,∵等分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延伸交的延伸线于点,则,∵,∴,又∵等分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;若点在延伸线上,为中点,且,则中的结论不成立,准确结论为:.证实:如图,延伸交的延伸线于点,则,∵,∴,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴.24.解:∵直线与轴.轴分离交于.两点,∴,,∵直线与直线关于轴对称,∴∴直线的解析式为:;如图..∵直线与直线关于轴对称,∴,∵与为象限等分线的平行线,∴与为等腰直角三角形,∴,∵,∴∴∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,,又∵,∴,则,∴∴∴∴∴.25.证实:衔接,∵,∴,∵,∴,∴,∵,,∴,在和中,∴.26.证实:∵,∴,即.又∵,,∴,∴.解:为等腰三角形来由如下:∵,∴,∴,∴为等腰三角形.27.解:.来由:∵是的等分线,且,,∴,∴;是的垂直等分线.来由:∵,在和中,,∴,∴,由,,可知点.都是线段的垂直等分线上的点,从而是线段的垂直等分线.。

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;(2)如果/ C=130,求/ AEB的度数.2•已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.3. 如图,在△ ABC中,/ ACB=90, AC=BC E为AC边的一点,F为AB边上- 点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;4. 如图(1), AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.5•如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC的长.7. 如图,在Rt A ABC中,/ ABC=90, CD平分/ ACB交AB于点D, 点E,BF// DE交CD于点F.8 .已知:△ ABC内部一点O到两边AB AC所在直线的距离相等,且DE X AC 于OB= OC八年级数学《全等三角形》能力培优参考答案与试题解析一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;S' D(2)如果/ C=130,求/ AEB的度数.B【分析】(1)由于AB'是AB的折叠后形成的,所以/ AB Ea=B=Z D=90 , A B Z E// DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB'是AB的折叠后形成的,/ AB E=B=/ D=90,A B' E DC;(2)v折叠,•••△ABE^A AB,A/ AEB =AEB 即/ AEB= / BEB,2••• B' E DC,A/ BEB =C=130,A/ AEB=- / BEB =65°【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B点,则△ ABE^A AB,利用全等三角形的性质和平行线的性质及判定求解.2. 已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB 为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以0B为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【分析】(1)过C作CM丄y轴于M,通过判定△ BCM MA AB( AAS),得出CM=BO=1, BM=AO=4,进而得到OM=3,据此可得C (- 13);(2)过C 作CM丄y 轴于M,根据△ BCM^A ABO,可得CM=BO, BM=OA=4, 再判定△ DBE^A CME (AAS,可得BE=EM,进而得到BE=-BM=2.【解答】解:(1)如图1,过C作CM丄y轴于M.•••CM 丄y 轴,•••/ BMC=Z AOB=90 ,•••/ ABC+Z BAO=90•Z ABC=90,•••Z CBM+Z ABO=90 ,•••Z CBM=Z BAO,在厶BCM与厶ABO中,'ZBIC=ZACBu ZCBJI=ZBAO,BC-ABL•••△BCM^A ABO (AAS),•CM=BO=1 BM=AO=4,•OM=3 ,• C (- 1 , - 3);(2)在B点运动过程中,BE长保持不变,BE的长为2,理由:如图2,过C作CM丄y轴于M ,由(1)可知:△ BCM^A ABO,••• CM=BO, BM=OA=4.•••△ BDO是等腰直角三角形,••• BO=BD / DBO=90 ,••• CM=BD, / DBE=Z CME=9°,在△DBE与△ CME中,'ZDBE=ZCME* ZDEB=ZCEM,L BD=IC•••△ DBE^A CME (AAS),••• BE=EM••• BE= BM=2.【点评】本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△ DBE^A CME是解第(2)题的关键.3. 如图,在厶ABC中,/ ACB=90 , AC=BC E为AC边的一点,F为AB边上点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;(3)在(2)问的条件下,当/ GAC=2/ FCH时,若&AEG=3「, BG=6,求AC的长.【分析】(1)根据ASA证明△ BCG^A CAF贝U CF=BG(2)先证明△ ACG^A BCG 得/ CAG=/ CBE再证明/ PCG/ PGC即可得出结论;(3)作厶AEG的高线EM,根据角的大小关系得出/ CAG=30,根据面积求出EM 的长,利用30°角的三角函数值依次求AE、EG BE的长,所以CE=+「,根据线段的和得出AC的长.【解答】证明:(1)如图1,v/ ACB=90, AC=BC•••/ A=45 ,v CG平分/ ACB•••/ ACG/ BCG=45 ,•••/ A=/ BCG在厶BCG^n^ CAF中,'ZA=ZBCG•v QBC ,2 AC F二Z CBE•••△ BCG^A CAF( ASA),••• CF=BG(2)如图2, v PC// AG ,•••/ PCA=/ CAQv AC=BC / ACG=/ BCG CG=CG•••△ ACG^A BCQ•••/ CAGK CBEvZ PCG= PCA+Z ACGK CAG45°/ CBE+45°,/ PGC Z GCBV CBE=Z CB^45°,•••Z PCG=Z PGC••• PC二PGv PB二BGPG BG=CF•PB=C+CP(3)如图3,过E作EM丄AG,交AG于M , V SAE(= -AG?EM=V3,2由(2)得:△ ACG^A BCG•BG=AG=6•-X 6X EM=3「,2EM=「,设Z FCH=x ,则Z GAC=2x ,•Z ACF=Z EBC=Z GAC=2x ,vZ ACH=45 ,•2x+x=45 ,x=15 ,•Z ACF=Z GAC=30 ,在Rt A AEM 中,AE=2EM=2「,AM=T::*W J■:V T>-=3 ,•M是AG的中点,•AE二EG=2「,•BE二BGEG=62V5 ,在Rt A ECB中, Z EBC=30 ,•CE= BE=3F「,•AC二AHEC=2「+3+「=3「+3.【点评】本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明厶BC3A CAF即可;第3问,如何得出30°角和作辅助线,禾用到&AEG=3匚列式是突破口.4•如图(1),AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.【分析】(1)证明三角形ACD和CAB全等•根据全等三角形判定中的SSS可得出两三角形全等,那么就能证出AD// BC,也就得出/ 1二/ 2 了.(2)(3)和(1)的证法完全一样.【解答】解:/ 1与/2相等.证明:在厶ADC与厶CBA中,'AD=BC“ CD-AB ,L AC=CA•••△ADC^A CBA (SSS•••/ DAC=/ BCA ••• DA/ BC.•••/ 1=Z 2.②③图形同理可证,△ ADW A CBA得到/ DACN BCA贝U DA// BC, /仁/2.【点评】本题主要考查了全等三角形的判定和平行线的判定,根据全等三角形得出角相等是解题的关键.5. 如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得/ 1+Z 2,再找到/ A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(EAD^A EA'D,其中/ EADN EA'D, / AED=/ A'ED, / ADE= / A'D E;(2)Z 1= 180°- 2x,Z 2=180°- 2y;(3)vZ 1 + Z2=360°-2 (x+y) =360°-2 (180°-/ A) =2/ A. 规律为:/ 1+Z 2=2Z A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF, 求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC 的长.【分析】(1)推出/ 3=Z E,推出AC=AE根据等腰三角形性质得出AF丄CE根据平行线性质推出即可;(2)延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F,求出BF=CN AE=AN, BE=BF 设CN=x 贝U BF=x AE=AN=A G CN=7- x , BE=AB F AE=¥7-x.得出方程4+7 - x=x.求出即可.【解答】(1证明::AD ABC的角平分线,•••/ 仁/ 2.••• CE// AD ,•••/ 仁/ E, / 2二/ 3.•••/ E=Z 3.••• AC=AE••• F为EC的中点,••• AF丄EC,••• AD// EC,•••/ AFE=/ FAD=90.••• AF丄AD.(2)解:延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F , •••/ 3=/ C, / F=/ 4••• M为BC的中点••• BM=CM.NF二厶在厶BFM和厶CNM中,・Z3二ZCBH=CML•••△BFM^A CNM (AAS ,••• BF=CN••• MN // AD,•••/ 仁/ E,Z 2=Z 4=Z 5.•••/ E=Z 5=Z F.••• AE=AN BE=BF设CN=x 贝U BF=x AE=AN=AC- CN=7- x, BE=ABAE=¥7 —x.••• 4+7 - x=x.解得x=5.5.平行【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定, 线的性质等知识点的综合运用.7. 如图,在Rt A ABC 中,/ ABC=90 , CD 平分/ ACB 交AB 于点D , DE X AC 于点E, BF// DE交CD于点F.【分析】根据角平分线的定义得到/ 仁/2,根据角平分线的性质得到DE=BD / 3=Z 4,由平行线的性质得到3=Z 5,于是得到结论.【解答】证明::CD平分/ ACB•••/ 仁/ 2,T DE 丄AC,/ ABC=90••• DE=BD / 3=/4,••• BF/ DE,•••/ 4=/ 5,•••/ 3=/ 5,• BD=BF【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质, 熟练掌握角平分线的性质是解题的关键.8 .已知:△ ABC内部一点0到两边AB AC所在直线的距离相等,且OB=OC求证:AB=AC【分析】证明Rt A BOF^ Rt A COE根据全等三角形的性质得到/ FBON ECQ 根据等腰三角形的性质得到/ CBO=/ BCO得到/ ABC=/ ACB,根据等腰三角形的判定定理证明结论.【解答】证明:在Rt A BOF和Rt A COE中,fOF=OE(OB=OC••• Rt A BOF^ Rt A COE•••/ FBO=/ ECO••• OB=OC•••/ CBO=/ BCQ•••/ ABC=/ ACB••• AB=AC【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.。

全等三角形经典培优题型(含标准答案)

全等三角形经典培优题型(含标准答案)

三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。

求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

人教版 八年级数学上册 第12章 全等三角形 培优训练(含答案)

人教版  八年级数学上册 第12章 全等三角形 培优训练(含答案)

人教版八年级数学第12章全等三角形培优训练一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS4. 如图,OC平分∠AOB,P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.55. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS6. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°7. 如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC =ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE =FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.39. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC10. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°二、填空题11. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)12. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.16. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、作图题17. 如图,试沿着虚线把图形分成两个全等图形.18. 如图,要在河流的右侧、公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉点A处的距离为1 cm(指图上距离)的地方,则图中工厂的位置应选在哪里?作出图形(保留作图痕迹,不写作法),并说明理由.四、解答题19. 如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并证明.20. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.21. 已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图①图②22. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.23. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】C2. 【答案】A3. 【答案】A4. 【答案】A[解析] 如图,过点P作PE⊥OA于点E.∵OC平分∠AOB,PD⊥OB,∴PE=PD=3.∵动点Q在射线OA上运动,∴PQ≥3.∴线段PQ的长度不可能是2.5. 【答案】A6. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.7. 【答案】A[解析] 由题意可得,要用“SSS”判定△ABC和△FED全等,需要AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可以;若添加AB=FE,则可直接用“SSS”证明两三角形全等,故②可以;而③④都不可以.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD=22+=2,DF CF∴BC=BD+CD=22+,故选A.9. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.10. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.二、填空题11. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.12. 【答案】3[解析] ∵△ABC 的周长为16,AB =6,AC =7,∴BC =3.∵△ABC ≌△DEF ,∴EF =BC =3.13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】55°[解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.15. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.16. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时, 在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL); ②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、作图题17. 【答案】解:如图所示.18. 【答案】解:工厂的位置应选在∠A 的平分线上,且距A 点1 cm 处.理由:角的平分线上的点到角的两边的距离相等.作图略.四、解答题19. 【答案】解:答案不唯一,如:添加∠BAC =∠DAC. 证明:在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS).20. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10,∴AB=CD=(AD-BC)=3.21. 【答案】(1)证明:如图①,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF,OB=OC,解图①∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:如图②,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③22. 【答案】证明:如图,在AB上截取AF=AD,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE , ∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.23. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.。

全等三角形培优(含答案解析)

全等三角形培优(含答案解析)

三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C AD BCB ACD F2 1 E5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

7已知:AB=CD,∠A=∠D,求证:∠B=∠C8.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-ABCDBAB CDA9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

P D A C B FA E D CB P E DC BA D CB A求证:AM是△ABC的中线。

13已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F。

求证:BE=CD.14在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

全等三角形-培优整理

全等三角形-培优整理

全等三角形-培优整理H E B D A C 题图第3B'C B A D 题图第1题图第2全等三角形1.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B ’处,若∠ACB ’=60°,则∠ACD 度数为______.2.如图,△ABE 和△ACD 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠BAC=150°,则∠EFC 的度数为_________.3.△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则BH 的长度为______.4.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点,A F DB C 21P F M D B A C E (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论;(2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.5.如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )6.△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由. F DCA7.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =;(2)求证:12CE BF =;DAE F C H GB 8. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD .(1)求证:COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?AB C DO110 α9.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,DF⊥AC;③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即①②⇒③,①③⇒②,②③⇒①.试判断上述三个命题是否正确,并证明你认为正确的命题.AEGFDB C10 .已知:如图,ABC△是等边三角形,过AB边上的点D作DG BC∥,交AC于点G,在GD的延长线上取点E,使DE DB,.,连接AE CD(1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.C G A ED B F1.如图在锐角三角形ABC 中,CD ⊥AB ,BE ⊥AC ,且CD ,BE 交于点P ,∠A=50°,求∠BPC 的度数。

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形提优训练(一)
(全等三角形的性质与判定的应用)
知识点
全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.
寻找对应边和对应角,常用到以下方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.
(3)有公共边的,公共边常是对应边.
(4)有公共角的,公共角常是对应角.
(5)有对顶角的,对顶角常是对应角.
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).
要想正确地表示两个三角形全等,找出对应的元素是关键.
全等三角形的判定方法:
一、全等三角形
注:①判定两个三角形全等必须有一组边对应相等;
②全等三角形面积相等.
全等三角形证明的思路:
⎪⎪

⎪⎪
⎪⎪⎩
⎪⎪⎪⎪


⎪⎨⎧⎩⎨
⎧⎪

⎩⎪
⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 练习:
1、如图,在平面上将△ABC 绕B 点旋转到△A’BC’的位置时,AA’∥BC ,∠ABC =70°,则∠CBC’为________度.
2、如图∠1=∠2=200,AD =A B, ∠D=∠B ,E 在线段BC 上,则∠A EC=
3、如图所示,ABC ADE △≌△,BC 的延长线交DA 于F ,交DE 于G ,
105ACB AED ∠=∠=,15CAD ∠=,30B D ∠=∠=,则1∠的度数为
4、已知:如图,△OAD ≌△OBC ,且∠O=70°,∠C=25°,则∠A EB=________度.
5、如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于
6、如图,在Rt △A BC 中,已知∠A CB =90°,∠A=50°,将其折叠,使点A 落在边CB 上点A ′处,折痕为CD,则∠A′DB =
7、如图,已知△ABC 为

边三角形,
点D 、E 分别在变边BC 、AC 上,且AE=CD,AD 与BE 相交于点F,则:∠BFD= 8、如图,点A 、C 、B 在同一直线上,△DAC 和△EBC 均是等边三角形,AE 与BD 交于点O ,AE 、
A
D C
E
B
A
B
C
D
E
F
BD 分别与CD 、CE 交于点M 、N ,有如下结论:①AE=B D;②△ACM ≌△DCN ;③EM=B N;④MN∥BC ;⑤∠DO A=60°,其中,正确的结论有
9、如图,已知△ABC 的三边AB 、BC、CA 的长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S△BCO :S△CAO = .
10、如图,点E 、F 分别在正方形ABC D的边DC 、
BC
上,AG ⊥E F,垂足为G ,且AG =AB,∠EA F=
11、已知点E 是BC 的中点,点A 在DE 上,且∠B AE =∠CDE 。

猜想A B与CD 数量关系,并说
明理由.
变式训练:已知在△ABC 中,AD 是BC 边上的中线,E 是A D上的一点且B E=AC ,延长BE 交AC 于F ,求证:A F=EF .
12、已知:如图,BE 、CF 是△ABC 的高,分别在射线BE 与CF 上取点P 与Q,使B P=AC ,CQ=AB 。

求证:(1)A Q=AP;(2)AP ⊥AQ
13、如图,已知,等腰R t△OAB 中,∠A OB=90o,等腰Rt △EOF 中,∠EO F=90o ,连结AE 、B
D
C
B
A
F.求证:(1)AE=BF;(2)AE ⊥BF .
14、如图,已知AC ∥BD,EA 、E B分别平分∠CAB 和∠DB A,CD 过点E,求证:AB =AC+BD ﻩ
15.已知:如图,四边形ABC D中,A C平分∠BAD,CE ⊥AB 于E,且∠B+∠D=180︒,求证:AE=AD+BE.
16、如图已知:ΔABC和ΔBDE 是等边三角形,D在AE 延长线上.求证:BD+DC=AD
17.如图1,BD 是等腰ABC Rt Δ的角平分线,
90=∠BAC ;
(1)求证BC =AB +AD;
A B
D C
E
1 2
(2)如图2,BD AF ⊥于F,BD CE ⊥交延长线于E ,求证:BD =2C E.
18.△ABC 中,∠A=90°,AB=A C,D 为BC 中点,E、F分别在AC 、AB 上,且DE ⊥DF,试判断DE 、D F的数量关系,并说明理由.
19、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;
(2)求证:1
2CE BF =;
20.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点,
(1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.
A
B C D F
E 图2
D A
E
F C H
G
B B。

相关文档
最新文档