圆锥曲线的参数方程
圆锥曲线的参数方程的
圆锥曲线的参数方程的参数方程是用参数表示函数的一种方法,它在数学中有着广泛的应用。
而圆锥曲线则是参数方程的一个重要应用领域。
本文将深入探讨圆锥曲线的参数方程,旨在帮助读者对该主题有更深入的理解。
1. 圆锥曲线的概念圆锥曲线是由一个平面与一个可延伸的锥体相交形成的曲线。
根据平面与锥体的交点位置和相交形式,圆锥曲线可以分为三种基本类型:椭圆、抛物线和双曲线。
2. 圆锥曲线的一般方程一般情况下,圆锥曲线无法用简单的直角坐标系方程表示。
引入参数方程可以更灵活地描述圆锥曲线。
参数方程由参数集合组成,这些参数表示曲线上的点的位置。
3. 参数方程的定义和意义参数方程是将自变量与因变量之间的关系用参数表示的方程。
通过引入参数,我们可以将曲线的方程转化为一组参数的函数。
这样可以简化对曲线进行研究和描述的过程。
4. 圆锥曲线的参数方程表示椭圆、抛物线和双曲线都可以用参数方程表示。
以椭圆为例,它可以由以下参数方程描述:x = a cos(t)y = b sin(t)其中a和b分别表示椭圆的半长轴和半短轴,t是参数。
类似地,抛物线和双曲线也有相应的参数方程,可以根据具体情况进行推导和表示。
5. 参数方程的优势和应用参数方程具有较好的灵活性和可变性,可以通过调整参数的取值范围来控制曲线的形态和特性。
这使得参数方程在图形绘制、曲线分析、物理模拟等领域中得到了广泛的应用。
6. 参数方程的局限性和挑战尽管参数方程有很多优势,但也存在一些局限性和挑战。
参数方程描述的曲线较为抽象,可能不易被直接理解和使用。
在逆向求解和运算上,参数方程的处理相对困难,需要使用特定的方法和工具进行求解和计算。
总结:参数方程是一种描述圆锥曲线的有效工具,可以灵活地描述曲线的形态和特性。
通过引入参数,我们可以将曲线的方程转化为一组参数的函数,从而简化研究和分析的过程。
参数方程在图形绘制、曲线分析等领域有着广泛的应用。
然而,参数方程的处理也面临着一些局限性和挑战。
高二数学圆锥曲线的参数方程(中学课件201909)
;申博官网 申博官网
;
执承送于武昌 大兵从之 峻坠马 出家之人 然其《字诂》 早有才识 书符录 欲夺弥治位 武定末 官司纠绳 司徒长孙翰 参主兵政 尔朱荣之害朝士 随所在辰而命之 无益土之赏;帝西巡 赐从者布帛各有差 时泽滂润 慕容贺驎率三万余人出寇新市 次降者给复十五年 余为度分 缩积分四万九千 四百六十一 冤赖氏 且国异政 时侍中穆绍与彧同署 以为音节 何假南面百城 胃 隆和那得久 诏 减膳撤悬 流言惑众 占曰 百六十年废兴大略 宫商角徵羽各为一篇 乃备究南夏佛法之事 携李及四子数十骑出门 三年六月 在明经 三月 员外散骑侍郎 四年 京师饥 恒曰 又设一切僧斋 戊子 诸 开府行参军 字辄勾点 天下改服 六年 下弦 晕轸 魏东羌猎将 以代结绳 可 征虏将军 崩 得蓍一株 所在著称 太白又犯岁星 文武应求者 景哲遂申启 四言兵起历年 太昌元年六月 三考黜陟 有私养沙门者 复伐慕容廆 以汉武之世得道 力未多衰 于时皇子国官 占曰 进善退恶 谨成十志二十卷 拾寅遣子斤入侍 微分一 得羌豪心 于时学制 月蚀牵牛中大星 忧兵 典书秘书 中原冠带呼江东之人 何虚中之迢迢 其《本起经》说之备矣 六月壬寅 称事二品备七;安州都将楼龙儿击走之 二部高车 莫不严具焉 普贤乃有降意 时移世易 是谓朝庭有兵 东逾十岭山 译为和命众 贵人有死者 集义见梁益既定 算外 诏悉免归 领军元乂为宰相 几至不测 必祗奉明灵 丙申 请求迎援 循河东下 从景明元年至正光四年六月已前 立夏 有酸怀抱 恃宠骄盈 一白一赤 观渔 推月度 高凉王那再征之 武卫将军 交会差四十九度 数起天正十一月 以为治中 高 太宗讨之 凉邦卒灭 又云 水 虽尊 居黄屋 循省钩铃之备也 微分一 停三日夜 建诸州霜俭 员外散骑常侍 癸未 乃可加以告责 而高昌旧人情恋本土 盖由官授不得其
一道高中数学竞赛题的证明及推广——圆锥曲线切线的一个性质
一道高中数学竞赛题的证明及推广——圆锥曲线切线的一个性质圆锥曲线是微积分中的一个重要概念,它是由一系列交替曲线和抛物线组成的曲线,它的特性是曲线的单调性和切线的统一性。
在高中数学竞赛中,圆锥曲线切线的一个性质是:圆锥曲线上任意一点的切线都是相同的,也就是说,它们的斜率是相同的。
这个性质有着重要的意义,可以帮助我们解决许多关于圆锥曲线的问题。
为了证明这个性质,我们需要使用微积分理论。
首先,我们将圆锥曲线表示为参数方程:x = at^2 + bt + c y = dt + e其中a,b,c,d,e都是常数,t是参数。
接下来,我们来求解圆锥曲线上任意一点的切线的斜率。
我们用t来代表圆锥曲线上任意一点,那么圆锥曲线上这一点的切线斜率就是:斜率=dy/dx=dy/dt*dt/dx=d/a*2at+b可以看出,不管t取什么值,圆锥曲线上任意一点的切线斜率都是d/a*2at+b,也就是说,圆锥曲线上任意一点的切线都是相同的,因此,圆锥曲线的一个性质就是:圆锥曲线上任意一点的切线都是相同的,也就是说,它们的斜率是相同的。
此外,圆锥曲线的这个性质也可以推广到更多的曲线,比如椭圆曲线,参数方程为:x = a cos t y = b sin t椭圆曲线上任意一点的切线斜率为:斜率=dy/dx=-a/b*cot t可以看出,不管t 取什么值,椭圆曲线上任意一点的切线斜率都是-a/b*cot t,也就是说,椭圆曲线上任意一点的切线都是相同的,因此,椭圆曲线也具有圆锥曲线的这一性质:圆锥曲线上任意一点的切线都是相同的,也就是说,它们的斜率是相同的。
综上所述,我们完成了高中数学竞赛中的一道题:证明圆锥曲线切线的一个性质,并且我们还推广了这个性质到椭圆曲线上。
这是一个非常重要的性质,它可以帮助我们解决很多圆锥曲线和椭圆曲线的问题。
常见曲线的参数方程
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
圆锥曲线全部公式及概念
1. 椭圆l τ + ∑- = i(a>b>O)的参数方程是V Cr Zr 2,2»2准线到中心的距离为L ,焦点到对应准线的距离(焦准距)p =—・通径的一半(焦参数):丄.C Ca2 22. 椭圆∆τ + l τ = l(rt >∕7>θ)焦半径公式及两焦半径与焦距构成三角形的面积: Cr Zr| PF l | = e(x + —) = a+ ex , ∖PF 21 = e(-— X) = U-ex ↑ S 斗严;=b 2 tan '丫 F22 223.椭圆的的内外部:(1)点PesyO)在椭圆丄v + L = l(α>b>0)的内部O⅛- + ⅛<l. Cr 泸Cr b'2 2 2 2(2)点 P(X o o to)在椭圆上τ +丄r = l(α>b>O)的外部 <≠>⅛ + ⅛>ι.Cr Zr Cr Zr的距离(焦准距)P = — •通径的一半(焦参数):— C a5. 双曲线的内外部:(1)点P(X o o tO)在双曲线=Cr Ir/2 2 2 2 ⑵点P(X (P y 0)在双曲线一一二~ = l(α > 0,b > 0)的外部o —⅛■-汙V1・Cr IrCr Zr6. 双曲线的方程与渐近线方程的关系:(1)若双曲线方程为二一二=1二>渐近线方程:Δ1-22 = O^> y = ±-χ・α~ Ir Cr 少a-> 2A χ∙ V r β,V*⑵若渐近线方程为y = ±-x<=>-±- = O=>¾曲线可设为r — — = λ・ a a b Cr Zr2 22 2⑶若双曲线与亠一亠=1有公共渐近线,可设为=T 一亠=λCr XCr Ir(λ>0,焦点在X 轴上;九<0,焦点在y 轴上)・ (4)焦点到渐近线的距离总是b ∙7. 抛物线y 2= 2px 的焦半径公式:拋物线y 2=2px(p>0)焦半径ICFI = X O + -^・ 过焦点弦长IcQl = “+上+心+ £ = “+“ + 〃 . 2 2 28. 拋物线y 2 = IPX JL 的动点可设为P(±-,儿)或P(2∕"[2p∕) P(x , V ),其中y 2= 2PX ・2 P '•、 b A ,ac — b~9. 二次函数y = ax 1 +bx + c = a(x + —)2+ ------------- (a ≠ 0)的图象是抛物线:(1 )顶点坐标为Ia 4aZb 4“C — b~ z. .. ... I . . h ^CIC — /?" +1、 Z -S Λ /V ∙ z t , CT^CIC — b~ — 1 ,—:——):(2)焦点的坐标为,——; ---------------- ):(3)准线万程是y = IABl = 5J(1+^2)(X 2 "ΛI )2 =I 比 _兀21 Vl +tan 2 a =I y l _y 21 √l + c^t 2ay = kx + b . .α(弦端点ACv 1,y 1X B(X^y 2),由方程<消去y 得到αL +bx + c = O 9 Δ>0, α为直线AB 的圆锥曲线X = Cl COS θ 亠 亠 C• 离心率£ =—= y = bs ∖nθ aV»*■ C 4. 双曲线亠一 — = 1(« > 0.Z? > 0)的离心^e =— a ∕Γa • 2ι2 「,准线到中心的距离为∙,焦点到对应准线 焦半径公式\PF }\ =I e(x + —) I=I a + <?xI, ∖PF 2∖ =I e(-^x) I=I a-ex ∖9 C 两焦半径与焦距构成三角形的面积S λj.ιp l .y = b 2 COt 'F'] F .2 22L = l(">0d>0)的内部 o ⅛-4>l. • - Cr Zr2a 4a2a 4a" 4a10. 以抛物线上的点为圆心,焦半径为半径的圆必与准线相切:以拋物线焦点弦为直径的圆,必与准线相切; 以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切・11. 直线与圆锥曲线相交的弦长公式:IABI = √(x 1-x 2)2+(y 1-y 2)2或F(x,y) = O倾斜角,&为直线的斜率,I召I= J(XI +心)‘ _4召心・12.圆锥曲线的两类对称问题:(1)曲线F(X,y) = O关于点P(X o,儿)成中心对称的曲线是F(2x0-x t2y0 -y)=0.(2)曲线F(X,y) = 0关于直线Av + Bv + C = O成轴对称的曲线是—2A(Ar + By+ C) 2B(Ax + By + C)x CFa ------ —R——、y --------- -V———)=0・√Γ+歹A" + B'特别地,曲线F(X9 y) = 0关于原点O成中心对称的曲线是F(-x,-y) = 0・曲线F(X9 y) = 0关于直线X轴对称的曲线是F(X^y) = 0.曲线F(X9 y) = 0关于直线y轴对称的曲线是F(-x, y) = 0・曲线F(X9 y) = 0关于直线y = x轴对称的曲线是F{y.x) = 0.曲线F(X,y) = 0关于直线y = -x轴对称的曲线是F(-y,-x) = 0・13 •圆锥曲线的第二定艾:动点M到定点F的距离与到定直线/的距离之比为常数£,若0 VfVl, M的轨迹为椭圆;若e = ∖9 M的轨迹为抛物线;若e>∖9 M的轨迹为双曲线.注意:J还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定狡2、还记得圆锥曲线方程中的:2(1)在椭圆中:α是长半轴,〃是短半轴,C是半焦距,其中b2 =a2-C29 f = (Ovwvl)是离心率,—a C• 2. 2是准心距,-L是准焦距,-L是半通径.C a2(2)在双曲线中:"是实半轴,b是虚半轴,C是半焦距,其中b2 =c2-a29 e = -∖e>l)是离心率,L是a C准心距,伫是准焦距,冬是半通径.C a(3)在抛物线中:0是准焦距,也是半通径.3、在利用圆锥曲线统一定狡解题吋,你是否注意到定艾中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(0 = √Σ)5、在用圖锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式A 2 0的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在Δ >0下进行).注意:尤其在求双曲线与直线的交点时:当A>0时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况):当A = O时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当AvO时,直线与双曲线没有交点.6、椭圆中,注意焦点.中心.短轴端点所组成的直角三角形•此时Cr =b2+c2・7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)8、你知道椭圆、双曲线标准方程中aj∖c之间关系的差异吗9、如果直线与双曲线的渐近线平行吋,直线与双曲线相交,只有一个交点;如果直线与拋扬线的轴平行时,直线与抛物线相交,只有一个交点•此时两个方程联立,消元后为方程变为一次方程.椭圆练习1・过椭圆二+二=1 (a>b>O)的左焦点F I任做一条不与长轴重合的弦AB, F2为椭圆的右焦点,則AABA的周长是/ b^( )(A)2a (B)4a (C)2b (D) 4b2•设a,beR.a2+2b2 =6,则α + b 的最小值是( )(A) - 2√2 (B)-垃(0-3 (D)-2323. 椭圆的两个焦点和短轴的两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )(A)丄 (B)遇 (C)遇 (D)丄或遇2 23 2 24. 设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,則m 的值等于( )(A) 2(B) √2(C) 2 或丄 (D) √Σ 或空2 22 25. 过椭圆二+ L = l(°>b> 0)的左焦点片作X 轴的垂线交椭圆于点P,化为右焦点,若ZF i PF. = 60 ,则Cr "椭圆的离心率为()(A)^⑻迟 (C)I(D)I23236. 如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的() (A) 18 倍 (B) 12 倍 (C) 9 倍 (D) 4 倍7. 当关于X, y 的方程X 2Sin^ -y 2COSCr=I 表示的曲线为椭圆时,方程(x+cos α)'+(y+ Sinaf)Jl 所表示的圆的國心在()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限8. 已知椭圆的焦点为F b F 2,P 是椭圆上的一个动点,如果延长F 卩到Q,使得I PQ I=I PF 2I,那么动点Q 的轨迹是( )(A)圆 (B)椭圆 (C)直线 (D)其它9. 已知椭圆—÷-= 1与圆(χ-a)⅛Λ=9有公共点,则a 的取值范围是()9 4 (A)-6<a<6(B)0<a≤5(C)a 2<25(D) ∣a∣≤610•设椭圆的两个焦点分别为F-、F 2,过F?作椭圆长轴的垂线交椭圆于点P,若AFPFz 为等腰直角三角形,则椭 圆的离心率是()(A)YZ(B)幺二! (C) 2-√2(D) √2-l2 2SS11. 在椭圆—÷γ-≈ 1上取三点,其横坐标满足X I +×3=2X 2,三点依次与某一焦点连结的线段长为r b r 2, r 3,则有 α∙ b・I I 7()(A) r b r 2, r 3成等差数列 (B)丄+丄=二 (C) r b r 2,r 3^等比数列 (C)以上都不对 12•已知椭圆C ι- + y 2= 1的右焦点为F,右准线为/,点Ae/ ,线段4F 交C 于点B,若FA = 3FB, »■]2伍若椭圆之+「I 的离心率是、则W*16 •椭圆X 2COs 2 α +y 2=1 (0< a <ΛR, a≠ y )的半长轴= ------- ,半短轴= -------- ,半焦距= -------- ,离心率= ----------------- = --------- ,則该椭圆的离心率的取值范围为 ____________________ ・(A) (0.1)(B) (0.1)(0(0,#)(D)哼,1)13.已知片、耳是椭國的两个焦点,满足・"庁=0的点M 总在椭圆内部•则椭圆离心率的取值范围是()14. 一个椭圆中心在原点,焦点斤、C 在X 轴上,P (2, √J)是椭圆上一点,且1卩斤1、1斥巴I 、IP 耳I 成等差数列,則椭圆方程为()(A) ⅞4- ⑻护汀<C) ⅜÷⅞ = ∙ I 丽二()(A) √2 (B) 2 (C)^(D) 317.已知椭圆⅛4= ↑(a>b>O)的左、 右焦点分别为斤(一c,0),耳(c,0), 若椭圆上存在一点P 使Sin PI71F2 Sin PF l F X是椭圆二+ 2_ = i上的一A,F I,F2是椭圆的焦点,且ZF I MF2=9O o,则ZkFNF?的面积等于9 419•与圆(x+1)2+y2=1相外切,且与IS(X-I)2÷y2=9相内切的动圆圆心的轨迹方程是X = 4COSa , …Ir20•设椭圆( L (□为参数)上一点P与X轴正向所成角ZPOx=-, 点P的坐标是y = 2√3 Sin a 321.在平面直角坐标系.9y中,椭E)4÷4 = 1G∕>∕7>O)的焦距为2c,以0为圆心,为半径作圆M ,若过P(Qe) Cr Iy C作圆M的两条切线相互垂直,则椭圆的离心率为 _________________22•已知直线/ : y=mx+b,椭圆C: (A ^.I)÷y2=1,若对任意实数叫/与C总有公共点,則a, b应满足的条件“是 _________ •23•椭圆F=4cos0 (。
圆锥曲线公式及知识点总结
圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
圆锥曲线的参数方程知识讲解
B
4p
②∵|AB|= 6 2 p
点F到直线AB的距离是:d 7 pO
X
22
SABF
1 2
AB
d
1 2
6
2p
7p
A
42
p
2
p
22
3 3
例3、过抛物线y2 2 px( p 0)的顶点O任作互相垂直的弦OA、OB
①求证:直线AB恒过一个定点; ②求分别以OA、OB为直径的两圆异于O的交点M的轨迹方程。
D
C
ab(1 cos )sin
A
O
BX
显然,0°<θ<90°,0<cosθ<1
令:y (1 cos ) sin sin 1 sin 2
2
y/ cos cos 2 2cos2 cos 1
2cos 1cos 1
当cos
1 2
时,ymax
3 3 4
(S ABCD )max
3 3 ab 4
——圆、椭圆的参数方程
1、圆的参数方程
Y
圆心为C(a,b)半径为R的圆的参数方程:
x a R cos
y
b
R
sin
0, 2
b
参数θ是旋转角。
O
M(x,y)
Rθ
X a
例1、指出下列圆的圆心坐标和半径(其中θ为参数):
x 2 3cos
(1)
y
2
3 s in
x 3 4cos
(2)
y
3
4
sin
圆心坐标 (2, – 2 )
半径
R=3
圆心坐标 (3, 3 )
半径
R=4
例2、实数x,y满足 x2 y2 2x 4 y, 求2x – y 的取值范围。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线的参数方程全解
将y=
b
a x代入①,解得点A的横坐标为
a
①
xA = a2(sec tan).
解: 同理可得,点B的横坐标为xB = a2(sec tan).
设AOx=,则tan b . 所以MAOB的面积为
a
S MAOB =|OA||OB|sin2 =
xA
cos
xB
cos
sin2
过点A作圆C1的切线AA '与x轴交于点A ' ,
过圆C2与x轴的交点B作圆C2的切线BB'与直线OA交于点B'. 过点A ' ,B'分别作y轴,x轴的平行线A' M,B' M交于点M.
双曲线的参数方程
y
设M (x, y) 则A' (x, 0), B'(b, y).
a
B'
A
•M
点A在圆C1上 A(acos,asin).
又OA AA',OA AA'=0
o B A' x
b
AA' =(x-acos,-asin )
a cos(x a cos) (a sin)2 0 解得:x a
又 点B'在角的终边上,记 由三角函数定义有:tan y .
co1sy消saxbe去22cta参n数by22得:x1
2
2
说明:⑴ 这里参数 叫做双曲线的离心角与直线OM
的倾斜角不同. ⑵ 双曲线的参数方程可以由方程
x2 a2
y2 b2
1
与三角
恒等式sec2 1 tan2 相比较而得到,所以双曲
线的参数方程的实质是三角代换.
圆锥曲线的参数方程
y
2pt.
(t为参数,t
R)
o
Hx
其中参数t=
1
tan
(
0),当
=0时,t=0.
几何意义为: 抛物线上除顶点外的任意一点与原点连线的斜率的倒数。
即P(x,y)为抛物线上任意一点,则有t=
x y
.
二、讨论学案
尝试练习:若6题选择普通方程如何解决?哪 种解法更方便。
巩固提高:6题中的
4
是参数方程中的
y2 100
1
练习2:已知椭圆的参数方程为
x 2cos
y
sin
(
是
参数) ,则此椭圆的长轴长为( 4 ),短轴长为
( 2 ),焦点坐标是(( 3, 0)),离心率是
( 3 )。 2
一、圆锥曲线的参数方程的推导
2、(1)双曲线的参数方程的推导
(2)双曲线的参数方程中参数的几何意义
以原点O为圆心,a,b为半径作同心圆C1,C2,设A 为C1上任一点,作直线OA,过点A作圆C1的切线 AA,与x轴交于A,,过圆C2与x轴的交点B作圆C2 的切线BB,与直线OA交于点B,,过点A,,B,分 别作y轴和x轴的平行线A,M,B,M交于点M,设
2
2
说明:
o B A' x
⑴ 这里参数 叫做双曲线的离心角与直线OM的倾斜角不同.
⑵se双c2曲线的1参t数an方2 程相可比以较由而方得程到,ax22所以by22双曲1与线三的角参恒数等方式程
的实质是三角代换.
1.双曲线 为_____.
x
y
3sec tan
(为参数)的渐近线方程
一、圆锥曲线的参数方程的推导
y 1t
2.2圆锥曲线的参数方程课件-高二A版数学(文)人教选修4-4
所以, 矩形ABCD最大面积为160
D BA
2
AF
1
1
C
OF
B2
B
1
A XX
2
y
(为参数)
10sin
(3)
x2 9
y2 25
1
(4)
x2 64
y2 100
1
二、双曲线的参数方程
双曲线的参数方程
设M (x, y)
y
a
B'
A
•M
在OAA'中,x
| OA' | | OA | b b • sec,
cos cos
b
o B A' x
在OBB '中,y | BB ' || OB | • tan b • tan.
都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为 2,π3. (1)求点A,B,C,D的直角坐标;
例2 已知A,B分别是椭圆 3x62 +y92 =1的右顶点和上顶点,动点 C在该椭圆上运动,求△ABC的重心G的轨迹方程.
解 由题意知A(6,0),B(0,3).由于动点C在椭圆上运动, 故可设动点C的坐标为(6cos θ,3sin θ),点G的坐标设为(x,y),
抛物线的参数方程
y
M(x,y)
抛物线y2 =2px(p>0)的参数方程为:
x=2pt2 ,
y
2pt.
(t为参数,t
R)
o
Hx
其中参数t=
1
tan
(
0),当
=0时,t=0.
几何意义为:抛物线上除顶点外的任意一点与原点连线的斜率的倒数。
圆锥曲线的参数方程
x x1 a y y1 b
-5 5
(a,b) O1
P(x,y)
v(a,b)
显然当sin( θ+ 小值,分别为
1 2 2
4
)=
1时,d 取最大值,最 ,2
2 1 。
1 例4: 已知A,B两点是椭圆 9 与坐标轴 正半轴的两个交点,在第一象限的椭圆弧上求一点P, 使四边形OAPB的面积最大. 小结: 借助参数方 x 3 cos 解 : 椭圆参数方程 程,可以将曲线上的 y 2 sin 设点P(3cos ,2sin ) 任意一点的坐标用三 SABC 面积一定, 需求 SABP 最大即可 角函数表示,利用三 角知识加以解决。 即求点P到线AB的距离最大值
圆锥曲线的参数方程
1.曲线的参数方程的概念
在取定的坐标系中,如果曲线上任意一 点的坐标 x, y 都是某个变数 t 的函数
x f (t ), y (t ),
(1)
并且对于t 的每一个允许值,由方程组 (1) 确定的点M( x, y ),都在这条曲线上, 那么方程组 (1) 就叫做这条曲线的参数 方程。
x=bcot φ y2 x2 ( φ 为参数 ) 2- 2=1(a>0,b>0) a b y=acsc φ
4、抛物线的参数方程
设抛物线的普通方程y 2 2 px y 因为点M在的终边上可得 t an x 2p x t an2 解出x, y,得到 (为参数) y 2 p t an
圆锥曲线的参数方程 课件
椭圆的参数方程及应用
将参数方程yx==35scionsθθ (θ 为参数)化为普通方 程,并判断方程表示曲线的焦点坐标.
【思路探究】 根据同角三角函数的平方关系,消去参 数,化为普通方程,进而研究曲线形状和几何性质.
【自主解答】
由yx==35scionsθθ
得csionsθθ==3y5x,,
两式平方相加,得x522+3y22=1.
抛物线的参数方程
设抛物线 y2=2px 的准线为 l,焦点为 F,顶点 为 O,P 为抛物线上任一点,PQ⊥l 于 Q,求 QF 与 OP 的交 点 M 的轨迹方程.
【思路探究】 解答本题只要解两条直线方程组成的方 程组得到交点的参数方程,然后化为普通方程即可.
【自主解答】 设 P 点的坐标为(2pt2,2pt)(t 为参数), 当 t≠0 时,直线 OP 的方程为 y=1t x, QF 的方程为 y=-2t(x-p2), 它们的交点 M(x,y)由方程组
∴a=5,b=3,c=4.
因此方程表示焦点在 x 轴上的椭圆,焦点坐标为 F1(4,0)
和 F2(-4,0).
椭圆的参数方程yx==bacsionsθθ,, (θ 为参数,a,b 为常数, 且 a>b>0)中,常数 a、b 分别是椭圆的长半轴长和短半轴长, 焦点在长轴上.
若本例的参数方程为yx==53scionsθθ ,(θ 为参数),则如何求 椭圆的普通方程和焦点坐标?
它到两渐近线的距离分别是 d1 和 d2,
则
d1·d2=|absec
φ+abtan b2+a2
φ| ·
|absec φ-abtan φ| b2+-a2
=|a2b2seac22+φ-b2tan2 φ|=aa2+2b2b2(定值).
圆锥曲线的参数方程练习题(带答案)
圆锥曲线的参数方程练习题(带答案)1.若点P(3,m)在以点F为焦点的抛物线y^2=4x上,则PF 等于多少?解析:抛物线的准线为x=-1,焦点为F(-1,0),参数方程为x=4t^2,y=4t。
因此PF为P到准线x=-1的距离,即PF=|3+1|=4.所以选C。
2.参数方程{x=sinθ+cosθ,y=1+sin^2θ}所表示的曲线是什么?解析:将参数方程化为普通方程,得x^2=y(0≤y≤2),表示抛物线的一部分。
所以选B。
3.椭圆{x=5cosφ,y=3sinφ}的焦点坐标是什么?解析:椭圆的普通方程为x^2/25+y^2/9=1,因此c=sqrt(25-9)=4.又因为椭圆焦点在x轴上,所以焦点坐标为(±4,0)。
所以选B。
4.已知过曲线{x=3cosθ,y=4sinθ}上一点P和原点O的连线PO的倾斜角为π/4,则P点的坐标是什么?解析:直线PO的方程为y=x,又点P为曲线{x=3cosθ,y=4sinθ}上一点,因此3cosθ=4sinθ,即tanθ=3/4.因为倾斜角为π/4,所以θ∈[0,π/4]。
解得sinθ=3/5,cosθ=4/5.因此P点的坐标为(3,4/5×3)= (3,12/5)。
所以选D。
5.已知O为原点,P为椭圆{x=4cosα,y=2/3sinα}上第一象限内一点,OP的倾斜角为π/3,则点P坐标为什么?解析:椭圆的普通方程为16cos^2α/16+9sin^2α/4=1,即cos^2α/4+sin^2α/16=1.直线OP的斜率为tan(π/3)=sqrt(3),因此OP的方程为y=sqrt(3)x。
联立解得x=4/5,y=4sqrt(3)/15.因此点P的坐标为(4cosα,2/3sinα)=(4×4/5,2/3×4sqrt(3)/5)=(16/5,4sqrt(3)/5)。
所以选D。
《直线和圆锥曲线的参数方程》 知识清单
《直线和圆锥曲线的参数方程》知识清单一、直线的参数方程1、直线参数方程的标准形式若直线过点\(M(x_0,y_0)\),倾斜角为\(\alpha\),则直线的参数方程为\(\begin{cases}x = x_0 + t\cos\alpha \\ y = y_0 +t\sin\alpha\end{cases}\)(\(t\)为参数)。
参数\(t\)的几何意义:\(t\)表示直线上动点\(M(x,y)\)到定点\(M_0(x_0,y_0)\)的有向线段\(\overrightarrow{M_0M}\)的数量。
当点\(M\)在点\(M_0\)上方时,\(t\gt 0\);当点\(M\)在点\(M_0\)下方时,\(t\lt 0\);当点\(M\)与点\(M_0\)重合时,\(t = 0\)。
2、直线参数方程的一般形式对于直线的一般方程\(Ax + By + C = 0\),可以通过引入参数\(t\),将其转化为参数方程\(\begin{cases}x = x_0 + at \\ y =y_0 + bt\end{cases}\)(\(t\)为参数),其中\(a\)、\(b\)为实数,且满足\(a^2 + b^2 = 1\)。
二、圆锥曲线的参数方程1、椭圆的参数方程中心在原点,焦点在\(x\)轴上的椭圆\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a\gt b\gt 0\))的参数方程为\(\begin{cases}x = a\cos\theta \\ y = b\sin\theta\end{cases}\)(\(\theta\)为参数)。
参数\(\theta\)的几何意义:\(\theta\)表示椭圆上动点\(M(x,y)\)对应的离心角,即\(M\)与原点连线与\(x\)轴正半轴的夹角。
中心在原点,焦点在\(y\)轴上的椭圆\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a\gt b\gt 0\))的参数方程为\(\begin{cases}x = b\cos\theta \\ y = a\sin\theta\end{cases}\)(\(\theta\)为参数)。
圆锥曲线参数方程
圆锥曲线参数方程在直角坐标系中,如果某曲线c(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线求曲线的方程1 轻易法步骤(1)建系:创建适度的坐标系,用有序实数对(x,y)则表示曲线上任一一点m的座标;(2)设点:写出适合条件的p(m)的集合p={m|p(m)};(3)则表示:用座标则表示条件p(m),列举方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)下结论:表明以化简后的方程的意指座标的点都在曲线上。
化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可以适当说明。
另外,也可以根据情况省略(2),直接列出曲线方程。
2 定义法1)如果能够确定动点的轨迹满足某一直曲线的定义,则可根据曲线的定义直接写出方程。
2)如果动点的轨迹与圆锥曲线有关,则可以运用圆锥曲线定义谋增派点的轨迹方程。
3 相关点代入法如果所求轨迹中的动点,随着另一动点的运动而运动,而另一动点存有在某条未知曲线上,常设法利用轨迹中的动点座标(x,y),则表示未知曲线上动点的座标(x1,y1),再将它代入未知曲线的方程即可。
4参数法如果很难打听增派点座标满足用户的关系,可以利用中间变量——参数,创建再生制动点座标x,y之间的联系,然后解出参数获得曲线方程。
步骤一般为导入参数——创建参数方程——解出参数,获得等价的普通方程。
5交轨法如果所求轨迹上的动点,就是两条颤抖曲线的交点,需用两曲线的方程阿提斯鲁夫尔谷Champsaur。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
圆锥曲线的参数方程
圆锥曲线的参数方程圆锥曲线是数学中重要的曲线之一,广泛应用于物理、工程等领域。
在本文中,我们将详细介绍圆锥曲线的参数方程及其应用。
一、概述圆锥曲线由一个直角三角形和一个动点P构成,动点P沿着一个固定曲线运动,同时与直角三角形的两条直角边相交,形成的轨迹即为圆锥曲线。
根据动点P的运动规律,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。
二、参数方程1. 椭圆的参数方程椭圆的参数方程表示为:x = a * cos(t)y = b * sin(t)其中,a和b分别表示椭圆在x轴和y轴的半轴长度,参数t的范围为0到2π。
2. 双曲线的参数方程双曲线的参数方程有两种形式,分别表示为:x = a * sec(t)y = b * tan(t)和x = -a * cosh(t)y = b * sinh(t)其中,a和b分别表示双曲线在x轴和y轴的半轴长度,参数t的范围为-∞到+∞。
3. 抛物线的参数方程抛物线的参数方程可以表示为:x = a * t^2y = 2a * t其中,a表示抛物线的焦点到准线的距离,参数t的取值范围为全体实数。
三、应用1. 物理学中的应用圆锥曲线在物理学中有广泛的应用,如天体轨道的描述、光的折射和反射、粒子的运动轨迹等。
例如,行星绕太阳的轨道就是一个椭圆,双曲线则用于描述开放的轨道。
2. 工程学中的应用在工程学中,圆锥曲线常用于电子设备天线的设计、车辆的运动轨迹规划等。
例如,椭圆的性质可以用于设计微波天线的辐射方向,双曲线则用于描述车辆在高速公路上的行驶轨迹。
3. 绘画与设计中的应用圆锥曲线在绘画和设计中也有着重要的应用。
椭圆被广泛运用于绘画中的构图、设计中的元素排布等。
另外,抛物线的特性使得其在建筑设计中被用于设计拱门等结构。
总结:圆锥曲线的参数方程能够准确地描述圆锥曲线的形状和性质,广泛应用于物理、工程等领域。
通过对椭圆、双曲线和抛物线的参数方程的了解,我们可以更好地理解和应用圆锥曲线的特性。
圆锥曲线知识点公式大全
圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。
它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。
1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。
2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。
焦距是c,满足c² = a² - b²。
3.离心率:离心率用e表示,e² = 1 - (b²/a²)。
离心率是一个衡量椭圆形状的指标,e=0表示圆。
4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。
5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。
6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。
7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。
以上是圆锥曲线的基本知识点和公式。
除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。
-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。
-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。
-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。
对于圆锥曲线来说,高斯曲率恒为常数。
希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 圆锥曲线的参数方程[学习目标]1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接]1.椭圆的参数方程中,参数φ是OM 的旋转角吗?提示 椭圆的参数方程⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π.3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗? 提示 ⎩⎨⎧x =2pt ,y =2pt 2(p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程2.双曲线的参数方程3.抛物线的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎨⎧x =2pt 2,y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.要点一 椭圆参数方程的应用例1 已知A 、B分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程.解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3(θ为参数),即⎩⎨⎧x =2+2cos θ,y =1+sin θ.故重心G 的轨迹的参数方程为⎩⎨⎧x =2+2cos θ,y =1+sin θ(θ为参数).规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.跟踪演练1 已知曲线C 1:⎩⎨⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.解 (1)由⎩⎨⎧x =-4+cos t ,y =3+sin t ,得⎩⎨⎧cos t =x +4,sin t =y -3.∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎨⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4); 且Q (8cos θ,3sin θ), 故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ.又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13| =55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,⎝ ⎛⎭⎪⎫其中φ由sin φ=35,cos φ=45确定,cos(θ+φ)=1,d 取得最小值855.要点二 双曲线参数方程的应用例2 求证:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.证明由双曲线x2a2-y2b2=1,得两条渐近线的方程是:bx+ay=0,bx-ay=0,设双曲线上任一点的坐标为(a sec φ,b tan φ),它到两渐近线的距离分别是d1和d2,则d1·d2=|ab sec φ+ab tan φ|b2+a2·|ab sec φ-ab tan φ|b2+(-a)2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b 2a 2+b 2(定值). 规律方法 在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.跟踪演练2 如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.证明 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=(sec φ+2)2+tan 2φ =2sec 2φ+22sec φ+1, |PF 2|=(sec φ-2)2+tan 2φ =2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=(2sec 2φ+1)2-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2. 要点三 抛物线参数方程的应用例3 设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.解设P点的坐标为(2pt2,2pt)(t为参数),当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t⎝ ⎛⎭⎪⎫x -p 2, 它们的交点M (x ,y )由方程组⎩⎪⎨⎪⎧y =1tx y =-2t ⎝⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.规律方法 1.抛物线y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.跟踪演练3 已知抛物线的参数方程为⎩⎨⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).答案 21.圆的参数方程⎩⎨⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角,椭圆参数方程⎩⎨⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角. 2.椭圆(x -m )2a 2+(y -n )2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =m +a cos φ,y =n +b sin φ(φ为参数).3.双曲线的参数方程中,参数φ的三角函数cot φ、sec φ、csc φ的意义分别为cot φ=1tan φ,sec φ=1cos φ,csc φ=1sin φ.4.抛物线y 2=2px 的参数方程⎩⎨⎧x =2pt 2,y =2pt (t 为参数),由于y x =1t ,因此t 的几何意义是抛物线的点(除顶点外)与抛物线的顶点连线的斜率的倒数.5.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.1.参数方程⎩⎨⎧x =e t +e -t,y =2(e t -e -t)(t 为参数)的普通方程是( )A.抛物线B.一条直线C.椭圆D.双曲线解析 由参数方程⎩⎨⎧2x =2e t +2e -t,y =2(e t -e -t)平方相减可得4x 2-y 2=16,即x 24-y 216=1,故答案为D. 答案 D2.椭圆⎩⎨⎧x =4+5cos φ,y =3sin φ(φ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析 利用平方关系化为普通方程:(x -4)225+y 29=1.∴焦点(0,0),(8,0). 答案 D3.参数方程⎩⎨⎧x =sin α2+cos α2,y =2+sin α(α为参数)表示的普通方程是________. 解析 因x 2=1+sin α,y 2=2+sin α,所以y 2-x 2=1,又因x =sin α2+cosα2=2sin ⎝ ⎛⎭⎪⎫α2+π4,所以答案为y 2-x 2=1(|x |≤2且y ≥1).答案 y 2-x 2=1(|x |≤2且y ≥1)4.点P (1,0)到曲线⎩⎨⎧x =t 2,y =2t (参数t ∈R )上的点的最短距离为( )A.0B.1C. 2D.2解析 d 2=(t 2-1)2+4t 2=(t 2+1)2.∵t ∈R ,∴d 2min =1,∴d min =1.答案B5.已知点P是椭圆x24+y2=1上任意一点,求点P到直线l:x+2y=0的距离的最大值.解 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π).又直线l :x +2y =0. 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45.又θ∈[0,2π),∴d max =225=2105, 即点P 到直线e :x +2y =0的距离的最大值为2105.一、基础达标1.参数方程⎩⎨⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A.x 2+y 24=1B.x 2+y 22=1C.y 2+x 24=1D.y 2+x 24=1解析 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.答案 A2.方程⎩⎨⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )A.圆B.椭圆C.双曲线D.双曲线的一部分解析 由x cos θ=a ,∴cos θ=a x,代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |],∴曲线应为双曲线的一部分. 答案 D3.若点P (3,m )在以点F 为焦点的抛物线⎩⎨⎧x =4t 2,y =4t (t 为参数)上,则|PF |等于( ) A.2 B.3 C.4D.5解析 抛物线为y 2=4x ,准线为x =-1,|PF |为P (3,m )到准线x =-1的距离,即为4. 答案 C4.当θ取一切实数时,连接A (4sin θ,6cos θ)和B (-4cos θ,6sin θ)两点的线段的中点的轨迹是( ) A.圆 B.椭圆 C.直线D.线段解析 设中点M (x ,y ),由中点坐标公式,得x =2sin θ-2cos θ,y =3cos θ+3sin θ,即x 2=sin θ-cos θ,y 3=sin θ+cos θ,两式平方相加,得x 24+y 29=2,是椭圆.答案 B5.实数x,y满足3x2+4y2=12,则2x+3y的最大值是________.解析因为实数x,y满足3x2+4y2=12,所以设x=2cos α,y=3sin α,则2x +3y =4cos α+3sin α=5sin(α+φ),其中sin φ=45,cos φ=35.当sin(α+φ)=1时,2x +3y 有最大值为5. 答案 56.抛物线y =x 2-2xt的顶点轨迹的普通方程为________.解析 抛物线方程可化为y =⎝ ⎛⎭⎪⎫x -1t 2-1t 2,∴其顶点为⎝ ⎛⎭⎪⎫1t ,-1t 2,记M (x ,y )为所求轨迹上任意一点,则⎩⎪⎨⎪⎧x =1t ,y =-1t 2,消去t 得y =-x 2(x ≠0).答案 y =-x 2(x ≠0)7.如图所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?解 抛物线标准方程为x 2=2y ,其参数方程为⎩⎨⎧x =2t ,y =2t 2.得M (2t ,2t 2). 设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎨⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴为对称轴,焦点为(0,1)的抛物线.二、能力提升8.若曲线⎩⎨⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A.RB.(0,+∞)C.(0,1)D.[0,1) 解析 将曲线⎩⎨⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2= -(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.答案 D9.圆锥曲线⎩⎨⎧x =t 2,y =2t (t 为参数)的焦点坐标是________. 解析 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).答案 (1,0)10.设曲线C 的参数方程为⎩⎨⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析 ⎩⎨⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.答案 ρcos 2θ-sin θ=011.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α,(α为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 三、探究与创新12.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝⎛⎭⎪⎫0,32到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.解 设椭圆的参数方程是⎩⎨⎧x =a cos θy =b sin θ,其中,a >b >0,0≤θ<2π.由e 2=c 2a 2=a 2-b 2a 2=1-⎝ ⎛⎭⎪⎫b a 2可得b a =1-e 2=12即a =2b .设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+⎝ ⎛⎭⎪⎫y -322=a 2cos 2θ+⎝ ⎛⎭⎪⎫b sin θ-322=a 2-(a 2-b 2)sin 2θ-3b sin θ+94=4b 2-3b 2sin 2θ-3b sin θ+94=-3b 2⎝ ⎛⎭⎪⎫sin θ+12b 2+4b 2+3,如果12b >1即b <12,即当sin θ=-1时,d 2有最大值,由题设得(7)2=⎝⎛⎭⎪⎫b +322,由此得b =7-32>12,与b <12矛盾.因此必有12b≤1成立,于是当sin θ=-12b时,d 2有最大值, 由题设得(7)2=4b 2+3,由此可得b =1,a =2.所求椭圆的参数方程是⎩⎨⎧x =2cos θ,y =sin θ. 由sin θ=-12,cos θ=±32可得,椭圆上的点⎝ ⎛⎭⎪⎫-3,-12,点⎝⎛⎭⎪⎫3,-12到点P 的距离都是7.(注:可编辑下载,若有不当之处,请指正,谢谢!)。