(完整版)高二文科数学立体几何平行与垂直部分练习题
高二文科数学立体几何平行及垂直部分练习题
.高二文科数学立体几何平行与垂直局部练习题1.如图,在正方体ABCD A1B1C1D1中,E是AA1的中点.〔1〕求证:A1C//平面BDE;(2)求证:平面A1AC 平面BDE;(3)求直线BE与平面A1AC所成角的正弦值.2.如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.3.如图,四棱锥P ABCD中,底面ABCD为矩形,PA平面ABCD,E是PD 的中点.〔1〕证明:PB//平面AEC;〔2〕设AP1,AD3,三棱锥P3,求A到平面PBC的距离.ABD的体积V4..PEA DB C4.如图,四边形ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥DC;PNCDA M B5.四棱锥PABCD的底面为直角梯形,AB//DC,DAB90,PA底面ABCD,且PA ADDC1,AB2,M是PB的中点.1〕求证:CMP面PAD;2〕证明:面PAD面PCD;3〕求AC与PB所成的角的余弦值;〔4〕求棱锥M PAC的体积。
6.四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,此中BC=2AB=2PA=6,M、N为侧棱PC上的两个三平分点..P NA DMBC1〕求证:AN ∥平面MBD;2〕求异面直线AN 与PD 所成角的余弦值;3〕求二面角M-BD-C 的余弦值.7.如图,ABCD 是正方形,O 是正方形的中心, P O底面ABCD ,E 是PC 的中点。
求证:〔1〕PA ∥平面BDE 2〕平面PAC 平面BDE8.在四棱锥P ABCD 中,底面ABCD 为矩形,PD底面ABCD ,AB1,BC2,PD3,G 、F 分别为AP 、CD 的中点.(1) 求证:FG//平面BCP ;(2) 求证: AD PC ;PG DF CA B9.如图,在侧棱垂直于底面的三棱柱 ABC A 1B 1C 1中,AC3,AB 5,BC 4,..AA14,点D是AB的中点.C1B1A1CBDA1〕求证:ACBC1;2〕求证:AC1//平面CDB13〕求三棱锥A1B1CD的体积.10.如图,在斜三棱柱ABC A1B1C1中,侧面AA1B1B底面ABC,BAA1600,AA12,底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE 1BC1.3A1B1C1EABGC1〕求证:GE//侧面AA1B1B;〔2〕求证:AB A1C.11.如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1= 3.(1)求证:BC1∥平面A1CD;(2)求三棱锥D-A1B1C的体积...12.直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;1(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,此中S为底面面积,h为高)313.如图,在直三棱柱ABCA1B1C1中,AB AC5,BB1BC6,D、E分别为AA1和B1C的中点.1〕求证:DE//平面ABC;〔5分〕2〕求三棱锥EBCD的体积.〔7分14.△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,获得三棱锥A-BCF,此中BC2.2(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD 2F-DEG的体积V.时,求三棱锥3..15.〔本小题总分值12分〕如图,四棱锥P ABCD中,AP⊥平面PCD,AD∥BC,AB BC 1AD,E,F分别为2线段AD,PC的中点.1〕求证:AP∥平面BEF;2〕求证:BE⊥平面PAC16.如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF平面ABCD,BF=3,G、H分别是CE和CF的中点.〔Ⅰ〕求证:AF//平面BDGH;〔Ⅱ〕求VEBFH17.如图1,直角梯形ABCD中,AB//CD,BAD 900,AB AD 2,CD4,点E为线段AB上异于A,B的点,且EF//AD,沿EF将面EBCF折起,使平面EBCF..平面AEFD,如图2.〔1〕求证:AB//平面DFC;〔2〕当三棱锥F ABE体积最大时,求整个几何体的体积。
立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)
立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。
新课标高中数学立体几何平行与垂直练习题
立体几何-——平行与垂直练习题1. 空间四边形SABC 中,SO ⊥平面ABC ,O 为∆ABC 的垂心,求证: (1AB ⊥平面SOC (2平面SOC ⊥平面SABCA2. 如图所示,在正三棱柱ABC- A 1B 1C 1中,E ,M 分别为BB 1,A 1C 的中点,求证: (1 EM ⊥平面A A 1C 1C; (2平面A 1EC ⊥平面AA 1C 1C ;EMA 1B 1C 1AB C3. 如图,矩形ABCD 中,AD ⊥平面ABE ,BE=BC ,F 为CE 上的点,且BF ⊥平面ACE ,G 为 AC 与BD 的交点. (1求证:AE ⊥平面BCE. (2求证:AE ∥平面BFD.4. 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图, (1证明PQ ∥平面AA 1B 1B ;(2求线段PQ 的长.5. 如图,在四棱锥P —ABCD 中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.若M 为PA 的中点,求证:DM //面PBC .6. 已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点,求证:(1直线MF ∥平面ABCD ; (2平面AFC 1⊥平面ACC 1A 1.7. 如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点,求证:(1MN ∥平面PAD ;(2MN ⊥CD ;(3若二面角P-DC-A=45°,则MN ⊥平面PDC.8. 如图,在三棱柱ABC -A 1B 1C 1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB 1=2,M ,N 分别是AB ,A 1C 的中点.求证:(1MN ∥平面BCC 1B 1; (2 MN ⊥平面A 1B 1C ;9. 如图所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD , 且AB=2,SC=SD=2. 求证:平面SAD ⊥平面SBC.10. 如图所示,在直.三棱柱...ABC -A 1B 1C 1中,AC ⊥BC . (1 求证:平面AB 1C 1⊥平面AC 1;(2 若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,试确定点E 的位置;若不存在,请说明理由.11. 如图,把等腰Rt △ABC 沿斜边AB 旋转至△ABD 的位置,使CD =AC, (1求证:平面ABD ⊥平面ABC ; (2求二面角C-BD-A 的余弦值.12. 如图,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点. 求证:(1EN ∥平面PCD ; (2平面PBC ⊥平面ADMN ;11113.如图,AB 为⊙O 直径,C 为⊙O 上一点,PA ⊥平面ABC ,A 在PB 、PC 上的射影分别为E 、F ,求证:PB ⊥平面AFE.14.四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AB ⊥BC ,AB=BC=1,DC=2,点E 在PB 上. (1求证:平面AEC ⊥平面PAD. (2当PD ∥平面AEC 时,求PE ∶EB 的值.15. 如图,已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,D ,S 分别为PB ,AB ,BC 的中点.求证: (1 P A ∥平面CDM ; (2SN ⊥平面CDM .16. 一个多面体的直观图和三视图如图所示,其中M ,G 分别是AB ,DF 的中点. (1求证:CM ⊥平面FDM ;(2在线段AD 上(含A ,D 端点确定一点P ,使得GP ∥平面FMC ,并给出证明.。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何平行与垂直练习题
线面平行垂直练习题一、选择题1、若空间四点A 、B 、C 、D 可以确定一个平面,则这四点中( )A 、必有三点共线B 、必有三点不共线C 、至少有三点共线D 、不可能有三点共线2若//,//a ααβ,则a 与β的位置关系是 ( )A .//a βB .a 与β相交C .//a β或a 与β相交D .//a β或a β⊂3、已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )A.一定是异面B.一定是相交C.不可能平行D.不可能相交 4、对于平面α和共面的直线m 、n ,下列命题中真命题是A.若m ⊥α,m ⊥n ,则n ∥αB.若m ∥α,n ∥α,则m ∥nC.若m ⊂α,n ∥α,则m ∥nD.若m 、n 与α所成的角相等,则n ∥m 5. 在下列四个正方体中,能得出AB ⊥CD 的是( )6、梯形ABCD 中,AB//CD ,AB ⊂平面α,CD 在面α外,则直线CD 与平面α内的直线的位置关系只能是( )A. 平行B. 平行或异面C. 平行或相交D. 异面或相交 7、已知α∥β,a α⊂,B β∈, 则在β内过点B 的所有直线中( ). A .不一定存在与a 平行的直线 B .只有两条与a 平行的直线 C .存在无数条与a 平行的直线 D .存在唯一一条与a 平行的直线 8、关于直线m 、n 与平面α、β,有下列四个命题: ①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //.ABDHEFGC其中真命题的序号是:()A. ①、②B. ③、④C. ①、④D. ②、③9、以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个10、设A、B、C、D是空间四个不同的点,在下列命题中,不正确...的是(A)若AC与BD共面,则AD与BC共面(B)若AC与BD是异面直线,则AD与BC是异面直线(C) 若AB=AC,DB=DC,则AD=BC(D) 若AB=AC,DB=DC,则AD ⊥BC二、填空题:11、已知m、l是直线,α、β是平面,给出下列命题①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且α∥β,则m∥l.其中正确的命题的序号是_____(注:把你认为正确的命题的序号都填上).12、有以下四个命题:①直线与平面没有公共点,则直线与平面平行②直线与平面内的任意一条直线不相交,则直线与平面平行③直线与平面内的无数条直线不相交,则直线与平面平行④平面外一条直线与平面内的一条直线平行,则该直线与平面不相交正确的是_____(注:把你认为正确的命题的序号都填上).三、解答题13如下图,在三棱锥A-BCD中,E,F,G,H分别是边AB,AC,CD,BD的中点,且AD=BC,求证四边形EFGH是菱形。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何练习题
立体几何题型一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ;(2)证明PB ⊥平面EFD例2.四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB ==(Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. 变式:已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA =AD =DC =21AB =1,M 是PB 的中点.(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.ACDBCASOE A DCBNM EP题型二、空间角与距离例3.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的 菱形,4A B C π∠=, OA ABCD ⊥底面, 2O A =,M 为O A 的中点。
(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。
例4. 如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离. 变式:如图,正三棱锥O A B C -的三条侧棱O A 、O B 、O C 两两垂直,且长度均为2.E 、F 分别是A B 、A C 的中点,H 是E F 的中点,过E F 的平面与侧棱O A 、O B 、O C 或其延长线分别相交于1A 、1B 、1C ,已知132O A =.(1)求证:11B C ⊥面O A H ; (2)求二面角111O A BC --的大小.1C 1A题型三、探索性问题例5.在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证://EF 平面PAD ;(2)当平面PCD 与平面ABCD 成多大二面角时,⊥EF 平面PCD ?变式:如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形 (1)求证:AD ⊥BC(2)求二面角B -AC -D 的大小(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由.DC题型四、折叠、展开问题例6.已知正方形A B C D E 、F 分别是A B 、C D 的中点,将AD E 沿D E 折起,如图所示,记二面角A D E C --的大小为(0)θθπ<< (1) 证明//B F 平面ADE ;(2)若A C D 为正三角形,试判断点A 在平面B C D E 内的射影G 是否在直线E F 上,证明你的结论,并求角θ的余弦值。
高中数学高考总复习立体几何各种平行与垂直的判断习题及详解
立体几何各种平行与垂直的判断习题一、选择题1.设b 、c 表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是( )A. ⎭⎪⎬⎪⎫b ⊂αc ∥α⇒b ∥c B. ⎭⎪⎬⎪⎫b ⊂αb ∥c ⇒c ∥α C. ⎭⎪⎬⎪⎫c ∥αc ⊥β⇒α⊥β D.⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β [答案] C2.设α、β、γ为平面,给出下列条件:①a 、b 为异面直线,a ⊂α,b ⊂β,a ∥β,b ∥α;②α内不共线的三点到β的距离相等;③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是( )A .0B .1C .2D .3 [答案] B3(理)(2010·河南新乡调研)设α、β、γ为平面,l 、m 、n 为直线,则m ⊥β的一个充分条件为( )A .α⊥β,α∩β=l ,m ⊥lB .n ⊥α,n ⊥β,m ⊥αC .α∩γ=m ,α⊥γ,β⊥γD .α⊥γ,β⊥γ,m ⊥α[答案] B4.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC[答案] D5.(理)(2010·全国Ⅱ理)与正方体ABCD -A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点( )A .有且只有1个B .有且只有2个C .有且只有3个D .有无数个 [答案] D6.(文)平行四边形ABCD 的对角线交点为O ,点P 在平面ABCD 之外,且P A =PC ,PD =PB ,则PO 与平面ABCD 的关系是( )A .斜交B .平行C .垂直D .无法确定 [答案] C7.(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD -A 1B 1C 1D 1中,∠BAD =60°,则对角线A 1C 与侧面DCC 1D 1所成角的正弦值为( )A.12B.22C.34D.38[答案] C8.(2010·全国Ⅰ文)正方体ABCD -A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63 [答案] D9.(文)(2010·鞍山一中模拟)已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的是( )A .①②③B .②③④C .②④D .①③[答案] D10.(理)若平面α与平面β相交,直线m ⊥α,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内不一定存在直线与m 平行,但必存在直线与m 垂直D .β内必存在直线与m 平行,不一定存在直线与m 垂直[答案] C11.(文)(2010·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α∥β,则m∥nC.若m⊥α,n∥β,α⊥β,则m⊥nD.若m∥α,n⊥β,α⊥β,则m∥n[答案] A12.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案] D二、填空题1.(文)P为△ABC所在平面外一点,P A、PB、PC与平面ABC所成角均相等,又P A 与BC垂直,那么△ABC形状可以是________.①正三角形②等腰三角形③非等腰三角形④等腰直角三角形(将你认为正确的序号全填上)[答案]①②④2.(理)如图将边长为1的正方形纸板ABCD沿对角线AC折起,使平面ACB⊥平面ACD,然后放在桌面上,使点B、C、D落在桌面,这时点A到桌面的距离为________.[答案]6 33.(2010·安徽淮北一中)已知四棱锥P-ABCD的底面ABCD是矩形,P A⊥底面ABCD,点E、F分别是棱PC、PD的中点,则①棱AB与PD所在的直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△P AB的面积;④直线AE与直线BF是异面直线.以上结论正确的是________.(写出所有正确结论的编号)[答案]①③4.(文)(2010·河北唐山)如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.[答案]2 2(理)(2010·安徽巢湖市质检)已知正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是AB,BC,B1C1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时,AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是一条线段.[答案]②③④(1)求四棱锥P-ABCD的体积;(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;(3)若点E为PC的中点,求二面角D-AE-B的大小.。
平行垂直练习题及答案
平行垂直练习题及答案在数学学科中,平行和垂直是基本的几何概念。
理解和掌握平行和垂直的性质对于解决几何问题至关重要,因此平行和垂直的练习题是学习过程中必不可少的。
本文将提供一些平行和垂直的练习题,并附上详细的解答。
练习题一:判断平行关系1. 已知线段AB和线段CD的中点分别为E和F,若AE=CF且BE=DF,试判断AB和CD的关系。
2. ∠ABC = ∠PQR,∠BCD = ∠QRS,若线段AB和线段PQ平行,试判断线段CD和线段RS的关系。
3. 已知线段AB平行于线段CD,∠EAC = 70°,若∠ACD = x°,试判断∠ECA和∠ADC的大小关系。
答案一:1. 根据条件可知AE=CF,BE=DF,又根据中点划分线段的性质,且E和F分别是线段AB和线段CD的中点,所以EF=EF。
根据SAS准则可得△AEB≌△CFD,根据三角形的等边性质可知线段AB和线段CD平行。
2. 根据条件可知∠ABC = ∠PQR,∠BCD = ∠QRS,又根据等角定理可得△ABC ≌△PQR。
根据三角形的等边性质可知线段AB和线段PQ平行,所以线段CD和线段RS平行。
3. 已知线段AB平行于线段CD,所以利用平行线性质可得∠ECA = ∠ACD。
又根据答案一的证明可知线段AB和线段CD平行,所以△EAC ≌△ACD。
根据三角形的等边性质可知∠ECA = ∠ADC。
练习题二:判断垂直关系1. 线段AB与线段CD相交于点O,若∠AOB = 70°,∠COB = 110°,试判断线段AB和线段CD的关系。
2. 直线l与平面P相交于点A,若直线l垂直于线段AB,试判断直线l与平面P的关系。
3. 已知直线l垂直于平面P,线段AB在平面P内且与直线l相交于点C,试判断线段AB与平面P的关系。
答案二:1. ∠AOB = 70°,∠COB = 110°,根据角和定理可知∠AOB +∠COB = 180°。
专题测试题 立体几何中的平行与垂直问题.pptx
由,以及_1.C。,所以Co〃八。, 又C。a平面小。,所以C。〃平面。A。. 又,所以平面CEo〃平面PAD, 而CEU平面CE。,所以CE//TiftlPAD. 【变式11如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD〃平面 AEF. (1)求证:EF〃平面ABD: (2)若BD_1.CD,AE_1.平面BCD,求证:平面ΛEF_1.平面ACD. 【解析】:(1)因为BD〃平面AEF, BD平而BCD,平面AEF∩平面BCD=EF, 所以BD√EF. 因为BD平面ABD,EF平面ABD, 所以EF〃平面ABD. (2)因为AE_1.平面BCD,CD平面BCD,
【答案】:④
【解析】:①b和C可能异面,故①错:②可能CUa,故②错:③可能c〃B,cuβ,故③错:④根据面面垂直判定。 _1.B,故④正确.
6、在所有棱长都相等的三棱锥P-ABC中,D,E,F分别是ΛB,BC,CΛ的中点,卜列四个命题:
BC〃平面PDF:
(2)DF〃平面PAE;
.(3)平面PDFJ_平面ABC: (4)平面PDFJ_平面PAE.
(1)求证:ED〃平面BBCC: ⑵若AB=√⅛Bι,求证:ABJ"平面B£E. 【解析】⑴连结A。,BG,因为AAqC是矩形,D是A£的中点,所以D是AG的 中点.(2分) 在AABG中,因为D,E分别是AC∣,AB的中点, 所以DE〃B&.(4分) 因为DE。平面BB1C1C,BCl⊂平面BB1C1C, 所以ED〃平面BBCC.(6分) (2)因为AABC是正三角形,E是AB的中点, 所以CE_1.AB. 乂因为正三棱柱A1B1C1ABC中,平面ABCJ_平面ABB1A1,平面ABC∩平面ABB1A1= AB,CEU平面ABC, 所以CE平面ABB1A1.从而CElA1B.(9分) 在矩形ABBA中,因为兴所以RtΔΛ1B1B∞RtΔBiBE,Dili、
人教A版必修二立体几何平行垂直细化练习6份
垂直证明习题——面面垂直⇒线面垂直1. 如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , 90BAF ∠=︒.求证:AF ⊥平面ABCD .2. 在斜三棱柱111ABC A B C -中,侧面11AA CC ⊥平面ABC ,1AC CA =,AB AC ⊥,D 是1AA 的中点.求证:CD ⊥平面1AB .3. 如图,正方形 边长为 ,平面 平面 , , .证明: .4. 如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将A D E 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.求证:DG ⊥平面ABCE5. 如图在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD的中点.若AP AD =,且平面PAD ⊥平面ABCD ,证明:AF ⊥平面PCD .6. 如图,四棱锥,,,,为等边三角形,平面平面,为中点.求证:平面.7. 如图,在四棱锥中,底面是矩形,侧面底面,且,若、分别为、的中点.求证:平面.8. 如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD,P ABCD -//AB CD 90BCD ∠=︒224AB BC CD ===PAB∆PAB ⊥ABCD Q PB AQ ⊥PBC P ABCD -ABCD PAD ⊥ABCD 2PA PD AD ==E F PC BD EF ⊥PDCPB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:OM ⊥平面PCD .9. 如图,在四棱锥中P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒,PA PD =,M 为CD 的中点,平面PAD ⊥平面ABCD .求证:BD PM ⊥.10. 已知四棱锥中,底面是菱形,侧面平面,且,.证明:平面.11. 如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD PD CD ∠=︒====.求证:BC ⊥平面PBD .A P ABCD -ABCD PAD ⊥ABCD PA =1AD =2PD =DB ⊥PAC12. 如图,在梯形ABCD 中,//,1,60AB CD AD DC CB ABC ︒===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.求证:BC ⊥平面ACFE .垂直证明习题——面面垂直⇒线面垂直(教师版)1. 如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , 90BAF ∠=︒.求证:AF ⊥平面ABCD .【解析】证明:∵90BAF ∠=︒,∴AB AF ⊥,又平面ABEF ⊥平面ABCD ,平面ABEF平面ABCD AB =,AF ⊂平面ABEF , ∴AF ⊥平面ABCD .2. 在斜三棱柱111ABC A B C -中,侧面11AA CC ⊥平面ABC ,1AC CA =,AB AC ⊥,D 是1AA 的中点.求证:CD ⊥平面1AB .【解析】证明:∵面11ACC A ⊥面ABC ,AB AC ⊥,∴AB ⊥面11ACC A ,即有AB CD ⊥.又1AC A C =,D 为1AA 中点,则1CD AA ⊥.∴CD ⊥面11ABB A .3. 如图,正方形 边长为 ,平面 平面 , ,.证明: .【解析】证明:∵平面 平面 ,平面 平面 , ,∴ 平面 ,又 平面 ,∴又∵ , , , 平面 ,∴ 平面 , 又 平面 ,∴ .4. 如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将A D E 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.求证:DG ⊥平面ABCE【解析】证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .5. 如图在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD的中点.若AP AD =,且平面PAD ⊥平面ABCD ,证明:AF ⊥平面PCD .【解析】证明:在矩形ABCD 中,AD CD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,CD ⊂面ABCD , 所以CD ⊥平面PAD ,又AF ⊂面PAD ,所以CD AF ⊥①因为PA AD =且F 是PD 的中点,所以AF PD ⊥,②由①②及PD ⊂面PCD ,CD ⊂面PCD ,PD CD D =,所以AF ⊥平面 PCD .6. 如图,四棱锥,,,,为等边三角形,平面平面,为中点.求证:平面.【解析】证明:因为,,所以,又平面平面,且平面平面,所以平面.又平面,所以,因为为中点,且为等边三角形,所以.P ABCD -//AB CD 90BCD ∠=︒224AB BC CD ===PAB∆PAB ⊥ABCD Q PB AQ ⊥PBC //AB CD 90BCD ∠=︒AB BC ⊥PAB ⊥ABCD PAB ⋂ABCD AB =BC ⊥PAB AQ ⊂PAB BC AQ ⊥Q PB PAB ∆PB AQ ⊥又,所以平面.7. 如图,在四棱锥中,底面是矩形,侧面底面,且,若、分别为、的中点.求证:平面.【解析】因为平面平面,平面平面, 平面,又由矩形得,所以CD ⊥平面. 又平面,∴,因为,∴又,所以是等腰直角三角形,且,即又,∴而,平面,平面,所以平面 8. 如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:OM ⊥平面PCD .【解析】连结PO ,因为且O 是BD 中点,所以又因为平面平面,平面平面,平面PB BC B ⋂=AQ ⊥PBC P ABCD -ABCD PAD ⊥ABCD 2PA PD AD ==E F PC BD EF ⊥PDC PAD ⊥ABCD PAD ⋂ABCD AD =CD ⊂ABCD ABCD CD AD ⊥PAD PA ⊂PAD CD PA ⊥//EF PA CD EF⊥PA PD AD ==PAD ∆π2APD ∠=PA PD ⊥//EF PA PD EF ⊥CD PD D ⋂=CD ⊂PDC PD ⊂PDC EF ⊥PDC PB PD =PO BD ⊥PBD ⋂ABCD BD =PBD ⊥ABCD PO ⊂,所以平面.又因为平面,所以.又, , 平面,平面,所以平面.又平面,所以.在平面中,由(1)得,又,所以又,平面,平面,所以平面.9. 如图,在四棱锥中P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒,PA PD =,M 为CD 的中点,平面PAD ⊥平面ABCD .求证:BD PM ⊥.【解析】证明:取AD 中点E ,连接PE ,EM ,AC .∵底面ABCD 是菱形,∴BD AC ⊥.又∵E ,M 分别是AD ,DC 的中点,∴EM AC ,∴EM BD ⊥.∵PA AD =,∴PE AD ⊥. ∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,∴PE ⊥平面ABCD ,∴PE BD ⊥,EM PE E ⋂=,∴BD ⊥平面PEM ,PM ⊂平面PEM ,∴BD PM ⊥.10. 已知四棱锥中,底面是菱形,侧面平面,且,.证明:平面.PBD PO ⊥ABCD CD ⊂ABCD CD PO ⊥CD PC ⊥PO PC P ⋂=PO ⊂PAC PO ⊂PAC CD ⊥PAC OM ⊂PAC OM CD ⊥PAC OM PA PA PC⊥OM PC ⊥CD PC C ⋂=PC ⊂PCD CD ⊂PCD OM ⊥PCD A P ABCD -ABCD PAD ⊥ABCD PA =1AD =2PD =DB ⊥PAC A【解析】在中,,,又侧面平面,侧面平面,平面 平面 平面在菱形中,,又,平面 11. 如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD PD CD∠=︒====.求证:BC ⊥平面PBD .【解析】因为侧面PCD ⊥底面ABCD ,PD CD ⊥,所以PD ⊥底面ABCD ,所以PD BC ⊥.又底面ABCD 是直角梯形,,90,1,2AB CD ADC AB AD CD ∠=︒===, 所以BD BC ==222BD BC CD +=,所以BD BC ⊥.又PD BD D ⋂=,且PD ⊂平面PBD ,BD ⊂平面PBD ,所以BC ⊥平面PBD . 12. 如图,在梯形ABCD 中,//,1,60AB CD AD DC CB ABC ︒===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.求证:BC ⊥平面ACFE .PAD ∆PA =1AD =2PD =222AD PA PD ∴+=PA AD ∴⊥PAD ⊥ABCD PAD ABCD AD =PA ⊂PAD PA ∴⊥ABCD BD ⊂ABCD PA BD ∴⊥ABCD AC BD ⊥PA AC A =BD ∴⊥PAC【解析】在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠ABC =60°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,∴BC ⊥AC .又平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC 平面ABCD , ∴BC ⊥平面ACFE .面面平行习题1. 如图所示,在三棱柱111ABC A B C -中,D 是BC 上一点,且1A B 平面1AC D ,1D 是11B C 的中点.求证:平面11A BD ∥平面1AC D .2. 如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是1C C 、11B C 、11C D 的中点.求证:平面MNP ∥平面1A BD .3. 如图所示, 为正三角形,EC ⊥平面ABC ,DB ⊥平面ABC ,CE=CA=2BD ,M 是EA 的中点,N 是EC 的中点,求证:平面DMN ∥平面ABC .4. 如图,矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,2,1EP BP AD AE ====,,//,,AE EP AE BP G F ⊥分别是,BP BC 的中点.求证:平面//AFG 平面PCE .5. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,,,,AB AD AB DC E F ⊥分别为,PC DC 的中点,222PA DC AB AD ====.证明:平面PAD 平面EBF .6. 在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD , //,PD MA E G F 、、分别为MB PB PC 、、的中点,且2AD PD MA ==.求证:平面//EFG 平面PMA .7. 如图,在四棱锥S ABCD -中,BCD ∆为等边三角形,,120AD AB SD SB BAD ︒===∠=.若点,M N 分别是线段,SC CD 的中点,求证:平面//BMN 平面SAD .8. 如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,点M 为棱AE 的中点.求证:平面BMD ∥平面EFC .9. 如图所示,在正三棱柱ABC-A 1B 1C 1中,E ,F ,G 是侧面对角线上的点,且BE=CF=AG ,求证:平面EFG ∥平面ABC .10. 如图所示,P 是△ABC 所在平面外的一点,点A′,B′, ′分别是△PBC ,△PCA ,△PAB 的重心.求证:平面ABC ∥平面A′B′ ′.垂直证明习题——线面垂直⇒面面垂直1. 如图所示,三棱柱中,,平面.证明:平面平面.2. 如图,在四棱锥中,底面是菱形,且,,,分别为,的中点,且.求证:平面平面.111ABC A B C -90BCA ∠=°1AC ⊥1A BC ABC ⊥11ACCA P ABCD -ABCD 2PA AD ==120PAD BAD ∠=∠=︒E F PDBD 2EF =PAD ⊥ABCD3. 如图所示, ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.求证:平面BDM ⊥平面ECA .垂直证明习题——线面垂直⇒面面垂直(教师版)1. 如图所示,三棱柱中,,平面.证明:平面平面.【解析】证明:平面,.111ABC A B C -90BCA ∠=°1AC ⊥1A BC ABC ⊥11ACCA 1AC ⊥1A BC 1AC BC ∴⊥,,平面.又平面,平面平面.2. 如图,在四棱锥中,底面是菱形,且,,,分别为,的中点,且.求证:平面平面.【解析】过P 作PO ⊥AD ,垂足为O ,连结AO ,BO , 由∠PAD=120°,得∠PAO=60°,∴在Rt △PAO 中,PO=PAsin ∠PAO=2sin60°∵∠BAO=120°,∴∠BAO=60°,AO=AO ,∴△PAO≌△BAO ,∴BO=PO=∵E ,F分别是PA ,BD 的中点,EF=,∴EF 是△PBD 的中位线, ∴, ∴PB 2=PO 2+BO 2,∴PO ⊥BO ,∵A ∩BO=O ,∴PO ⊥平面ABCD , 又PO 平面PAD ,∴平面PAD ⊥平面ABCD .3. 如图所示, ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.求证:平面BDM ⊥平面ECA .90BCA ∠︒=BC AC ∴⊥BC ∴⊥11ACC A BC ⊂ABC ∴ABC ⊥11ACC A P ABCD -ABCD 2PA AD ==120PAD BAD ∠=∠=︒E F PD BD 2EF =PAD ⊥ABCD 2【解析】取AC 的中点N ,连接MN 、BN ,则MN //CF . ∵BD //CF ,∴MN //BD , ∴N ∈平面BDM .∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA . 又∵BN 平面BDM ,∴平面BDM ⊥平面ECA .垂直证明习题——线面垂直⇒线线垂直13. 如图,三棱柱111A B C-A B C 中,12AB BC AC AA ====,123ABB π∠=.证明:1AB A C ⊥.14. 如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C的中点为O ,且AO ⊥平面11BB C C .证明:1B C AB ⊥.15. 如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.证明:.16. 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.P ABCD -ABCD 2AB =120BAD ∠=AP ⊥ABCD ,M N ,BC PC AM ⊥PDA11(1)求证:CD ⊥PD .(2)求证:BD ⊥平面P AB .17. 如图,四边形ABCD 是正方形,PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形,点F 是PB 的中点,点E 是边BC 上的任意一点.求证:AF EF ⊥.垂直证明习题——线面垂直⇒线线垂直(教师版)1. 如图,三棱柱111A B C-A B C 中,12AB BC AC AA ====,123ABB π∠=.证明:1AB A C ⊥.【解析】取AB 中点D ,连11,A D A B , 因为12AB BC AC AA ====,160BAA ∠= 所以1,CD AB AB A D ⊥⊥,所以AB ⊥平面1CDA .因为1AC ⊂平面1CDA ,所以1AB A C ⊥. 2. 如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .证明:1B C AB ⊥.A11A11【解析】连接1BC , 因为侧面11BB C C 为菱形, 所以1B C 1BC ⊥,且1B C 与1BC 相交于O 点.因为AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1B C AO ⊥. 又1BC AO O =,所以1B C ⊥平面ABO ,因为AB Ì平面ABO ,所以1B C ⊥AB .3. 如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.证明:.【解析】因为底面为菱形,,所以为等边三角形, 又为中点,所以,又,所以 因为平面,平面,所以, 又,所以平面,所以.4. 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==. (1)求证:CD ⊥PD .(2)求证:BD ⊥平面P AB .P ABCD -ABCD 2AB =120BAD ∠=AP ⊥ABCD ,M N ,BC PC AM ⊥PD ABCD 120BAD ∠=ABC ∆M BC AM BC ⊥//BC AD AM AD ⊥AP ⊥ABCD AM ⊂ABCD AP AM ⊥ADAP A =AM ⊥PAD AM ⊥PD11【解析】(1)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥P A . 因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面P AD . 因为PD ⊂平面P AD ,所以CD ⊥PD .(2)因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A . 在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+,所以BD AB ⊥. 因为PA AB A =,所以BD ⊥平面P AB .5. 如图,四边形ABCD 是正方形,PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形,点F 是PB 的中点,点E 是边BC 上的任意一点.求证:AF EF ⊥.【解析】证明:∵F 是PB 的中点,且PA AB =,∴AF PB ⊥. ∵PAB ∆与PAD ∆均是以A 为直角顶点的等腰直角三角形, ∴PA AD ⊥,PA AB ⊥. ∵ADAB A =,AD ⊂平面ABCD ,AB Ì平面ABCD ,∴PA ⊥平面ABCD∵BC ⊂平面ABCD ,∴PA BC ⊥. ∵四边形ABCD 是正方形,∴BC AB ⊥.∵PA AB A =,PA ⊂平面PAB ,AB Ì平面PAB ,∴BC ⊥平面PAB . ∵AF ⊂平面PAB ,∴BC AF ⊥.∵PB BC B ⋂=,PB ⊂平面PBC ,BC ⊂平面PBC ,∴AF ⊥平面PBC . ∵EF ⊂平面PBC ,.∴AF EF ⊥.线面平行习题1. 如图,在四棱锥P ABCD -中, / / A B C D .求证:CD ∥平面ABE .2. 如图,在四棱锥P ABCD -中,底面是棱长为1的菱形,M 是PB 的中点.求证:PD //平面ACM .3. 如图, 在正三棱柱111ABC A B C -中,点D 是AB 的中点.求证:1//BC 平面1A CD .4. 如图,在三棱柱ABC –A1B 1C 1中,D 为AC 的中点,O 为四边形B 1C 1CB 的对角线的交点.求证:OD ∥平面A 1ABB 1.5. 如图,在长方体ABCD -1111D C B A 中,面1BMD N 与棱1CC ,1AA 分别交于点M ,N ,且M ,N 均为中点.求证:AC ∥平面1BMD N .6.如图,在四棱锥P ABCD -中,//AD BC ,且2P A P D==,2AD BC ==,PA CD ⊥,点E 在PC 上,且2PE EC =.求证:直线PA ∥平面BDE .7. 如图,四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,22AB BC CD ==.若点M 是棱AB 的中点,求证://BC 平面SDM .8. ★如图,在三棱柱111ABC A B C -中,D 为11A B 的中点.证明:1//CA 平1BDC .9. ★如图,在三棱柱111ABC A B C -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点.求证:直线1AB ∥平面1BC D .10. ★在长方体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,E 是AB 的中点,F 是1BB 的中点.求证://EF 平面11A DC .11. ★如图所示,在四棱锥C ABED -中,四边形ABED 是正方形,点,G F 分别是线段,EC BD 的中点. 求证://GF ABC 平面12. ★如图,在直三棱柱ABC -111A B C 中,E 是棱1CC 的中点,F是AB 的中点.求证:CF ∥平面1AB E .13. ★如图,在三棱柱111ABC A B C -中,ABC △是边长为4的正三角形,侧面11BB C C 是矩形,,D E 分别是线段11,BB AC 的中点. 求证:DE 平面ABC .14. ★如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,,E F 分别为,PC BD 的中点.证明://EF 平面PAD .15. ★如图,在直三棱柱111ABC A B C -中,AB AC =,P 为1AA 的中点,Q 为BC 的中点. 求证://PQ 平面11A BC .16. ★如图,在多面体ABCDEF 中,四边形ABCD 是菱形,3ABC π∠=,四边形ABEF 是直角梯形,2FAB π∠=,AF BE ,22AF AB BE ===.证明:CE平面ADF .17. 在三棱锥P ABC -中,H 为PA 的中点,,M N 分别为棱,PA PB 上的点,且3PN NB =,MN 平面HBC ,求:PM PA 的值.18. 如图,正方形ABCD 的边长是13,平面ABCD 外一点P 到正方形各顶点的距离都是13,,M N 分别是,PA BD 上的点,且::PM MA BN ND =.求证:直线MN 平面PBC .19. 如图,正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =.求证:MN 面11AA BB垂直证明习题——线线垂直⇒线面垂直18. 如图所示,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,1AB BC ==, PA ⊥平面ABCD ,CD ⊥PC .证明:CD ⊥平面PAC .19. 如图,在三棱锥 中, 平面 , ,点 为 的中点.求证: 平面 .20. 如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,PA=AC ,AC ⊥BC ,H 为PC的中点.求证:AH ⊥平面PBC .21. 如图,正方形所在平面与三角形所在平面相交于,平面.求证:平面.22. 如图所示,已知P ABC -为正三棱锥,设D 为PB 的中点,且AD PC ⊥.求证:PC ⊥平面PAB .23. 如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=E 是BC 的中点.证明:AE ⊥平面PAD .ACABCDCDE CD AE ⊥CDE AB ⊥ADE24. 如图,四面体P ABC -中,PA ⊥平面ABC ,1PA AB ==,BC =2AC =.证明:BC ⊥平面PAB .25. 如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,AB AD ==2CA CB CD BD ====.求证:AO ⊥平面BCD .26. 如图,在三棱锥中,是棱的中点,,且,求证:直线平面.27. 如图,在三棱锥中,面平面PAE .P ABC -G PA PC AC ⊥2PB AB ACBC ==== 1.PC =BG ⊥PAC P ABC -PA ⊥,,22,ABC AC AB PA AD DC AE AB ⊥====,,22,ABC AC AB PA AD DC AE AB ⊥=====DE ⊥28. 如图,在三棱锥中底面,为上一点,,.证明:平面.29. 如图,在直四棱柱中,底面是矩形,与交于点.证明:平面.30. 己知三棱在底面上的射影恰为的中点,,又知求证:.31. 如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.证明:平面.32. 如图,已知ABC △是正三角形,EA ,CD 都垂直于平面ABC ,且2EA AB ==,1DC =,F 是BE 的中点,AF ⊥平面EDB .P ABC -PA ⊥ABC D BC 24AC AB ==BD CD ==AD ⊥PAB 1111ABCD A B C D -ABCD 1A D 1AD E AE ⊥ECD 111,ABC A B C -柱1A 点ABC AC D 90BCA ︒∠=2,AC BC ==11.BA AC ⊥11AC A BC ⊥平面P ABCD -ABCD PD ⊥ABCD E PB 2PB =1PD =45BPC ∠=︒PC ⊥ADE33. 如图,在直三棱柱111ABC A B C -中,AC BC ⊥,AB =2BC =,12AA =.证明:1A C ⊥平面11AB C .34. 如图,在五面体中,四边形为矩形,.证明: 平面.35. 如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,//AB CD ,AD DC ⊥,1AB AD ==,2DC =,SD =E 为棱SB 的中点.求证:SC ⊥平面ADE .垂直证明习题——线线垂直⇒线面垂直(教师版)1. 如图所示,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,1AB BC ==, PA ⊥平面ABCD ,CD ⊥PC .证明:CD ⊥平面PAC .【解析】证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD , ∴PA ⊥CD .ABCDEF CDEF AD CD ⊥AB ⊥ADF又PC ⊥CD , PA PC P =,PA ⊂平面PAC ,PC ⊂平面PAC ,∴CD ⊥平面PAC .2. 如图,在三棱锥 中, 平面 , ,点 为 的中点.求证: 平面 .【解析】因为 ,点 为 中点,所以 . 因为 平面 , 平面 ,所以 .又因为 ,所以 平面 .(等腰三角形提供垂直) 3. 如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,PA=AC ,AC ⊥BC ,H 为PC的中点.求证:AH ⊥平面PBC .【解析】等腰三角形提供垂直.4. 如图,正方形所在平面与三角形所在平面相交于,平面.求证:平面.ACABCD CDE CD AE ⊥CDE AB ⊥ADE【解析】(正方形提供垂直)5. 如图所示,已知P ABC -为正三棱锥,设D 为PB 的中点,且AD PC ⊥.求证:PC ⊥平面PAB .【解析】正三棱锥中PC AB ⊥.6. 如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=E 是BC 的中点.证明:AE ⊥平面PAD .【解析】有一个内角是600的菱形提供垂直.7. 如图,四面体P ABC -中,PA ⊥平面ABC ,1PA AB ==,BC =2AC =.证明:BC ⊥平面PAB .【解析】(勾股定理)8. 如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,AB AD ==2CA CB CD BD ====.求证:AO ⊥平面BCD .B【解析】证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD , ∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(勾股定理)9. 如图,在三棱锥中,是棱的中点,,且,求证:直线平面.【解析】连接,因为,所以. 由已知得,, 所以,所以, 又,所以平面(勾股定理)10. 如图,在三棱锥中,面P ABC -G PA PC AC ⊥2PB AB AC BC ==== 1.PC =BG ⊥PAC CG BP BA =BG PA⊥12CG PA ==2BG =222BG CG BC +=BG CG ⊥PA CG G ⋂=BG ⊥.PAC P ABC -PA ⊥,,22,ABC AC AB PA AD DC AE AB ⊥=====平面PAE .【解析】,,又为正三角形, 又,由余弦定理可知,,根据勾股定理可知.又,,.(勾股定理)11. 如图,在三棱锥中底面,为上一点,,.证明:平面.【解析】证明:在中,,,, 所以在中,,故. 因为,所以.(勾股定理),22,B PA AD DC AE AB =====DE ⊥ABAC ⊥AB =3AC AD DC =+=tan AC B AB∴==60B ︒∴=AEAB ==ABE ∴30DAE DAB BAE ︒∴∠=∠-∠=2AD =AE=1DE ==222AE DEAD ∴+=AE DE ⊥PA ABC 面⊥PA DE ∴⊥DE PAE ∴⊥面P ABC -PA ⊥ABC D BC 24AC AB ==BD CD ==AD ⊥PAB ABC ∆24AC AB ==BD CD ==2cos 7ABC ∠==ABD ∆247223AD =+-⨯=AD =222437AB AD BD +=+==AB AD ⊥因为底面,所以,又,所以平面.12. 如图,在直四棱柱中,底面是矩形,与交于点.证明:平面.【解析】证明:因为四棱柱是直四棱柱,所以平面,则 .又,,所以平面,所以.因为,,所以是正方形,所以.又,所以平面.(直棱柱提供垂直)13. 己知三棱在底面上的射影恰为的中点,,又知求证:.【解析】在三棱柱中,由得, 因为底,所以,且,所以面, 又由平面,所以,PA ⊥ABC PA AD ⊥PA AB A =AD ⊥PAB 1111ABCD A B C D -ABCD 1A D 1AD E AE ⊥ECD 1111ABCD A B C D -1AA ⊥ABCD 1AA CD ⊥CD AD ⊥1AA AD A =CD ⊥11AA D D CD AE ⊥1AA AD ⊥1AA AD =11AA D D AE ED ⊥CD ED D =AE ⊥ECD 111,ABC A B C -柱1A 点ABC AC D 90BCA ︒∠=2,AC BC ==11.BA AC ⊥11AC A BC ⊥平面111ABC A B C -BCA 90∠=︒BC AC ⊥1A D ⊥ABC 1A D BC ⊥1A D AC D ⋂=BC ⊥1A AC 1AC ⊂1A AC 1BC AC ⊥因为,,由线面垂直的判定定理,可得平面.(射影提供垂直) 14. 如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.证明:平面.【解析】取的中点,连接,,则.由题知平面,面PDC ,所以面PDC 平面, 又底面为矩形,故平面,所以,在中,,,则.因为,所以,,即△CDP 为等腰三角形, 又F 为的中点,所以.因为,所以平面,即平面.15. 如图,已知ABC △是正三角形,EA ,CD 都垂直于平面ABC ,且2E A A B ==,1DC =,F 是BE 的中点,AF ⊥平面EDB .【解析】因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 EA 垂直于平面ABC ∴CM ⊥AE ,11BA AC ⊥1BA BC B ⋂=1AC ⊥1A BC P ABCD -ABCD PD ⊥ABCD E PB 2PB =1PD =45BPC ∠=︒PC ⊥ADE PC F EF FD EF AD ∥PD ⊥ABCD PD ⊂⊥ABCD ABCD AD ⊥PDC AD PC ⊥Rt CB P ∆2PB =45BPC ∠=︒CB =1PD=BD =1CD =PC DF PC ⊥DF AD D ⋂=PC ⊥ADF PC ⊥ADE又 AE ∩AB =A ,所以CM ⊥面EAB ,∵AF 面EAB∴CM ⊥AF ,又CM ∥FD ,从而FD ⊥AF ,因F 是BE 的中点,EA =AB ,所以AF ⊥EB .EB ,FD 是平面EDB 内两条相交直线,所以AF ⊥平面EDB .16. 如图,在直三棱柱111ABC A B C -中,AC BC ⊥,AB =2BC =,12AA =.证明:1A C ⊥平面11AB C .【解析】由题意,三棱柱111ABC A B C -为直三棱柱,所以1CC BC ⊥,又因为AC BC ⊥,1AC CC C =,AC ⊂平面11ACC A ,1CC ⊂平面11ACC A ,所以BC ⊥平面11ACC A ,又因为1AC ⊂平面11ACC A ,所以1BC A C ⊥, 又因为11BC B C ,所以111B C AC ⊥, 在Rt ABC ∆中,AB =2BC =,AC BC ⊥,所以2AC =, 又因为12AA =,所以四边形11ACC A 为正方形,所以11A C AC ⊥. 因为1111B C AC C =,11B C ⊂平面11AB C ,1AC ⊂平面11AB C ,所以1A C ⊥平面11AB C .17. 如图,在五面体中,四边形为矩形, .证明:平面.ABCDEF CDEF AD CD ⊥AB ⊥ADF【解析】证明:因为,,, 所以平面,因为四边形为矩形,所以.又平面,平面,所以平面. 因为平面,平面,平面平面,所以, 又所以又平面,所以平面18. 如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,//AB CD ,AD DC ⊥,1AB AD ==,2DC =,SD =E 为棱SB 的中点.求证:SC ⊥平面ADE .【解析】取BC 的中点F ,连结EF ,AF .如图:因为SD ⊥底面ABCD 所以SD AD ⊥,又因为AD DC ⊥且SD DC D =,所以AD ⊥平面SDC ,得AD SC ⊥.又因为CD ⊥面ASD 且//AB CD 所以AB ⊥面ASD ,在Rt ∆SAD中1,SD AD SA ===在Rt ∆SAB 中1,2AB SB ==,F 为BC 的中点,故112AE SB ==, 在t R SCD ∆中2,SD CD SC ===12EF SC ==CD AD ⊥CD DF ⊥AD DF D ⋂=CD ⊥ADF CDFE //EF CD EF ⊄ABCD CD ⊂ABCD //EF ABCD //EF ABCD EF ⊂ABEFABEF ABCD AB =//EF AB //,EF CD //,CD AB CD ⊥ADF AB ⊥ADF在ABD ∆中,1,AB AD BD ===45ABD ∠=,在CBD ∆中,BD BC ==90DBC ∠=,在ABF ∆中,1,1352AB BF ABF ==∠= ,由余弦定理知AF在AEF ∆中,1AE =,EF =,AF =AE EF ⊥, 从而AE SC ⊥.所以SC ⊥平面ADE .。
立体几何 平行垂直 练习题
空间立体几何练习题数学(理工农医类)考试范围:高中内容(人教版)考试时间:120分钟;命题人:题号一二三总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 选择题评卷人得分一、单选题(下面每题都四个选项但每题只有一个正确选项,并将正确选项填写在答题卡相应位置上,否则答案无效!)1、设、是不同的直线,、是不同的平面,则下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的个数是()A.0B.1C.2D.32、设、是不同的直线,、是不同的平面,则下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的个数是()A.0B.1C.2D.33、设,是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.,,则D.若,,则4、对于空间的两条直线,和一个平面,下列命题中的真命题是()A.若,,则B.若,,则C.若,,则D.若,,则5、设是三个互不重合的平面,是两条不重合的直线,则下列命题中正确的是()A.若,则B.若,,,则C.若,,则D.若,,,则6、设是两条不同直线,是两个不同的平面,下列命题正确的是()A.且则B.且,则C.则D.则7、在空间中,若、表示不同的平面,、、表示不同直线,则以下命题中正确的有()①若∥,∥,∥,则∥②若⊥,⊥,⊥,则⊥③若⊥,⊥,∥,则∥④若∥,,,则∥A.①④B.②③C.②④D.②③④8、设是两条不同的直线,是两个不同的平面,有下列四个命题:①若;②若;③若;④若其中正确命题的序号是()A.①③B.①②C.③④D.②③9、对于平面、、和直线、、、,下列命题中真命题是()A.若,则;B.若则;C .若,则;D.若,则.10、已知为异面直线,平面,平面.直线满足,则()A.,且B.,且C.与相交,且交线垂直于D.与相交,且交线平行于分卷II分卷II 非选择题评卷人得分二、填空题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)11、设是两条不同的直线,是两个不同的平面,则下列正确命题的序号是.①.若,,则;②.若,,则;③.若,,则;④.若,则.12、已知是两个互相垂直的平面,是一对异面直线,下列五个结论:(1),(2)(3)(4)(5)。
平行与垂直的练习题
平行与垂直的练习题平行和垂直是几何中经常见到的概念。
在平面几何中,我们经常需要判断两条线的关系,确定它们是否平行或垂直。
本文将为您提供一些平行和垂直的练习题,以帮助您掌握这些概念。
1. 判断直线的关系给定两条直线L1和L2,判断它们之间的关系。
如果直线L1与L2平行,则在答案框中填写“平行”;如果直线L1与L2垂直,则填写“垂直”;如果两条直线既不平行也不垂直,则填写“既不平行也不垂直”。
示例题1:L1: y = 2x - 3L2: y = -0.5x + 2答案: 既不平行也不垂直示例题2:L1: 3x - 2y = 4L2: 6x - 4y = 8答案: 平行示例题3:L1: 2x + 3y = 5L2: 3x - 2y = 4答案: 垂直2. 求平行线的斜率给定直线L1的斜率为k,求与直线L1平行的直线L2的斜率。
示例题1:直线L1的斜率k = -1/3直线L2与直线L1平行答案: 直线L2的斜率k = -1/3示例题2:直线L1的斜率k = 2直线L2与直线L1平行答案: 直线L2的斜率k = 23. 求垂直线的斜率给定直线L1的斜率为k,求与直线L1垂直的直线L2的斜率。
示例题1:直线L1的斜率k = 3/4直线L2与直线L1垂直答案: 直线L2的斜率k = -4/3示例题2:直线L1的斜率k = -2直线L2与直线L1垂直答案: 直线L2的斜率k = 1/2通过以上练习题,我们可以更好地理解平行和垂直的概念,并熟练应用相关的定理和方法进行判断和计算。
这些基本的几何概念在解决实际问题时起着重要的作用,帮助我们更好地理解和分析几何形状及其属性。
希望本文的练习题能够帮助您提升对平行和垂直的理解和运用能力。
在实际应用中,几何概念常常与其他数学概念相结合,为我们提供更多的思考和解决问题的方式。
祝您几何学习顺利,数学进步!。
(完整版)立体几何证明垂直专项含练习题及答案.doc
精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。
2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。
4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。
空间立体几何中的平行与垂直 课后练习(解析版)
空间立体几何中的平行与垂直课后练习(解析版)1.如图,在多面体中,底面是梯形,且,直角梯形中,且,是锐角,且平面平面。
(Ⅰ)求证:;(Ⅱ)试判断直线与平面的位置关系,并证明你的结论。
【答案】(Ⅰ)取中点,连结,因为底面是梯形,且,易证四边形为平行四边形,所以,所以,所以。
因为平面平面,且平面平面,所以平面,而平面,故。
(Ⅱ)平面,以下证明:取的中点,连结、。
在平面中,、,故。
在直角梯形中,且,故。
而、平面,,而平面,,故平面平面,而平面,从而平面。
【解析】本题主要考查直线与直线和直线与平面的位置关系。
(Ⅰ)利用题中所给线段关系先证明,又因为平面平面且交线为,所以平面,又平面,所以。
(Ⅱ)取中点,因为,所以;另外也有,进而可证得。
再根据四边形为直角梯形,且,可得。
再通过平面与平面平行的判定定理,证明平面平面;又平面,于是平面。
2.四棱锥中,底面为平行四边形,侧面底面,,分别是,的中点.已知,,,。
(1)证明:平面;(2)证明:;(3)求直线与平面所成角的正弦值。
【答案】解:(1)取中点,连结,。
因为,分别是,的中点,底面为平行四边形,所以,,又因为平面,平面,所以平面,平面,所以平面平面,所以平面。
......${30.769231}分(2)作,垂足为,连结。
因为侧面底面,所以底面,所以。
又因为,所以,又因为,所以为等腰直角三角形,。
所以平面,所以。
......${61.538462}分(3)由(2)知,因为,所以。
由,,,得,,所以的面积,连结,得的面积。
设到平面的距离为,由,得,解得。
设与平面所成角为,则,所以直线与平面所成角的正弦值为。
......${100}分【解析】本题主要考查空间几何体及点线面之间的位置关系。
(Ⅰ)要证明平面,可以先证明平面平面,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)要证明,可用线线垂直的判定定理,即只需证平面即可;(Ⅲ)用等积法求出到平面的距离,再求出所成角的正弦值即可。
立体几何平行与垂直练习题
线面平行垂直练习题一、选择题1、若空间四点A 、B 、C 、D 可以确定一个平面,则这四点中( )A 、必有三点共线B 、必有三点不共线C 、至少有三点共线D 、不可能有三点共线2若//,//a ααβ,则a 与β的位置关系是 ( )A .//a βB .a 与β相交C .//a β或a 与β相交D .//a β或a β⊂3、已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )A.一定是异面B.一定是相交C.不可能平行D.不可能相交 4、对于平面α和共面的直线m 、n ,下列命题中真命题是A.若m ⊥α,m ⊥n ,则n ∥αB.若m ∥α,n ∥α,则m ∥nC.若m ⊂α,n ∥α,则m ∥nD.若m 、n 与α所成的角相等,则n ∥m 5. 在下列四个正方体中,能得出AB ⊥CD 的是( )6、梯形ABCD 中,AB//CD ,AB ⊂平面α,CD 在面α外,则直线CD 与平面α内的直线的位置关系只能是( )A. 平行B. 平行或异面C. 平行或相交D. 异面或相交 7、已知α∥β,a α⊂,B β∈, 则在β内过点B 的所有直线中( ). A .不一定存在与a 平行的直线 B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线 8、关于直线m 、n 与平面α、β,有下列四个命题: ①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //.ABDHEFGC其中真命题的序号是:()A. ①、②B. ③、④C. ①、④D. ②、③9、以下命题(其中a,b表示直线,a表示平面)①若a∥b,bÌa,则a∥a ②若a∥a,b∥a,则a∥b③若a∥b,b∥a,则a∥a ④若a∥a,bÌa,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个10、设A、B、C、D是空间四个不同的点,在下列命题中,不正确...的是(A)若AC与BD共面,则AD与BC共面(B)若AC与BD是异面直线,则AD与BC是异面直线(C) 若AB=AC,DB=DC,则AD=BC(D) 若AB=AC,DB=DC,则AD ⊥BC二、填空题:11、已知m、l是直线,α、β是平面,给出下列命题①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且α∥β,则m∥l.其中正确的命题的序号是_____(注:把你认为正确的命题的序号都填上).12、有以下四个命题:①直线与平面没有公共点,则直线与平面平行②直线与平面内的任意一条直线不相交,则直线与平面平行③直线与平面内的无数条直线不相交,则直线与平面平行④平面外一条直线与平面内的一条直线平行,则该直线与平面不相交正确的是_____(注:把你认为正确的命题的序号都填上).三、解答题13如下图,在三棱锥A-BCD中,E,F,G,H分别是边AB,AC,CD,BD的中点,且AD=BC,求证四边形EFGH是菱形。
《立体几何中的平行与垂直关系》专题训练
一、单选题1.m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α,β平行与同一个平面C.α内有两条相交直线与β内两条相交直线平行D.α,β垂直与同一个平面4.已知l ,m 是两条不同的直线,m //平面α,则().A.若l //m ,则l //αB.若l //α,则l //mC.若l ⊥m ,则l ⊥αD.若l ⊥α,则l ⊥m5.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.如果用m ,n 表示不同直线,α,β,γ表示不同平面,下列叙述正确的是().A.若m //α,m //n ,则n //αB.若m //n ,m ⊂α,n ⊂β,则α//βC.若α⊥γ,β⊥γ,则α//βD.若m ⊥α,n ⊥α,则m //n7.如图1,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个结论:图1①三棱锥A -D 1PC 的体积不变;②A 1P //平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的结论的个数是().A.1个B.2个C.3个D.4个8.如图2,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则().图2A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.如下图所示的四个正方体中,A ,B 正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB //平面MNP 的图形的序号为().59A.①②B.②③C.③④D.①②③10.如图3,在直角梯形ABCD中,BC⊥CD,AB=BC=2,CD=4,E为CD中点,M,N分别为AD,BC的中点,将△ADE沿AE折起,使点D到D1,M到M1,在翻折过程中,有下列命题:图3①||M1M的最小值为1;②M1N//平面CD1E;③存在某个位置,使M1E⊥DE;④无论M1位于何位置,均有M1N⊥AE.其中正确命题的个数为().A.1B.2C.3D.4二、多选题11.已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是().A.若m//n,m⊥α,则n⊥αB.若m//α,α⋂β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β12.已知菱形ABCD中,∠BAD=60°,AC与BD 相交于点O,将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是().A.BD⊥CMB.存在一个位置,使△CDM为等边三角形C.DM与BC不可能垂直D.直线DM与平面BCD所成的角的最大值为60°13.己知m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是().A.若m//α,n//β且α//β,则m//nB.若m//n,m⊥α,n⊥β,则α//βC.若m//n,n⊂α,α//β,m⊄β,则m//βD.若m//n,n⊥α,α⊥β,则m//β14.如图4,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则().图4A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形15.已知四棱锥P-ABCD,底面ABCD为矩形,侧面PCD⊥平面ABCD,BC=23,CD=PC=PD=26.若点M为PC的中点,则下列说法正确的为().A.BM⊥平面PCDB.PA//面MBDC.四棱锥M-ABCD外接球的表面积为36πD.四棱锥M-ABCD的体积为6三、填空题16.如图5,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有_______.(把所有正确的序号都填上)图517.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_______.18.已知α,β是两个不同的平面,l,m是两条不同的直线,有如下四个命题:①若l⊥α,l⊥β,则α∥β;②若l⊥α,α⊥β,则l∥β;③若l∥α,l⊥β,则α⊥β;④若l∥α,α⊥β,则l⊥β.其中真命题为______(填所有真命题的序号).19.已知α,β是两个不同的平面,l,m是两条不同60,C⊥平面ABB.图622.如图7,在直三棱柱ABC为BC,AC的中点,AB=BC.(1)求证:A1B1∥平面DEC1;(2)求证:BE⊥C1E.23.如图8,在四棱锥P-ABCDPA,PD的中点.已知侧面PAD⊥是矩形,DA=DP.(1)求证:MN∥平面PBC;图8图9图11P-ABCD中,已知底BC=1,E,F分别是AB,;平面PDE.如图13,取PD中点G。
高二立体几何垂直练习题
高二立体几何垂直练习题1.已知四个点A、B、C、D,它们在同一平面内,且满足AB ⊥ BC,AC ⊥ CD,BD ⊥ AD。
证明ABCD四边形是一个平行四边形。
解析:设E为BD和AC的交点。
由题意可知,AB ⊥ BC,因此∠ABC = 90°。
同理,AC ⊥ CD,∠ACD = 90°。
在平行四边形中,对角线互相垂直,因此AC ⊥ BD。
所以,∠AEC = 90°。
由此可得,∠ABC = ∠ACD = ∠AEC = 90°。
同时,∠BAE =∠BCD = 90°,∠DAE = ∠DCB = 90°。
综上所述,ABCD四边形是一个平行四边形。
2.已知正方体ABCDEFGH的棱长为a,M、N分别为AB和DE的中点。
求证:MN ⊥ AC。
解析:连接MN和AC。
首先,由对称性可知∠CMN = 90°。
又因为MN是AB和DE的中线,所以MN平分AD。
设MN与AD的交点为P,那么MP = PN。
又因为DE ⊥ AD,所以∠EDP = 90°,且∠DEN = 90°。
由此可得,在三角形EDP和MNP中,由两个角相等且边长相等,可以推出两个三角形全等。
所以,∠MNP = ∠EDP = 90°。
综上所述,MN ⊥ AC。
3.已知棱长为a的正方体ABCDEFGH,P为面ABCD的中心点,Q 为面DEFG的中心点。
求证:PQ ⊥ AG。
解析:连接PQ和AG。
首先,利用对称性可知∠QAG = 90°。
又因为P是面ABCD的中心点,所以P也是线段BC的中点。
设PQ与BC的交点为R,那么BR = RC。
又因为AG ⊥ BC,所以∠GAR = 90°,且∠CBR = 90°。
由此可得,在三角形GAR和PBR中,由两个角相等且边长相等,可以推出两个三角形全等。
所以,∠PBR = ∠GAR = 90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二文科数学立体几何平行与垂直部分练习题
1.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.
(1)求证:1//A C 平面BDE ;
(2)求证:平面1A AC ⊥平面BDE ;
(3)求直线BE 与平面1A AC 所成角的正弦值.
2.如图,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F.求证:EF ∥平面ABCD.
3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.
(1)证明:PB //平面AEC ;
(2)设1,3AP AD ==三棱锥P ABD -的体积34
V =求A 到平面PBC 的距离.
A D
B C
P
E
4.如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;
5.已知四棱锥P ABCD
-的底面为直角梯形,//
AB DC,⊥
=
∠PA
DAB,
90ο底面ABCD,且1
PA AD DC
===,2
AB=,M是PB的中点.
(1)求证:CM PAD
P面;
(2)证明:面PAD⊥面PCD;
(3)求AC与PB所成的角的余弦值;
(4)求棱锥M PAC
-的体积。
6.已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N 为侧棱PC上的两个三等分点
A B
C
D
P
N
(1)求证:AN ∥平面 MBD;
(2)求异面直线AN 与PD 所成角的余弦值;
(3)求二面角M-BD-C 的余弦值.
7.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。
求证:(1)PA ∥平面BDE
(2)平面PAC ⊥平面BDE
8.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点.
(1) 求证: //FG 平面BCP ;
(2) 求证: PC AD ⊥;
F G
P
D
C B A
9.如图,已知在侧棱垂直于底面的三棱柱111ABC A B C -中,3AC =,5AB =,4BC =,
P M
D C
B A N
14AA =,点D 是AB 的中点.
(1)求证:1AC BC ⊥;
(2)求证:11//AC CDB 平面
(3)求三棱锥11A B CD -的体积.
10.如图,在斜三棱柱111C B A ABC -中,侧面ABC B B AA 底面⊥11,=∠1BAA 060,21=AA ,底面ABC 是边长为2的正三角形,其重心为G 点,E 是线段1BC 上一点,且13
1BC BE =. 1
(1)求证://GE 侧面B B AA 11;
(2)求证:1AB A C ⊥.
11.如图,在正三棱柱ABC -A 1B 1C 1中,点D 为棱AB 的中点,BC =1,AA 1= 3.
(1)求证:BC 1∥平面A 1CD ;
(2)求三棱锥D -A 1B 1C 的体积.
12.直三棱柱ABC -A′B′C′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A′B 和B′C′的中点.
(1)证明:MN ∥平面A′ACC′;
(2)求三棱锥A′-MNC 的体积.(锥体体积公式V =13
Sh ,其中S 为底面面积,h 为高) 13.如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D E 、分别为1AA 和1B C 的中点.
(1)求证:DE //平面ABC ;(5分)
(2)求三棱锥E BCD -的体积.(7分
14.已知△ABC 是边长为l 的等边三角形,D 、E 分别是AB 、AC 边上的点,AD = AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到三棱锥A -BCF ,其中22
BC =
. (1)证明:DE ∥平面BCF ;
(2)证明:CF ⊥平面ABF ;
(3)当23AD =时,求三棱锥F -DEG 的体积V .
15.(本小题满分12分)
如图,四棱锥ABCD P -中,AP ⊥平面PCD ,AD ∥BC ,AD BC AB 2
1=
=,F E ,分别为线段PC AD ,的中点.
(1)求证:AP ∥平面BEF ;
(2)求证:BE ⊥平面PAC
16.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,G 、H 分别是CE 和CF 的中点.
(Ⅰ)求证:AF//平面BDGH ;
(Ⅱ)求 E BFH V -
17.如图1,直角梯形ABCD 中,0
90,//=∠BAD CD AB ,2==AD AB ,4=CD ,点E 为线段AB 上异于B A ,的点,且AD EF //,沿EF 将面EBCF 折起,使平面⊥EBCF
平面AEFD ,如图2.
(1)求证://AB 平面DFC ;
(2)当三棱锥ABE F -体积最大时,求整个几何体的体积。
.
18.如图,直角梯形ABCD 中,AB CD P ,12AB CD =,AB BC ⊥,平面ABCD ⊥平面BCE ,BCE ∆为等边三角形,,M F 分别是,BE BC 的中点,14
DN DC =. (1)证明:MN ADE P 平面;
(2)证明:EF AD ⊥;
(3)若1,2AB BC ==,求几何体ABCDE 的体积.
19.如图,在四棱锥P ABCD -中,四边形ABCD 是正方形,CD PD =,90,120ADP CDP ∠=︒∠=︒,,,E F G 分别为,,PB BC AP 的中点.
(Ⅰ)求证:平面//EFG 平面PCD ;
(Ⅱ)若2AD DP ==,求四棱锥E ABCD -的体积。
20.在如图所示的几何体中,AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.
(1)求证:AF ∥平面BCE ;
(2)求证:平面BCE ⊥平面CDE.
21.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===.将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.
(1)求证:BC ⊥平面ACD ;(2)求几何体A BCD -的体积.
22.已知四边形ABCD 是矩形,AB=,BC=,将△ABC 沿着对角线AC 折起来得到△AB 1C ,且顶点B 1在平面AB=CD 上射影O 恰落在边AD 上,如图所示.
(1)求证:AB 1⊥平面B 1CD ;
(2)求三棱锥B 1﹣ABC 的体积V B1﹣ABC .
23.如图(1),在三角形ABC 中,BA=BC=2,∠ABC=90°,点O ,M ,N 分别为线段的中点,将ABO 和MNC 分别沿BO ,MN 折起,使平面ABO 与平面CMN 都与底面OMNB 垂直,如图(2)所示.
(1)求证:AB ∥平面CMN ;
(2)是否可在OB 上找到一点Q ,使MQ CAN P 面;
(3)求点M 到平面ACN 的距离.
8.如图1,直角梯形ABCD 中,//,90AD BC ABC ∠=o ,,E F 分别为边AD 和BC 上的点,且//EF AB ,2244AD AE AB FC ====.将四边形EFCD 沿EF 折起成如图2的位置,使AD AE =.
(1)求证:BC //平面DAE ;
(2)求四棱锥D AEFB -的体积.
)
)
A
B
E
F C
D A C
D
E F
B
图1 图2
24.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.
(1)证明:;1AB C B ⊥
(2)若1AB AC ⊥,,1,601==∠BC CBB ο
求三棱柱111C B A ABC -的高
27.(本小题满分12分)
如图,三棱柱111ABC A B C -中,111,AA BC A B BB ⊥⊥.
(1)求证:111AC CC ⊥;
(2)若2,3,7AB AC BC ===
,问1AA 为何值时,三棱柱111ABC A B C -体积最大,并求此最大值。
35.如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π
=∠=,M 为BC 上一点,且12
BM =. (1)证明:BC ⊥平面POM ;
(2)若MP AP ⊥,求四棱锥P ABMO -的体积.
14.如图,已知O e 的直径AB =3,点C 为O e 上异于A ,B 的一点,VC ⊥平面ABC ,且VC
=2,点M为线段VB的中点.
(1)求证:BC 平面VAC;
(2)若AC=1,求直线AM与平面VAC所成角的大小.。