冷却塔计算
冷却塔计算公式与单位

冷却塔计算公式与单位冷却塔是一种用于回收工业废热的设备,它通过将水与空气进行热量交换的方式来冷却热水。
冷却塔的性能通常使用一些计算公式和单位来评估,以下是一些与冷却塔相关的常见计算公式和单位。
1.计算湿球温度:湿球温度通常用于检测空气中的湿度,可通过以下公式计算:Tw = Tdb - (Tdb - Tdp) × RH/100其中,Tw表示湿球温度,Tdb表示干球温度,Tdp表示露点温度,RH 表示相对湿度。
2.计算露点温度:露点温度是一个表示空气中饱和水蒸汽开始凝结的温度值,可通过以下公式计算:Tdp = (243.12 × (17.62 × Tdb + 243.12) / (17.62 - Tdb)) / (log(RH/100) + ((17.62 × Tdb) / (243.12 + Tdb - (17.62 × Tdb))))其中,Tdb表示干球温度,Tdp表示露点温度,RH表示相对湿度。
3.计算湿度比:湿度比是空气中单位质量的水蒸汽含量,可以通过以下公式计算:W=(0.622×e)/(P-e)其中,W表示湿度比,e表示饱和水蒸汽压力,P表示空气压力。
4.计算冷却效能:冷却效能是衡量冷却塔性能的重要指标之一,可通过以下公式计算:E = (Tin - Tout) / (Tin - Twb)其中,E表示冷却效能,Tin表示进水温度,Tout表示出水温度,Twb表示湿球温度。
5.计算冷却水量:冷却水量是指单位时间内通过冷却塔的水量,可以通过以下公式计算:Q = m × Cp × (Tin - Tout)其中,Q表示冷却水量,m表示水的质量流率,Cp表示水的比热容,Tin表示进水温度,Tout表示出水温度。
6.计算空气流量:空气流量是指单位时间内通过冷却塔的空气量,可以通过以下公式计算:Qa=ρa×Va其中,Qa表示空气流量,ρa表示空气密度,Va表示空气流速。
冷却塔设计计算举例

冷却塔设计计算举例冷却塔符号说明(名称及单位)这⾥列出的符号是按习惯形成和长期延⽤的统⼀符号。
实际上符号是⼈为定的,不同的名称可⽤各种符号来代替,但为便于识别和运⽤,尽可能予以统⼀。
常⽤的有关冷却塔设计计算的符号与名称⼤致如下:t 1——进冷却塔⽔温(℃);t 2——出冷却塔⽔温(℃);Δt——进、出冷却塔⽔温差(℃),即Δt =t 1 -t 2 ;t m——平均⽔温(℃),t m =(t 1 -t 2 )/2 ;T——绝对温度(城),T =273 +ti ;θ——空⽓⼲球温度(℃);τ——空⽓湿球温度(℃);t 2 –τ——冷幅⾼(℃),此值越⼩,冷却效率越⾼;θ1 ——进冷却塔空⽓的⼲球温度(℃);θ2 ——出冷却塔空⽓的⼲球温度(℃);τ1 ——进冷却塔空⽓的湿球温度(℃);τ2 ——出冷却塔空⽓的湿球温度(℃);P a——⼤⽓压⼒(m m H g ),P a =P g +P q ;P g——空⽓中⼲空⽓的分压⼒(kg/cm2 ,或m m H g );P q——空⽓中⽔蒸⽓的分压⼒(kg/cm2 ,或m m H g );P ″τ1——进冷却塔空⽓温度为湿球温度τ1 时饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″θ1——进冷却塔空⽓温度为⼲球温度θ1 时饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g ); P ″——饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″t1——空⽓为进冷却塔⽔温t 1 时饱和⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″t2——空⽓为出冷却塔⽔温t 2 时饱和⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″tm——平均⽔温时饱和⽔蒸⽓压⼒(kg/cm2 ,或m m H g );Q——冷却塔冷却⽔量(m3/h 或kg/h );q——冷却塔淋⽔密度(m3/(m2· h ));G ——进冷却塔的空⽓量,即风量(m3/h 或kg/h );g ——进冷却塔空⽓重量速度(kg/(m2·h )或kg/(m2 ·s ));有时表⽰重⼒加速度(m/s2 );V——外界风速风向(m/s);i 1 ——进塔空⽓的焓(kcal/kg );i 2 ——出塔空⽓的焓(kcal/kg );i m ——平均温度时空⽓的焓(kcal/kg );i″1 ——空⽓温度为进塔⽔温t 1 时的饱和空⽓焓(kcal/kg );i″2 ——空⽓温度为出塔⽔温t 2 时的饱和空⽓焓(kcal/kg );i″m ——空⽓温度为进、出塔⽔温的平均温度t m 时的饱和空⽓焓(kcal/kg );γg——空⽓的密度(⽐重)(kg/m3 );γ——⽔的汽化热(kcal/kg );λ——⽓、⽔⽐(⽆量纲);K——蒸发⽔量带⾛的热量系数(⽆量纲);βxv ——以焓差为基准的容积散质系数(kg/(m 3·h ));V m——塔内平均风速(m/s);Z ——淋⽔填料装置⾼度(m );Z g ——淋⽔填料装置尾部⾼度(m );F——冷却塔内断⾯积(m2 );V——淋⽔填料装置有效容积(m3 ):(注:有时表⽰⽔流或⽓流速度,m/s);N (或Ω)——以温度进⾏积分的交换数(⽆量纲);Σhi——空⽓总阻⼒(mmH2O);hi ——进塔空⽓各部分的阻⼒(mmH2O);D N——⽔管⼦内径(m m );L——管⼦长度(m );n——有时表⽰转速(r/min );有时表⽰根数;有时表⽰孔眼数;ηi——表⽰电机、风机、传动装置等效率(%);ξi——流体(⽔或空⽓)有关阻⼒系数。
冷却塔工程量计算公式

冷却塔工程量计算公式冷却塔是工业生产中常见的设备,用于将热水或蒸汽冷却至所需温度。
在设计和建造冷却塔时,工程量的计算是至关重要的一步。
正确的工程量计算可以确保冷却塔的设计和建造符合要求,并且能够有效地运行。
本文将介绍冷却塔工程量计算的基本公式和方法。
冷却塔的工程量计算包括多个方面,如塔体结构、填料、风机、水泵等。
下面将分别介绍这些方面的工程量计算公式和方法。
1. 塔体结构。
冷却塔的塔体结构是支撑整个设备的基础,其工程量计算是冷却塔设计的重要一环。
塔体结构的工程量计算主要包括钢结构的材料和数量。
计算公式如下:塔体结构材料量 = (塔体长度 + 塔体宽度) 塔体高度钢结构密度。
其中,塔体长度、宽度和高度分别为冷却塔的实际尺寸,钢结构密度为钢材的密度。
2. 填料。
填料是冷却塔中用于增加冷却表面积的关键部件,其工程量计算需要考虑填料的类型、数量和材料。
常见的填料类型有瓷质填料、塑料填料等。
填料的工程量计算公式如下:填料数量 = 冷却塔的填料层厚度塔体长度塔体宽度 / 填料的单位体积。
填料材料量 = 填料数量填料的单位体积填料密度。
其中,填料层厚度为填料的实际厚度,填料的单位体积和密度为填料的物理参数。
3. 风机。
冷却塔的风机是用于产生气流,帮助水或蒸汽冷却的关键设备。
风机的工程量计算需要考虑风机的数量和功率。
风机的工程量计算公式如下:风机数量 = 冷却塔的设计风量 / 单台风机的风量。
风机功率 = 冷却塔的设计风量风机的风压 / 风机的效率。
其中,设计风量为冷却塔所需的风量,风机的风量、风压和效率为风机的物理参数。
4. 水泵。
冷却塔的水泵是用于循环水流,帮助实现冷却的关键设备。
水泵的工程量计算需要考虑水泵的数量和功率。
水泵的工程量计算公式如下:水泵数量 = 冷却塔的设计水流量 / 单台水泵的流量。
水泵功率 = 冷却塔的设计水流量水泵的扬程 / 水泵的效率。
其中,设计水流量为冷却塔所需的水流量,水泵的流量、扬程和效率为水泵的物理参数。
冷却塔计算

冷却塔计算公式与单位

经某一过程温度变化为△T,它吸收(或放出)的热量.Q=cm·△T.其中C是与这个过程相关的比热(容).热量的单位与功、能量的单位相同.在国际单位制中热量的单位为焦耳(简称焦,缩写为J).历史上曾定义为卡路里(简称卡,缩写为cal),目前只作为能量的辅助单位,1卡=焦.注意:1千卡=1大卡=1000卡路里=4184焦耳=千焦在国际单位制中,比热的单位是焦耳/(千克·摄氏度)读作焦每千克摄氏度。
比热容是单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量),比热容本质是吸收的热量,不管固体液体的,单位都是一样的。
单位质量的某种物质温度升高1℃吸收的热量叫做这种物质的比热容,简称比热。
比热是通过比较单位质量的某种物质温升1℃时吸收的热量,来表示各种物质的不同性质。
水的比热最大。
这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。
水的这个特征对气候的影响很大。
在受太阳照射条件相同时,白天沿海地区比内陆地区温升慢,夜晚沿海地区温度降低也少。
所以一天之中,沿海地区温度变化小,内陆地区温度变化大。
在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。
水比热大的特点,在生产、生活中也经常利用。
如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。
冬季也常用热水取暖水的比热容是*103焦/千克·摄氏度,蒸气的比热容是*103焦/千克·摄氏度汽化热是一个物质的物理性质。
其定义为:在标准大气压 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。
常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。
其他仍在使用的单位包括Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。
水的汽化热为千焦/摩尔,相当于2260千焦/千克。
一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量。
冷却塔选型计算

冷却塔选型1.冷却水流量计算:L=(Q1+Q2)/(Δt*1.163)*1.1L—冷却水流量(m³/h)Q1—乘以同时使用系数后的总冷负荷,KWQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4.5-5冷却塔的水流量= 冷却水系统水量×(1.2~1.5);冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32ºC/37ºC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得.冷却塔与周围障碍物的距离应为一个塔高。
冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m³/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。
湿球温度每升高1℃,冷却效率约下降17%2.冷却塔冷却能力计算:Q=72*L*(h1-h2)Q-冷却能力(Kcal/h)L-冷却塔风量,m³/hh1-冷却塔入口空气焓值h2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
4.冷却水泵扬程的确定扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力5.冷却塔不同类型噪音及处理方法:.6.冷却水管径选择7.冷却水泵扬程:扬程通常是指水泵所能够扬水的最高度,用H表示。
最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。
其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。
通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
冷却塔计算公式

MK冷却塔设计部分计算公式
名称 水流量 代号 Q水 单位 m /h Q风=μγ水Q水/γ气 式中:μ—气水比 风量 Q风 m /h
3 3
计 算 公 式
γ气—空气在28℃时的比容, γ水—水的比容,1000kg/m3 V1=πΦv风机/60
1.115kg/m3
风机末端线速度
V1
m/s
式中:Φ—风机直径; v风机=风机转速; i=v电/v风机 式中:v电=电机转速
减速比 容积散质系数 换热量
i βv K Kg/m h Kcal/h
3
Βv=18300 K=5000 Q水 Q水补=(δ+ε+0.01%) Q水 式中: δ—漂水损失系数,0.001% ε—蒸发损失系数,0.83% 0.01%—自然排空损失 P1=0.9P P—电机功率 λ水= Q水/2L1W1 式中:L1—填料总长度 H1—填料宽度 λ气= Q风/S进风 式中:S进风=进风面积 wi2>Q水/1800πI水 I水—进水管流速,2.35m/s Wo≈1.414wi n = Q水 / uf√2gh 式中:u—流量系数,0.67 f—开口面积,设A为开孔直径,则f=πA /4 h—配水深度,MK系列冷却塔配水池深度 为110mm δ=0.0075Φ P0=P动+P静 式中:P动—动压 P静—静压 P动=V出2/2g 式中:V出=出风口平均风速 μ=1.115Q风/Q水 V出=4Q风/nπΦ2
2
总补充水量
Q水补
m3/h轴功率来自P1kw水负荷
λ水
m3/m2h
冷却塔选型计算公式

冷却塔选型计算公式冷却塔冷却水量的计算:1、Q = m s △ tQ 冷却塔冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力)m 水流量(质量) Kg / hs 水的比热值 1 Kcal / 1 kg - ℃△ t 进入冷凝器的水温与离开冷凝器的水温之差2、冷却塔 Q 的计算Q = 72 q ( I 入口- I 出口 )Q 冷却能力 Kcal / hq 冷却塔的风量 CMMI 入口冷却塔入口空气的焓(enthalpy)I 出口冷却塔出口空气的焓(enthalpy)3、q 冷却塔的风量 CMM 的计算q = Q / 72 ( I 入口- I 出口 )上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。
更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式:Q = K × S × ( hw -ha )Q 冷却塔的总传热量K 焓的热传导系数S 冷却塔的热传面积hw 空气与冷却水蒸发的混合湿空气之焓ha 进入冷却塔的外气空气之焓此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却塔热传方程式。
详细的计算你可以从Heat Transfer的热力学内查阅。
冷却塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。
诸多人士认为冷却塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。
这是一种「积非成是,以讹传讹」的谬论。
提到湿球温度从27℃→28℃,冷却塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。
湿球温度愈高,湿球温度的冷却能力愈差。
所以,当湿球温度增高时,冷却塔的能力下降,换言之,冷却塔的出水量减少了。
从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。
冷却塔选型计算

冷却塔选型1.冷却水流量计算:2.L=(Q1+Q2)/(Δt*1.163)*1.13.L—冷却水流量(m3/h)4.Q1—乘以同时使用系数后的总冷负荷,KW5.Q2—机组中压缩机耗电量,KW6.Δt—冷却水进出水温差,℃,一般取4.5-5冷却塔的水流量=冷却水系统水量×(1.2~1.5);冷却塔的能力大多数为标准工况下的出力(湿球温度28℃,冷水进出温度32oC/37oC),由于地区差异,夏季湿球温度会不同,应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得.冷却塔与周围障碍物的距离应为一个塔高。
冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。
湿球温度每升高1℃,冷却效率约下降17%2.冷却塔冷却能力计算:3.Q=72*L*(h1-h2)4.Q-冷却能力(Kcal/h)5.L-冷却塔风量,m3/h6.h1-冷却塔入口空气焓值7.h2-冷却塔出口空气焓值8.9.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
10.11.冷却水泵扬程的确定扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力5.冷却塔不同类型噪音及处理方法:.6.冷却水管径选择7.冷却水泵扬程:8.扬程通常是指水泵所能够扬水的最高度,用H表示。
最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。
其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。
通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
冷却塔的热力计算知识讲解

冷却塔的热力计算冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃)并引入系数K :mw u m u w r tc Q r t Q c K 2211-=-=式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t w xv h h dt c Q vK β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:Q VK xv β=Ω'(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:⎰-=Ω120"t t t w h h dt c由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔选型计算

冷却塔选型1.冷却水流量计算:ﻫL=(Q1+Q2)/(Δt*1、163)*1、1ﻫL—冷却水流量(m³/h)ﻫQ1—乘以同时使用系数后得总冷负荷,KWﻫQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4、5-5冷却塔得水流量= 冷却水系统水量×(1、2~1、5);冷却塔得能力大多数为标准工况下得出力(湿球温度28℃,冷水进出温度32ºC/37ºC),由于地区差异,夏季湿球温度会不同,应根据厂家样册提供得曲线进行修正、湿球温度可查当地气象参数获得、冷却塔与周围障碍物得距离应为一个塔高。
冷却塔散冷量冷吨得定义:在空气得湿球温度为27℃,将13L/min(0、78m³/h)得纯水从37℃冷却到32℃,为1冷吨,其散热量为4、515KW。
湿球温度每升高1℃,冷却效率约下降17%2.冷却塔冷却能力计算:ﻫQ=72*L*(h1-h2)ﻫQ-冷却能力(Kcal/h)ﻫL-冷却塔风量,m³/hﻫh1-冷却塔入口空气焓值ﻫh2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
ﻫ4.冷却水泵扬程得确定扬程为冷却水系统阻力+冷却塔积水盘至布水器得高差+布水器所需压力5、冷却塔不同类型噪音及处理方法:、6、冷却水管径选择7.冷却水泵扬程:扬程通常就是指水泵所能够扬水得最高度,用H表示。
最常用得水泵扬程计算公式就是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。
其中,H——扬程,m;p1,p2——泵进出口处液体得压力,Pa;c1,c2——流体在泵进出口处得流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。
ﻫ通常选用比转数ns在130~150得离心式清水泵,水泵得流量应为冷水机组额定流量得1、1~1、2倍(单台取1、1,两台并联取1、2。
ﻫ按估算可大致取每100米管长得沿程损失为5mH2O,水泵扬程计算公式(mH2O): ﻫHmax=△P1+△P2+0、05L(1+K)△P1为冷水机组蒸发器得水压降。
完整版冷却塔选型计算

冷却塔选型1.冷却水流量计算:L=(Q1+Q2)/(Δ)L—冷却水流量( m3/h)Q1—乘以同时使用系数后的总冷负荷, KWQ2—机组中压缩机耗电量, KWΔt—冷却水进出水温差,℃,一般取冷却塔的水流量 = 冷却水系统水量×~1.5);冷却塔的能力大多数为标准工况下的出力(湿球温度 28 ℃,冷水进出温度 32o C/37oC),由于地区差异 ,夏季湿球温度会不同 , 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得 . 冷却塔与周围障碍物的距离应为一个塔高。
冷却塔散冷量冷吨的定义:在空气的湿球温度为 27℃,将 13L/min()的纯水从 37℃冷却到 32℃,为 1 冷吨,其散热量为。
湿球温度每升高 1℃,冷却效率约下降 17%2.冷却塔冷却能力计算:Q=72*L* (h1-h2)Q-冷却能力( Kcal/h)L-冷却塔风量, m3/hh1-冷却塔入口空气焓值h2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
4.冷却水泵扬程的确定扬程为冷却水系统阻力 +冷却塔积水盘至布水器的高差 +布水器所需压力5.冷却塔不同类型噪音及处理方法:6.冷却水管径选择7.冷却水泵扬程:扬程通常是指水泵所能够扬水的最高度,用 H表示。
最常用的水泵扬程计算公式是 H=(p2- p1)/ ρg+(c2 -c1)/2g+z2-z1 。
其中,H——扬程,m;p1,p2——泵进出口处液体的压力, Pa;c1,c2——流体在泵进出口处的流速,m/s;z1 ,z2——进出口高度,m;ρ——液体密度,kg/m3;g ——重力加速度, m/s2。
通常选用比转数 ns 在 130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的~倍( 单台取,两台并联取。
按估算可大致取每 100 米管长的沿程损失为 5mH2O,水泵扬程计算公式 (mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
冷却塔简要计算

冷却塔简要计算方式冷却塔的选择:1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却塔,其国产品的代号一般为DBNL-水量数(m3/h)。
如DBNL3-100型表示水量为100 m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。
即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.1652.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。
再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。
3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件。
简要经验值计算公式:设备总冷量(KW)×856(大卡)÷3000=冷却塔水流量但在此基础上加上25T~100T=冷却塔实际规格流量或冷却塔水流量×1.2~1.3=冷却塔实际规格流量单位换算:,埃1 = 10-8cm = 10-10m是光波长度和分子直径的常用计量单位。
当讨论粉尘表面与其它表面间的范德瓦耳斯引力时,也用 来计量表面间的距离。
气体分子的直径约为3 。
从长度单位上讲, 比纳米小一个数量级。
与取自瑞典科学家 ngstr m(1814-1874)的名字, 的正确发音为“欧”、“埃”。
cfm(cubic foot per minute),立方英尺 /分钟英制风量单位,1 cfm ≈ 1.7 m3/h特别地:2000 cfm = 3400 m3/h英国人已经不用英制了。
美国人和日本人有时仍用英制单位。
℉ (Fahrenheit),华氏温标华伦海特(1686-1736)确定了三个温度固定点:海水结冰时为零度、人的体温为96度、水结冰时为32度。
在现代温标中,纯净水的冰点0℃=32℉,沸点100℃=212℉。
北美国家仍使用华氏温标。
fpm (foot per minute),英尺/分钟英制风速单位,1000 fpm ≈ 5.08 m/smbar (millibar),毫巴气压单位,有时用于过滤器阻力,1 mbar = 100 Pa = 10 mm WG mg (milligram),毫克1mg = 0.001g空气中的粉尘浓度常以mg/m3来度量。
冷却塔施工数据简明计算公式

冷却塔施工数据简明计算公式1、筒壁曲线计算:设筒身喉部半径R0与中心竖轴交点为O , 设由双曲线标准方程则对上式求导∵∴将式r′代入(2)式,得:化简得:取s为一节模板高度(S=1.5m或1.3m,施工中选用S=1.5m),z为环梁底(即第一节模板下沿中心壳体中面标高)至喉部标高之差,将其值代入式(3)即可求得其竖座标增减值Δz ,则第一节模板上口对应壳体中面座标和标高分别为Z1=Z0-Δz H1=H0- Z1= H0-(Z0-Δz)式中Z1 .........第一节模板上沿壳体中面座标Z0 .......... 第一节模板下沿壳体中面座标H1 ..........第一节模板上沿壳体中面相对标高H0 ...........壳体喉部相对标高将上二式代入(1)式可求出第一节模板上口的壳体中面半径。
用上式可求出第一节模板上口的壳体中面标高,依此逐节进行计算。
2、筒壁厚度计算(用插入法计算)公式h i------- 第i节模板上口壁厚S------- 一节模板高度S=1.5mh z------- Z m标高处设计壁厚h i-1------- 第i节模板下口壁厚即第i-1节模板上口壁厚a 、b 如图所示3 、施工控制数据计算(1)半径和标高根据这些公式从环梁处第一节模板开始逐层计算筒身的分节几何尺寸。
(2)混凝土套管长度根据计算出的筒壁厚度,用插入法计算对拉螺杆砼套管长度(如图),设h i、h i-1表示同前图,模板上下对销孔距上口边沿距离分别为u、v则即则上下对销螺栓孔砼垫块l上、l下分别为(3)各节砼体积计算r i、 r i-1模板上下沿口处的中面半径(4)各节内表面积计算A=πS (r i+r i-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷却塔设计计算参考方法本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。
一、简述如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是:a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。
b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。
c 区——冷却塔高速排风区。
d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。
e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。
二、冷却塔的选型1、设计条件温度:38℃进水,32℃出水,27.9℃湿球;水量:1430M³/H;水质:自来水;耗电比:≤60Kw/台,≤0.04Kw/M³·h,场地:23750mm×5750mm;通风状况:一般。
2、冷却塔选型符合以上条件的冷却塔为:LRCM-H-200SC8×1台。
(冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量)其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M³/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M³/H。
冷却塔的外观尺寸为:22630×3980×4130。
冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M³·h。
三、校核计算1、已知条件:冷却塔LRCM-H-200SC8在37-32-28℃温度条件下单元名义处理水量L=200 M³/H;冷却塔风量G=1690M³/min。
2、设计条件:热水温度:T1=38℃;冷水温度:T2=32℃;外气湿球温度:T w=27.9℃;大气压:Pa=76mmHg;处理水量:L=179 M³/min;水气比:L/G=1.605;热负荷:Q=1074000Kcal/h;组合单元数:N=8。
3、冷却塔特性值依照CTI标准所给出的计算公式Ka·V/L=近似计算为Ka·V/L=×代入数据得,Ka·V/L=1.251。
其中当T x=T1-0.1×(T1-T2)时,dh1=(h w–h a);当T x=T1-0.4×(T1-T2)时,dh2=(h w–h a);当T x=T2+0.4×(T1-T2)时,dh3=(h w–h a);当T x=T2+0.1×(T1-T2)时,dh4=(h w–h a);焓值单位为Kcal/Kg。
随水气比的变化可得到以下数据:由上表数值可以求得冷却塔特性曲线,再按斜率K=-0.6交于设计点(见曲线图)。
4、冷却塔冷却能力比较由上列数值绘出设计条件之特性曲线,然后由设计点(L/G,Ka·V/L)绘出水塔特性斜线与37-32-28℃标准特性曲线相交得到L’/G=1.769。
即,设计条件转换到37-32-28℃标准条件下之当量水量L’=(L’/G)*G代入数据,L’=1.769×1690×60×1.1=197.3M³/h。
而LRCM-H-200S之名义处理水量L=200 M³/h,可以满足设计条件。
5、结果LRCM-H-200S名义处理水量200 M³/h大于设计当量水量197.3M³/h,所以,此机型能满足使用要求。
四、模拟运行计算1、建立数学模型冷却塔实际运行中,各参数的变化是很复杂的,无论何种形式,在表示其热工特性的重要参数上,有,以焓为基准的总容积传热系数(Ka·V/L)与填料的材质特性(Ka)、冷却塔的结构形式、淋水密度(L/A l)、水气比(L/G)、塔体断面通风风速或风负荷(G/A g)……等诸多因素;再综合冷却塔的运行环境等因素,可以设定以下条件:1)冷却塔风机静压P s恒定;2)冷却塔循环水量L一定(此处不计偏差);3)冷却塔热容量Q一定(按主机最大负荷计),且入水温度t1为一定;4)冷却塔放置位置不变;5)冷却塔结构形式不变。
于是,可以知道变化的主要参数有:1)冷却塔风机的风量G;2)冷却塔风机的出水温度t2;3)环境湿球温度t w;我们可以抽象出以下方法对冷却塔的实际运行进行简化模拟:A.对冷却塔a区进风冷却塔进风动力源于风机所产生的静压P s与塔体入风口静压P a之差P s。
v a=;…………①设定A轴百叶开启角度≤20°,再考虑塔体入风百叶影响,取=1.12。
B.对冷却塔d区通风只有塔体入风百叶,取=1.05。
C.对冷却塔b区通风b1区靠A轴百叶仅150mm左右,通风量按它与进风口高度之百分比计约为4%;b1区靠1/A轴距离约1650mm左右,通风量按它与进风口高度之百分比计约为58%。
D.对冷却塔c区排风c区为冷却塔高速排风区,在空间上,它近似于有限空间射流,射流的外形象橄榄。
…………②式中v x——射程x处的射流轴心速度;v0——射流出口处的初平均速度;x——出口至计算断面的距离;d0——送/排风口直径;a——送/排风口的紊流系数;上式是自由射流,它可以大致绘出射流的具体形状(如射程、最大射流断面)。
但,在受限空间,排风口的速度衰减估算一般采用下式。
…………⑶受限空间射流的压力场是不均匀的,各断面的静压随射程的增加而增加;同时,由于射流速度场的相似性,必然有温度场的相似性。
…………⑷此处简化计算为平均值。
式中,⊿Tx——射流x处与周围空气的温度差;⊿T0——射流出口处与周围空气的温度差。
E.对冷却塔e区滞留热空气射流上部受栅栏影响,部分空气流向分散;以及射流过程中排风热空气与周围空气进行热能与动量的交换,其结果导致周围空气温湿度升高,焓值升高的空气一部分上升,另一部分滞留于栅栏下部空间。
这两部分一起形成了e区的滞留热空气。
通过以上建模分析可知,此环境中运行的冷却塔要克服的问题是:b区回流高温高湿空气;d区负压值过大,风量可能不足;c区滞留热空气。
2、参数估算1)已知冷却塔入风口尺寸:7.45×2=14.9m²冷却风机直径:2000mm冷却风机的总静压:110Pa冷却风机的名义风量:28.17 m³/s塔体风阻力:90 Pa冷却塔设计处理水量:179m³/h冷却塔有效散水面积:6.1m²冷却塔填料容积:14.63m³冷却塔进水温度:38℃环境湿球温度:27.9℃A轴百叶面积:≤11.25 m²易得,冷却塔水负荷(L/A l):29.36 m³/ m²·h冷却塔填料特性值(Ka):15306冷却塔出风口风速(v0):8.98 m/s冷却塔出风口动压(Pv):18.3PaA轴百叶面通风风速:2.81 m/s(注:冷却塔基础墩高度750mm)2)计算冷却塔通风遵循进出风量相等原则,可知,a区通风量与e区排风量相等。
A.在c~e区,计算e区的静压与温度设从风机排出的空气与水热交换100%,即排风口饱和湿空气焓h a2=h a1+L/G(T1-T2)…………⑸e区排风动压P vev e= v0×…………⑹当x/d=2时,v e=1.98m/s,即排风到达顶部栅栏时,动压基本转化为静压,P s≈16.1Pa排风空气在此处静压呈正态分布,热风被排出。
e区空气温度差⊿T e=(38-27.9)×=0.87℃说明e区排风(非饱和湿空气)与周围空气之温度比较接近。
e区弥散的热空气的湿球温度近似为:tw e=27.9+0.87=28.77℃B.在b~d区其中,冷却塔进风两侧,一面临A轴,一面临1/A轴。
假定,两面进风量相同,则冷却塔进风面风速约为1.89 m/s,每面进风量约14.08m³/s。
冷却塔进风临A轴侧,由于靠近百叶,所以风量视为足够;对临1/A轴侧,d区可分上、下两部分通风,其中上部通风约58%;同理,下部通风约38%;即是说,由于下部通风量的不足,上部热风回流大部分弥补了1/A轴侧通风量的不足,同时也造成d区负压过大。
由式⑴,因为G=V·A,冷却塔通风面积一定。
所以,⊿Ps=代入数据,⊿Ps=×(1-0.8836)=0.3Pa超出的负压,使得d区通风恶化,上部热风更多从b2区流向d区,即实际上部通风量应为:58%+4%=62%,d区上、下两部分空气混合而成1/A侧冷却塔的进风,混合后的湿球温度t w’(A轴空气湿球温度t w=27.9℃)。
…………⑺代入数据,求得hw’=21.94Kcal/kg按空调二类地区换算,可得混合后的空气湿球温度:t w’=28.3℃。
它说明1/A轴侧冷却塔的进风湿球温度要比A轴侧的高出0.4℃。
按⑸式可以得出塔热空气的焓h2:h2=21.307+1.605×(38-32)=30.937 Kcal/kg(注:如果按38℃排风温度,出塔热空气的焓应为35.848 Kcal/kg)依照上述结果推算,1/A轴侧冷却水出水温度T2’:T2’=38-=32.4℃到此,计算完成。
3)评述与结论以上结果是在抽象简化后计算得出,鉴于冷却塔在现场运行时情况更为复杂,例如,风机静压的影响,环境的蓄热量,分水均匀度,风叶片的安装角度等等,但,总的说来,冷却塔出水温度偏差应在0.4~0.7℃内。
五、可选改善方案与建议1)可选改善方案为使冷却塔的运行效果更好,可在冷却塔的出风口加装1500mm~2000高的直立导风筒,以防排风动压下降过快。
同时,冷却塔在设计时充分考虑余量,以缓减环境湿球升高的影响。
2)建议由于冷却塔所在空间的空气湿度较大,所以建议作好建筑的防潮与防水工作。