高中数学必修一基本初等函数知识点及典型例题总结

合集下载

人教版高中数学必修一《基本初等函数》全章知识小结

人教版高中数学必修一《基本初等函数》全章知识小结

数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点一、函数的概念函数是自然界和社会现象中的各种数学规律在数学上的抽象和推广。

一般来说,对于自变量x的每一个取值,都有唯一的因变量y与之对应。

数学上,函数用来描述自变量和因变量之间的对应关系。

二、函数的表示函数的一般表示形式为y=f(x),其中y为因变量,x为自变量,f(x)为函数关系式,描述了x与y之间的对应关系。

常用的函数表示形式包括算式、表格、图像和文字等。

三、函数的性质1.定义域和值域:一个函数的定义域是该函数所有可能的自变量的值的集合,值域是函数所有可能的因变量的值的集合。

2.奇偶性:如果函数满足f(-x)=-f(x)对于所有的x成立,则称该函数为奇函数;如果函数满足f(-x)=f(x)对于所有的x成立,则称该函数为偶函数。

3.单调性:如果对于自变量的每一个取值,函数的值只随着自变量的增加而增加,则称该函数为递增函数;如果对于自变量的每一个取值,函数的值只随着自变量的增加而减小,则称该函数为递减函数。

4.周期性:如果存在正数T,使得对于每一个自变量的取值x,有f(x+T)=f(x),则称该函数为周期函数。

四、函数图像函数图像是将函数的自变量和因变量之间的对应关系通过图像的方式展示出来。

通过函数图像可以直观地了解函数的各种性质。

一般来说,函数的图像在直角坐标系中表示,自变量x沿横轴,因变量y沿纵轴。

五、函数的变换函数的变换是通过改变自变量或者函数关系式的形式,对函数图像进行平移、伸缩、翻转等变换。

常见的函数变换包括平移变换、纵向伸缩变换、横向伸缩变换和翻转变换等。

六、常见的初等函数1. 一次函数:f(x)=kx+b,其中k和b为常数,k称为斜率,b称为截距。

一次函数的图像为直线,斜率决定了直线的倾斜程度,截距决定了直线与纵轴的交点。

2. 二次函数:f(x)=ax^2+bx+c,其中a、b和c为常数,a不为零。

二次函数的图像为抛物线,开口方向由a的正负确定,a越大,抛物线越开口向上。

高中数学必修1第二章知识点总结

高中数学必修1第二章知识点总结

第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:m na=)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·s r r a a +=;(2)rs s r a a =)(;(3)s r r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数.2(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =;二、对数函数 (一)对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ;②x N N a a x=⇔=log ;③注意对数的书写格式.两个重要对数:①常用对数:以10为底的对数N lg ; ②自然对数:以 71828.2=e 为底的对数N ln . 指数式与对数式的互化(如右图) (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ①M a (log ·=)N M a log +N a log ;② =NMalog M a log -N a log ;③n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b mnb a n a mlog log =;(2)a b b a log 1log =.(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数.注意:① 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

人教版高中数学必修一 第二章 基本初等函数知识点总结

人教版高中数学必修一 第二章 基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。

注意:(1)na =(2)当 n a = ,当 n ,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r rra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 20<a<1a>1定义域R , 值域(0,+∞)注意: 指数增长模型:y=N(1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。

(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。

掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。

(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。

(4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。

(5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式)说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式.2、两个重要对数:(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =⇔=对数式 指数式对数底数← a → 幂底数对数← x → 指数真数← N → 幂 结论:(1)负数和零没有对数(2)log a a=1, log a 1=0 特别地, lg10=1, lg1=0 , lne=1, ln1=0(3) 对数恒等式:log Na a N =(二)对数的运算性质如果 a > 0,a ≠ 1,M > 0, N > 0 有:1、 log M N log log a a a M N ∙=+() 两个正数的积的对数等于这两个正数的对数和 2 、N M NMa a alog log log -= 两个正数的商的对数等于这两个正数的对数差3 、log log n na a M n M =∈(R ) 一个正数的n 次方的对数等于这个正数的对数n 倍说明:1) 简易语言表达:”积的对数=对数的和”……2) 有时可逆向运用公式3) 真数的取值必须是(0,+∞)4) 特别注意:N M MN a a a log log log ⋅≠ ()N M N M a a a log log log ±≠±注意:换底公式()log lg log 0,1,0,1,0log lg c a c b bb a ac c b a a==>≠>≠>利用换底公式推导下面的结论 ①a b b a log 1log =②log log log log a b c a b c d d ∙∙=③log log m n a a nb b m=(二)对数函数1、对数函数的概念:函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:(1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

必修一_基本初等函数_知识点讲解

必修一_基本初等函数_知识点讲解

基本初等函数第一讲 幂函数1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.注意:y x α=中,前面的系数为1,且没有常数项2、幂函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =3、幂函数的性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.分数指数幂概念 有理指数幂运算性质(0,,)r s r s a a a a r s Q +=>∈;()(0,,)r s rs a a a r s Q =>∈(0,,*,1)a m n N n >∈>且 ()(0,0,)r r r ab a b a b r Q =>>∈第二讲 指数函数1、指数(1)n 次方根的定义若x n =a ,则称x 为a 的n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.(2)方根的性质①当n 为奇数时,n n a =a . ②当n 为偶数时,n n a =|a |=⎩⎨⎧<-≥).0(),0(a aa a(3)分数指数幂的意义①a nm =n m a (a >0,m 、n 都是正整数,n >1). ②an m -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).2、指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .n mnm a a=nmn m nm aa a1==-000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量, 5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等, 不符合(01)x y a a a =>≠且的形式,所以不是指数函数.3、 指数函数的图像及其性质(1)底数互为倒数的两个指数函数的图象关于y 轴对称.(2)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (3)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R;(4)对于指数函数()xf x a =(a >0且a ≠1),总有(1);f a =(5)当a >1时,若1x <2x ,则1()f x <2()f x ;第三讲 对数函数1、 对数(1)对数的概念一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =a 叫做对数的底数,N 叫做真数.如:24416,2log 16==则,读作2是以4为底,16的对数. 1242=,则41log 22=,读作12是以4为底2的对数. (2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0). (4)两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.2、对数函数的概念一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 3、对数函数的图象及其性质a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点
1. 线性函数:y = kx + b(k和b为常数),其中k称为斜率,b称为截距。

2. 幂函数:y = x^n(n为常数),其中n可以是正整数、零、负整数。

3. 指数函数:y = a^x(a为正实数且a≠1)。

4. 对数函数:y = loga(x)(a为正实数且a≠1),其中x为正实数。

5. 三角函数(正弦函数、余弦函数、正切函数、余切函数等):y = sinx,y = cosx,y = tanx,y = cotx等。

6. 反三角函数(反正弦函数、反余弦函数、反正切函数、反余切函数等):y = arcsinx,y = arccosx,y = arctanx,y = arccotx等。

7. 绝对值函数:y = |x|。

8. 双曲函数(双曲正弦函数、双曲余弦函数、双曲正切函数等):y = sinh(x),y = cosh(x),y = tanh(x)等。

9. 分段函数:根据不同条件定义函数的不同表达式,例如:y = f(x) =
{ x+1, (x≤0)
{ x^2, (0<x≤1)
{ 2x-1, (x>1)
10. 复合函数:将一个函数的输出作为另一个函数的输入进行运算,例如:f(g(x))。

以上是数学必修一中较为基本的初等函数知识点,只覆盖了一部分内容。

学习初等函数的重点是掌握其基本性质、图像和应用。

高中数学必修一基本初等函数小结与复习

高中数学必修一基本初等函数小结与复习
M N = logaM- logaN
(M,N>0) (M,N>0) (M>0)
③logaMn=n logaM
logbN 7、对数的换底公式:logaN= log a b
n= n log b 重要推论: logab·logba=1, loga b m a m
8、 以10为底的对数叫做常用对数。 以e为底的对数叫做自然对数
m
1 an
n
(a≠0,n∈N)
(a>0,n>1,m、n∈N)
④正分数指数幂:a
n
= √
m
am 1 am
n
⑤负分数指数幂:a- 2、幂的运算法则:
n
=

(a>0,n>1,m、n∈N)
①am.an=am+n
③(am)n=amn
② am÷an=am-n
④(ab)m=ambm
(a≠0)
3、对数:如果ab=N,那么b叫做以a为底N的对数, 记为b=logaN。 ab=N b=logaN。(a>0且 a≠1) logaN 4、对数恒等式:a = N(a>0且a≠1,N>0) 5、对数的性质:①0和负数没有对数;②loga1=0; ③logaa=1。 6、对数的运算法则: ①loga (MN)= logaM+ logaN ② loga
2
x 1
( x 1), 对任意1 x1 x2 , 有
所以f ( x)在(1, +)上为增函数.
x 1 1 x (3)设g ( x) log 1 ( ) , 2 x 1 2 1 x 又因为y ( ) 在[3,4]上是减函数, 2 x 1 1 x 所以g ( x) log 1 ( ) 在[3,4]上是增函数. 2 x 1 2 9 所以g ( x) min g (3) . 8 1 x 又因为f ( x)>( ) m恒成立即g ( x) m恒成立, 2 9 9 所以m , 即所求m的取值范围是( , ). 8 8

高中数学 必修一函数性质详解及知识点总结及题型详解

高中数学 必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
x x 2 2x 2 x 4 1 4 a a 2 1
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1

2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1

5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

高一必修一函数知识点(12.1 )〖1.1〗指数函数(1)根式的概念① :a 叫做根式,这里n 叫做根指数,a 叫做被开方数. ② 当n 为奇数时,a 为任意实数;当n 为偶数时,a 0. ③根式的性质:牯(2)分数指数幂的概念m①正数的正分数指数幂的意义是:a nn/(a0,m, n N ,且n1).0的正分数指数幂等于0.②正数的负分数指数幂的意义是:am. m1 - n (—)nn(1)m (a 0,m, n N ,且n1). 0的负分数指数幂没有意a ■ a义. 注意口诀:底数取倒数, 指数取相反数.(3)分数指数幂的运算性质① a ra sa r s(a 0,r, s R) ②(a r )sa rs (a 0, r,s R)③(ab)rr r za b (a 0,b 0,r R)(4)指数函数例:比较〖1.2〗对数函数(1)对数的定义①若a xN(a 0,且a 1),则x 叫做以a 为底N 的对数,记作x log a N ,其中a 叫做底数,N 叫做真数.②对数式与指数式的互化:x log a N a x N (a 0, a 1,N 0).(2)常用对数与自然对数:常用对数:lg N ,即log 10 N ;自然对数:In N ,即log e N (其中e 2.71828…).(3) 几个重要的对数恒等式: log a 1 0,log a a 1,log a a b b .(4) 对数的运算性质如果a 0,a 1,M 0, N 0 ,那么(5①加法:log a M log a N log a (MN)②减法:log a M log a Nlog a③数乘:nlog a M log a M n (n R)④alog a N⑤ log b M n n log a M(b 0,n R) a b⑥换底公式:log a Ng N log b a (b 0,且 b 1)①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f 1(y);1 1③将x f (y)改写成y f (x),并注明反函数的定义域.(7)反函数的性质①原函数y f (x)与反函数y f 1(x)的图象关于直线y x对称.即,若P(a,b)在原函数y f (x)的图象上,贝u P(b,a)在反函数y f (x)的图象上.②函数y f (x)的定义域、值域分别是其反函数y f 1(x)的值域、定义域.函数基本性质一一奇偶性知识点及经典例题、函数奇偶性的概念:①设函数y f x的定义域为D,如果对D内的任意一个x,都有x D,且f x f x,则这个函数叫奇函数。

必修1第二章基本初等函数小结1课件人教新课标

必修1第二章基本初等函数小结1课件人教新课标
基本初等函数本章小结
代兵
高中数学必修1同步辅导课程——基本初等函数本章小结
本章知识网络:
指数函数


本 初


等 函

互为反函数
对数函数
幂函数
指数 性质 对数 性质 定义 性质
高中数学必修1同步辅导课程——基本初等函数本章小结
指数函数与对数函数的联系:
图像:
高中数学必修1同步辅导课程——基本初等函数本章小结
a>1
0<a<1
五个具体
的幂函数
(a=-1, 1 ,0,1,2)
2
如果a<0,则图象过点(1,1),
并在(0,+∞)上为减函数;
a<0
logb N
lo0g且b aa
1)
式:

像:
性质 定义域:(0,)
值域:R
单调性:a>1时为增函数,0<a<1时为减函数
定点:(1,0)
幂函数
高中数学必修1同步辅导课程——基本初等函数本章小结
定义:形如 y xa (a是常数)
如果a>0,则图象过点(0,0)、
(1,1)并在(0,+∞)上为
增函数;
典型题例:
例1:(1)化简: a 3 b 3 b a3 3 a b
(2)求值:1 lg 32 4 lg 8 lg 245
2 49 3
高中数学必修1同步辅导课程——基本初等函数本章小结
变式:(1)已知:10
2,10
3,
求1002
1 3
的值。
(2)已知:9a 2b 1 ,求 1 2 的值。
若不等式f (x) 4的解集为 2,2求a的值。

高一数学必修一基本初等函数解析

高一数学必修一基本初等函数解析

基本初等函数一.要点精讲 1.指数与对数运算 1根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根;即若a x n=,则x 称a 的n 次方根)1*∈>N n n 且,1当n 为奇数时,n a 的次方根记作n a ;2当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n ②性质:1a a nn =)(;2当n 为奇数时,a a nn =;3当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n ; 2.幂的有关概念①规定:1∈⋅⋅⋅=n a a a a n( N ;2)0(10≠=a a ; n 个 3∈=-p aap p(1Q ,4m a a a n m n m,0(>=、∈n N 且)1>n ②性质:1r a a a a sr sr,0(>=⋅+、∈s Q ;2r a aa sr sr ,0()(>=⋅、∈s Q ;3∈>>⋅=⋅r b a b a b a rrr ,0,0()( Q ; 注上述性质对r 、∈s R 均适用; 3.对数的概念 ①定义:如果)1,0(≠>a aa 且的b 次幂等于N,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数1以10为底的对数称常用对数,N 10log 记作N lg ;2以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质:1真数N 为正数负数和零无对数;201log =a ;31log =a a ;4对数恒等式:N aNa =log ;③运算性质:如果,0,0,0,0>>≠>N M a a 则 1N M MN a a a log log )(log +=; 2N M NMa a alog log log -=; 3∈=n M n M a na (log log R④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a11log log =⋅a b b a ;2b mnb a na m log log =; 2.指数函数与对数函数 1指数函数:①定义:函数)1,0(≠>=a a a y x且称指数函数, 1函数的定义域为R ;2函数的值域为),0(+∞;3当10<<a 时函数为减函数,当1>a 时函数为增函数; ②函数图像:1指数函数的图象都经过点0,1,且图象都在第一、二象限;2指数函数都以x 轴为渐近线当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴;3对于相同的)1,0(≠>a aa 且,函数x x a y a y -==与的图象关于y 轴对称③函数值的变化特征: 2对数函数:①定义:函数=y 1函数的定义域为(3当10<<a 4对数函数y log =②函数图像:1对数函数的图象都经过点0,1,且图象都在第一、四象限; 2对数函数都以y 轴为渐近线当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴;4对于相同的)1,0(≠>a aa 且,函数x y x y aa 1log log ==与的图象关于x 轴对称;③函数值的变化特征:3幂函数1掌握5个幂函数的图像特点2a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3过定点1,1当幂函数为偶函数过-1,1,当幂函数为奇函数时过-1,-1 当a>0时过0,04幂函数一定不经过第四象限 四.典例解析 题型1:指数运算例1.1计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;2化简:5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--; 解:1原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=; 2原式=5131212132********13123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=;点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序;例2.1已知11223xx-+=,求22332223x x x x--+-+-的值解:∵11223x x-+=,∴11222()9xx -+=,∴129x x -++=,∴17x x-+=,∴12()49x x -+=, ∴2247x x-+=,又∵331112222()(1)3(71)18x xx x x x ---+=+⋅-+=⋅-=,∴223322247231833x x x x--+--==-+-;点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算; 题型2:对数运算2.江苏省南通市2008届高三第二次调研考试幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 .答案 错误!例3.计算12(lg 2)lg 2lg 50lg 25+⋅+;23948(log 2log 2)(log 3log 3)+⋅+;31.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅解:1原式22(lg 2)(1lg 5)lg 2lg 5(lg 2lg 51)lg 22lg 5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;2原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅=; 3分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++;分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴原式=43; 点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧例4.设a 、b 、c 为正数,且满足222a b c +=1求证:22log (1)log (1)1b c a ca b +-+++=; 2若4log (1)1b c a ++=,82log ()3a b c +-=,求a 、b 、c 的值;证明:1左边222log log log ()a b c a b c a b c a b ca b a b+++-+++-=+=⋅22222222222()22log log log log 21a b c a ab b c ab c c ab ab ab +-++-+-=====;解:2由4log (1)1b c a ++=得14b ca++=, ∴30a b c -++=……………①由82log ()3a b c +-=得2384a b c +-==………… ……………②由①+②得2b a -=……………………………………③ 由①得3c a b =-,代入222a b c +=得2(43)0a a b -=, ∵0a >, ∴430a b -=………………………………④ 由③、④解得6a =,8b =,从而10c =;点评:对于含对数因式的证明和求值问题,还是以对数运算法则为主,将代数式化简到最见形式再来处理即可;题型3:指数、对数方程例5.江西师大附中2009届高三数学上学期期中已知定义域为R 的函数abx f x x ++-=+122)(是奇函数.1求a,b 的值;2若对任意的R t ∈,不等式0)2()2(22<-+-k t f t t f 恒成立,求k 的取值范围.解 1 因为)(x f 是R 上的奇函数,所以1,021,0)0(==++-=b abf 解得即从而有.212)(1a x f x x++-=+ 又由aa f f ++--=++---=1121412)1()1(知,解得2=a 2解法一:由1知,121212212)(1++-=++-=+x x x x f 由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->-即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得 解法二:由1知,2212)(1++-=+x x x f 又由题设条件得0221222121*********<++-+++-+--+--k t k t t t t t即0)12)(22()12)(22(2222212212<+-+++-+-+--+-ktt tttk t整理得12232>--kt t ,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得 例6.2008广东 理7 设a ∈R ,若函数3axy ex =+,x ∈R 有大于零的极值点,则 BA .3a >-B .3a <-C .13a >-D .13a <-解析'()3axf x ae =+,若函数在x R ∈上有大于零的极值点,即'()30axf x ae =+=有正根;当有'()30ax f x ae =+=成立时,显然有0a <,此时13ln()x a a=-,由0x >我们马上就能得到参数a 的范围为3a <-.点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解;题型4:指数函数的概念与性质例7.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,A .0B .1C .2D .3解:C ;1)12(log )2(23=-=f ,eef f 22))2((10==-; 点评:利用指数函数、对数函数的概念,求解函数的值例8.已知)1,0()(log 1≠>+=-a a x x x f a 且试求函数fx 的单调区间; 解:令t x a =log ,则x =t a ,t ∈R;所以t a a t f -+'=)(即x x a a x f -+=)(,x ∈R;因为f -x =fx ,所以fx 为偶函数,故只需讨论fx 在0,+∞上的单调性; 任取1x ,2x ,且使210x x ≤≤,则1当a >1时,由210x x ≤≤,有210x x a a <<,121>+x x a ,所以0)()(12>-x f x f ,即fx 在0,+∞上单调递增;2当0<a <1时,由210x x ≤≤,有210x x a a <<,121<+x x a ,所以0)()(12>-x f x f ,即fx 在0,+∞上单调递增;综合所述,0,+∞是fx 的单调增区间,-∞,0是fx 的单调区间;点评:求解含指数式的函数的定义域、值域,甚至是证明函数的性质都需要借助指数函数的性质来处理;特别是分10,1<<>a a 两种情况来处理;题型5:指数函数的图像与应用 例9.若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是A .m ≤-1B .-1≤m<0C .m ≥1D .0<m ≤1解:⎪⎩⎪⎨⎧<≥==---)1(2)1()21()21(11|1|x x y x x x ,画图象可知-1≤m<0; 答案为B ;点评:本题考察了复杂形式的指数函数的图像特征,解题的出发点仍然是1,0,1<>a a 两种情况下函数xa y =的图像特征;例10.设函数x x f x f x x 22)(,2)(|1||1|≥=--+求使的取值范围;解:由于2xy =是增函数,()f x ≥3|1||1|2x x +--≥ ① 1当1x ≥时,|1||1|2x x +--=,∴①式恒成立; 2当11x -<<时,|1||1|2x x x +--=,①式化为322x ≥,即314x ≤<; 3当1x ≤-时,|1||1|2x x +--=-,①式无解;综上x 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭;点评:处理含有指数式的不等式问题,借助指数函数的性质将含有指数式的不等式转化为普通不等式问题一元一次、一元二次不等式来处理题型6:对数函数的概念与性质 例11.1函数2log 2-=x y的定义域是A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞22006湖北设fx =x x -+22lg ,则)2()2(xf x f +的定义域为 A .),(),(-4004 B .-4,-1 1,4 C .-2,-1 1,2 D .-4,-2 2,4解:1D 2B ;点评:求函数定义域就是使得解析是有意义的自变量的取值范围,在对数函数中只有真数大于零时才有意义;对于抽象函数的处理要注意对应法则的对应关系;例12.2009广东三校一模设函数()()()x x x f +-+=1ln 212.1求()x f 的单调区间;2若当⎥⎦⎤⎢⎣⎡--∈1,11e ex 时,其中 718.2=e 不等式()m x f <恒成立,求实数m 的取值范围;3试讨论关于x 的方程:()a x x x f ++=2在区间[]2,0上的根的个数.解 1函数的定义域为(),,1+∞-()()()1221112++=⎥⎦⎤⎢⎣⎡+-+='x x x x x x f . 1分 由()0>'x f 得0>x ;2分由()0<'x f 得01<<-x , 3分则增区间为()+∞,0,减区间为()0,1-.4分2令()(),0122=++='x x x x f 得0=x ,由1知()x f 在⎥⎦⎤⎢⎣⎡-0,11e 上递减,在[]1,0-e 上递增,6分由,21112+=⎪⎭⎫⎝⎛-ee f ()212-=-e e f ,且21222+>-e e ,8分⎥⎦⎤⎢⎣⎡--∈∴1,11e e x 时,()x f 的最大值为22-e ,故22->e m 时,不等式()m x f <恒成立.9分3方程(),2a x x x f ++=即()a x x =+-+1ln 21.记()()x x x g +-+=1ln 21,则()11121+-=+-='x x x x g .由()0>'x g 得1>x ;由()0<'x g 得11<<-x . 所以gx 在0,1上递减,在1,2上递增.而g0=1,g1=2-2ln2,g2=3-2ln3,∴g0>g2>g1 10分 所以,当a >1时,方程无解; 当3-2ln3<a ≤1时,方程有一个解,当2-2ln2<a ≤a ≤3-2ln3时,方程有两个解; 当a=2-2ln2时,方程有一个解;当a <2-2ln2时,方程无解. 13分 字上所述,a )2ln 22,(),1(--∞+∞∈ 时,方程无解;]1,3ln 23(-∈a 或a=2-2ln2时,方程有唯一解; ]3ln 23,2ln 22(--∈a 时,方程有两个不等的解.14分例13.当a >1时,函数y =log a x 和y =1-ax 的图象只可能是 解:当a >1时,函数y =log a x 的图象只能在A 和C 中选, 又a >1时,y =1-ax 为减函数;答案:B点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性例14.设A 、B 是函数y = log 2x 图象上两点, 其横坐标分别为a 和a +4, 直线l : x =a +2与函数y = log 2x 图象交于点C , 与直线AB 交于点D ;1求点D 的坐标;2当△ABC 的面积大于1时, 求实数a 的取值范围解:1易知D 为线段AB 的中点, 因Aa , log 2a , Ba +4, log 2a +4, 所以由中点公式得Da +2, log 2)4(+a a ;2S △ABC =S 梯形AA ′CC ′+S 梯形CC ′B ′B - S 梯形AA ′B ′B =…= log 2)4()2(2++a a a ,其中A ′,B ′,C ′为A ,B ,C 在x 轴上的射影;由S △ABC = log 2)4()2(2++a a a >1, 得0< a <22-2;点评:解题过程中用到了对数函数性质,注意底数分类来处理,根据函数的性质来处理复杂问题;题型8:指数函数、对数函数综合问题例15.在xOy 平面上有一点列P 1a 1,b 1,P 2a 2,b 2,…,P n a n ,b n …,对每个自然数n 点P n 位于函数y =200010a x0<a <1的图象上,且点P n ,点n ,0与点n +1,0构成一个以P n 为顶点的等腰三角形;1求点P n 的纵坐标b n 的表达式;2若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;3设C n =lg b n n ∈N ,若a 取2中确定的范围内的最小整数,问数列{C n }前多少项的和最大 试说明理由解:1由题意知:a n =n +21,∴b n =200010a21+n ;2∵函数y =200010a x0<a <10递减, ∴对每个自然数n ,有b n >b n +1>b n +2;则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n , 即10a 2+10a-1>0, 解得a <-51+2或a >55-1; ∴55-1<a <10; 3∵55-1<a <10,∴a =7∴b n =200010721+n ;数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1;于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =200010721+n ≥1得:n ≤20;∴n =20;点评:本题题设从函数图像入手,体现数形结合的优越性,最终还是根据函数性质结合数列知识,以及三角形的面积解决了实际问题;例16.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数1求函数fx 的定义域;2若a =2,试根据单调性定义确定函数fx 的单调性3若函数y =fx 是增函数,求a 的取值范围; 解:1由ax x x ax <>-得0∵a >0,x ≥0 ∴fx 的定义域是),1(2+∞∈a x ; 2若a =2,则)2(log )(2x x x f -=设4121>>x x , 则 故fx 为增函数;3设1121221>>>>x a x a a x x 则2211x ax x ax ->-∴ ①∵fx 是增函数, ∴fx 1>fx 2即)(log )(log 2211x ax x ax a a ->- ②联立①、②知a >1,∴a ∈1,+∞;点评:该题属于纯粹的研究复合对函数性质的问题,我们抓住对数函数的特点,结合一般函数求定义域、单调性的解题思路,对“路”处理即可题型9:课标创新题例17.对于在区间[]n m ,上有意义的两个函数fx 与gx ,如果对任意的∈x []n m ,,均有1)()(≤-x g x f ,则称fx 与gx 在[]n m ,上是接近的,否则称fx 与gx 在[]n m ,上是非接近的,现有两个函数)3(log )(1a x x f a -=与)1,0(1log )(2≠>-=a a ax x f a ,给定区间[]3,2++a a ; 1若)(1x f 与)(2x f 在给定区间[]3,2++a a 上都有意义,求a 的取值范围;2讨论)(1x f 与)(2x f 在给定区间[]3,2++a a 上是否是接近的;解:1两个函数)3(log )(1a x x f a -=与)1,0(1log )(2≠>-=a a ax x f a在给定区间[]3,2++a a 有意义,因为函数a x y 3-=给定区间[]3,2++a a 上单调递增,函数在a x y -=1给定区间[]3,2++a a 上恒为正数,故有意义当且仅当1003)2(10<<⇒⎪⎩⎪⎨⎧>-+≠>a a a a a ; 2构造函数)3)((log )()()(21a x a x x f x f x F a --=-=,对于函数)3)((a x a x t --=来讲,显然其在]2,(a -∞上单调递减,在),2[+∞a 上单调递增;且t y a log =在其定义域内一定是减函数由于10<<a ,得2220+<<<a a所以原函数在区间]3,2[++a a 内单调递减,只需保证 当125790-≤<a 时,)(1x f 与)(2x f 在区间[]3,2++a a 上是接近的; 当12579->a 时,)(1x f 与)(2x f 在区间[]3,2++a a 上是非接近的点评:该题属于信息给予的题目,考生首先理解“接近”与“非接近”的含义,再对含有对数式的函数的是否“接近”进行研究,转化成含有对数因式的不等式问题,解不等式即可;例18.设1x >,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值;解:令 log x t y =,∵1x >,1y >,∴0t >;由2log 2log 30x y y x -+=得2230t t -+=,∴22320t t +-=,∴(21)(2)0t t -+=,∵0t >,∴12t =,即1log 2x y =,∴12y x =, ∴222244(2)4T x y x x x =-=-=--,∵1x >,∴当2x =时,min 4T =-;点评:对数函数结合不等式知识处理最值问题,这是出题的一个亮点;同时考察了学生的变形能力; 例19.2009陕西卷文设曲线1*()n y x n N +=∈在点1,1处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为 A.1n B.11n + C. 1n n + 答案 B 解析 对1*'()(1)n n y xn N y n x +=∈=+求导得,令1x =得在点1,1处的切线的斜率1k n =+,在点1,1处的切线方程为1(1)(1)(1)n n y k x n x -=-=+-,不妨设0y =,1nn n x +=则1212311 (23411)n n n x x x n n n -⋅⋅⋅=⨯⨯⨯⨯⨯=++, 故选 B. 五.思维总结1.b N N a a N a b n ===log ,,其中1,0,0≠>>a a N 是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化分子或分母、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识;4.指数、对数函数值的变化特点上面知识结构表中的12个小点是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析;5.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类;6.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数特别是二次函数形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力。

人教版高中数学必修一《基本初等函数》全章知识小结

人教版高中数学必修一《基本初等函数》全章知识小结

数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。

高一必修一数学知识点例题

高一必修一数学知识点例题

高一必修一数学知识点例题第1节:函数1. 函数的概念函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

数学上常用f(x)表示函数。

例题1:设函数f(x) = 2x - 3,求f(4)的值。

解析:将x = 4代入函数表达式f(x) = 2x - 3中,得到f(4) = 2(4) - 3 = 5。

2. 函数的性质函数具有以下性质:- 定义域:函数的自变量x的取值范围。

- 值域:函数的因变量f(x)的取值范围。

- 奇偶性:当函数满足f(-x) = -f(x)时,称其为奇函数;当函数满足f(-x) = f(x)时,称其为偶函数。

- 单调性:当函数满足f(x1) ≤ f(x2) (x1 < x2),则称其为递增函数;当函数满足f(x1) ≥ f(x2) (x1 < x2),则称其为递减函数。

例题2:判断函数f(x) = x^3 - 2x^2 + x是否是奇函数还是偶函数。

解析:对于函数f(x)来说,有f(-x) = (-x)^3 - 2(-x)^2 + (-x) = -x^3 - 2x^2 - x = -f(x),所以该函数是奇函数。

第2节:二次函数1. 二次函数的特征二次函数是具有形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

二次函数的图像为抛物线。

2. 二次函数图像的性质- 开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 零点:二次函数的零点为方程ax^2 + bx + c = 0的解。

- 极值点:当抛物线开口向上时,函数的极小值点为顶点;当抛物线开口向下时,函数的极大值点为顶点。

例题3:已知二次函数f(x) = x^2 - 2x + 1,求函数的零点和极值点。

解析:首先令f(x) = 0,得到x^2 - 2x + 1 = 0。

通过求解该方程,可以得到函数的零点。

再通过求导函数得到导函数f'(x),令f'(x) = 0,求解方程得到函数的极值点。

基本初等函数知识点

基本初等函数知识点

《必修一》基本初等函数知识点【知识点一、指数函数】 (一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a n n =, 当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m nm, )1,,,0(11*>∈>==-n N n m a a a anmnmnm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)(),,0(R s r a ∈>; (3)s r r a a ab =)(),,0(R s r a ∈>. 【例1】.下列正确的是( )A .a 0=1B .221a a=- C .10-1=0.1 D .a a =2【例2】.416的值为( )A .±2B .2C .-2D .4【例3】.32)27125(-的值为A .925 B .259 C .925-D .259-【例4】.化简382313232---xx x xxx 的结果是( )A .34xB .x 2C .x 3D .x 4【例5】、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭【例6】、44等于( )A 、16aB 、8aC 、4aD 、2a【例7】、若1,0a b ><,且b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、2【高考例题1】.已知11223a a-+=,求下列各式的值(1)1a a -+= ; (2)22a a -+=【高考例题2】若11225xx-+=,则21x x+的值是【高考例题3】.若13a a -+=,求下列各式的值:(1)1122a a -+= ; (2)22a a -+= ;【知识点二:指数函数及其性质】1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数
y a x (a > 0,a 1)
a>1
0<a<1
1、定义域 .
R.
2、值域
R+
3、图象
y
y
1
1
o
x
o
x
指数函数y=ax(a>0,且a≠1)的性质:
a >1 y
0< a <1 y

象 y=1
(0,1)
o
x
(0,1) y=1
o
x
1.定义域: (, )
性 2. 值域: (0, )
y
y bx y cx
y ax
y dx
o x=1 x
0ba1d c
图象从下到上,底数逐渐变大.
变式训练
【3】说出下列函数的图象与指数函数 y=2x 的图 象的关系,并画出它们的示意图.
(4) y 2x与 y 2|x|
y
o
x
由 y=f(x) 的图象作 y=f(|x|) 的图象:保留y=f(x)中y 轴右侧部分,再加上这部分关于y轴对称的图形.
(2) 几种常见对数
对数形式 一般对数 常用对数 自然对数
特点 底数为a(a>0且a≠1)
底数为_1_0__
底数为__e__
记法 _l_o_g_a_N__ __l_g_N__ __l_n_N__
2. 对数的性质与运算法则 (1)对数的性质 ①负数和零没有对数; ② logaa = 1; ③ loga1 = 0. (2) 积、商、幂的对数运算法则:
;

logam
Nn
n m
loga
N;
④ loga b logb c loga c.
3. 对数函数图象与性质


y = logax ( a>0 且 a≠1 )
图象
定义域 值域 单调性 过定点 趋势
取值范围
(0, +∞)
(0, +∞)
R
R
增函数
减函数
(1,0)
(1,0)
底数越大,图象越靠近 x 轴 底数越小,图象越靠近 x 轴
0<x<1时, y<0
0<x<1时, y>0
x>1时, y>0
x>1时, y<0
4. 反函数
指数函数y=ax与对数函数__y=__lo_g_a_x__互为反 函数,它们的图象关于直线____y_=_x___对称. 5. 第一象限中,对数函数底数与图象的关系
y
y=1
图象从左到 右,底数逐渐变
Байду номын сангаас
o
x 大.
证证证证证明明明明明∴此当此∴:∴此当此∴:∴此当此∴:∴此当此∴∴此当此∴::(((((11111时时当函时时当函时时当函)时时时时当函当函))))00000由由由由由<<<<<函函数函函数函函数函函函函数数aaaaaaaaaaa>aa<>aa>>><<<<数数数数数数数数数数xfxx1xxffx1ff11111111-(----((((xxxxx时时时时时时时时ff时时ffffffff)))1))((11((11((((((的的的的的xxxxxx>xxxx,>,>,>>,,,,,,,x))xx))xx))))))x0xx0xx000的的图的的图的的图的的的的图图<<<<<>,>,>,>>,,0000000图图0象00图图象图图象图图图图象象,,,,,得,得即得,得得,即,,即即即即即即即即象象总象象总象象总象象象象总总函函函函函a函a函a函aa函函在总在在总在在总x在在总在总在在xxxxx>数>数>数>>数数数数数数数在1在1在1在在11yyyyyyyyyy,,,,,ffffff轴轴ff轴轴ff(轴轴轴轴轴轴(((((y((y((yxyyxxxxxxxxx))轴的的)))的的轴)的的轴的的的的轴轴))))的的的的的的的的的的的右一右一的右一的右一右一的的定定定定定定定定定定左侧侧侧侧左侧侧左侧侧侧侧左左义义义义义义义义义义侧;.;.侧;.侧;.;.侧侧域域域域域域域域域域.....为为为为为为为为为为((((((((((-----00000,,,,,+∞++++∞∞∞∞∞,∞∞∞∞,,,,00000)))))))))),,,,,,,,,,
练一练
【3】已知0<a<1,方程a |x| = |log a x|的实根
个数是___2____个. y
1
o
x
【点评】当判断方程 f (x) = g (x)的实根个数时, 我们可转化为判断函数y = f (x) 与函数 y = g (x)的图 像的交点的个数.
题 型 二 对数函数的图象与性质
【例 2】作出函数 y=log2|x+1|的图象,由图象指出函数的 单调区间,并说明它的图象可由函数 y=log2x 的图象经过怎 样的变换而得到.
作出函数y=log2x的图象,将其关于y轴对 称得到函数y=log2|x|的图象,再将图象 向左平移1个单位长度就得到函数
y=log2|x+1|的图象(如图所示).由图知,
函数 y=log2|x+1|的递减区间为(-∞, -1),
探究提高
递增区间为(-1,+∞).
作一些复杂函数的图象,首先应分析它可以从哪一个基
题 型 二 指数函数的图象及应用
【例 2】(1)函数 y=x|xa|x (0<a<1)图象的大致形状是 (
)
(2)若函数 y=ax+b-1 (a>0 且 a≠1)的图象经过第 二、三、四象限,则 a, b 的取值范围是__________________.
(3)方程 2x=2-x 的解的个数是________.
1) 对数的换底公式
log b
log b c a log a
(a,c (0,1)
(1,),b 0)
c
2) 对数恒等式
aloga N N (a 0且a 1,N 0)
3) 四个重要推论

loga b
lg b lg a

ln b ln a
;

loga b
1 logb
a
本函数的图象变换过来.一般是先作出基本函数的图象,通
过平移、对称、翻折等方法,得出所求函数的图象.
思想与方法
数形结合思想在对数函数中的应用
(14分)已知函数f(x)=loga(ax-1) (a>0且a≠1). 求证:(1)函数f(x)的图象总在y轴的一侧;
(2)函数f(x)图象上任意两点连线的斜率都大于0.
( a > 0,且 a 1,M > 0, N > 0)
① loga (M N ) loga M loga N;
② loga
M N

loga M
loga N;
③ loga M n nloga M (n R);
④ loga
n
M

1 n
loga
M.
2. 对数的性质与运算法则
(3)对数的重要公式
题 型 三 指数函数的性质及应用
【例3】设a>0且a≠1,函数y=a2x+2ax-1在[-1, 1]上 的最大值为14,求a的值.
1. 对数的概念
(1)对数的定义 如果ax=N(a>0且a≠1),那么数x叫做以a为底
N的对数, 记作__x_=_l_o_g_aN__, 其中__a__叫做对数的底
数 ,__N__ 叫做真数.
质 3.过点 (0,1) ,即x= 0 时,y= 1
4.在R上是 增函数 在R上是 减 函数
4.有理数指数幂的运算性质: (a>0, b>0, r, s∊Q )
(1) ar as ar s ;
(2) (ar )s ars ;
(3) (ab)r ar br .
6.第一象限中,指数函数底数与图象的关系
图象应用问题 例4.方程 | x 2 || log2 x | 的解有_3_个. y
y
o
x
o 12
x
练一练
【1】方程 lg0.5( x 1) x2 2 的解有_2_个.
【2】函数 y loga ( x 2) 1(的a 图 0象,且恒a过 点1)
_______. (1,1)
相关文档
最新文档