SBR以总污泥量为主要参数的综合设计方法

合集下载

SBR反应池容积计算方法

SBR反应池容积计算方法

SBR反应池容积计算方法及评价SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR 改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。

现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。

1 现行设计方法负荷法该法与连续式曝气池容的设计相仿。

已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容:容积负荷法V=nQ0C/Nv (1)Vmin=[SV I·MLSS/106]·V污泥负荷法 Vmin=nQ0C·SVI/Ns (2)V=Vmin+Q曝气时间内负荷法鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式:容积负荷法V=nQ0Ctc/Nv·ta(3)污泥负荷法 V=24QC0/nta·MLSS·NS(4)动力学设计法由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。

根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况:限制曝气 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)非限制曝气V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)](6)半限制曝气V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)但在实际应用中发现上述方法存有以下问题:① 对负荷参数的选用依据不足,提供选用参数的范围过大[例如文献推荐Nv=~(m3·d)等],而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响;② 负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小;③ 在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象;④ 曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR池容惊人地偏大。

sbr工艺参数

sbr工艺参数

sbr工艺参数
SBR工艺参数主要包括以下几个方面:
1. 设计污水量:应采用最大的日污水量来计算。

2. 污水进水量的逐时变化:应进行详细的调查,并进行技术讨论研究确认。

3. 管线长度:原则上如果管线足够长,市政污水可以不设置流量调节池。

4. 反应池个数:原则上不能少于2个。

5. 水池设计:设计水池深度一般为4\~6米,水池的池宽和池长之比为(1:1)\~(1:2)。

6. 进水水质:应按设计规划年内污染物负荷量,并参考其原单位量来决定,并考虑负荷的变动。

对于分流制下水道的生活污水,其原水水质典型值为BOD5 SS为200mg/L;总氮为30\~40mg/L;磷为4\~6mg/L。

7. 上清液排出方式:可以采用重力式或水泵排出,但是活性污泥不能发生上浮,并应设置挡浮渣装置。

这些参数是根据设施设计的要求来确定的,并需要考虑处理厂的地域特性和设计条件(如用地面积、维护管理、处理水质指标等)。

请注意,这些参数可能需要根据具体情况进行调整。

SBR处理法

SBR处理法

SBR污水处理技术简介更新时间:08-4-16 14:10SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。

正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。

2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。

3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。

4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。

5、处理设备少,构造简单,便于操作和维护管理。

6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。

7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。

8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。

9、工艺流程简单、造价低。

主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。

SBR系统的适用范围更新时间:08-4-16 15:03由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。

就近期的技术条件,SBR系统更适合以下情况:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。

2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。

sbr工艺简介资料

sbr工艺简介资料

③ 处理工艺流程:
• 7.2 工艺计算 • 7.2.1 格栅(计算略) • 7.2.2 调节池 • 用于调节水质、水量。采用水下搅拌器搅拌,防止污泥沉淀。 • 水力停留时间:6 小时 • 外形尺寸:15×10×5m
• 7.2.3 SBR 反应池 • 设计条件: • 反应池池数 N=2
• 排出比 1/m=1/3 • MLSS 浓度 CA=4000mg/l • BOD-SS 负荷 Ls=0.25kgBOD/kgSS·d
• ③排水时间 TD: • 选滗水器的排水速度 450m3/h • 则排水时间 TD=1.1 小时 • ④一周期所需要的时间 T:
• 周期数 n=24/(TA+Ts+TD) =24/8 =3 • 进水时间 TF=T/N =8/2=4h
• ⑤反应池容积: • 反应池容积 V=m·q/n×N =3×2500/3×2 =625m3/池 • ⑥需氧量: • 由于当低负荷运行时,需氧量为 1.5-2.5kgO2/kgBOD • 此处,以 2.0kgO2/kgBOD 计算 • 则 OD=2500×650×10↑(-3)×2.0 =3250kgO2/d • 当周期数 n=3、反应池数量N=2 • 则每一周期需氧量为:OD=3250/3*2=541.7kgO2/周期·池 • 曝气时间前面计算为 5.2 小时, • OD=541.7/5.2=104.2kgO2/h • ⑦标准需氧量 • 根据需氧量、污水温度以及大气压的换算可求出标准需氧量 SOR。 • 当混合液水温 200C,混合液的DO 浓度为2mg/l,反应池水深为6m
• 3、排水装置 排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和 关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置 大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大 且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开 启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水 器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定 深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:①单 位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随 水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备 坚固耐用且排水量可无级调控,自动化程度高。 在设定一个周期的排水时间时,必须注意以下项目: ①上清液排出装置的溢流负荷――确定需要的设备数量; ②活性污泥界面上的最小水深――主要是为了防止污泥上浮,由上清 液排出装置和溢流负荷确定,性能方面,水深要尽可能小; ③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量 增大,可缩短排水时间,相应的后续处理构筑物容量须扩大; ④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从 沉淀工序的中期就开始排水符合SBR法的运行原理。

SBR法工艺

SBR法工艺
2 打开计算机并设置各阶段控制时间(填入表1中),启动控制程序。3 水泵将原水送入反应器,达到设定水位后停泵(由水位继电器控制)。4 打开气阀开始曝气,达到设定的时间后停止曝气,关闭气阀。5 反应器内的混合液开始静沉,达到设定的静沉时间后,阀1打开滗水器开始工作,关闭阀1打开阀2,排出反应器内的上清液。
返回
△H可取0.1m 由于浮筒的浮力,使滗水器的进水头可随水面的变化而变化,开始排水时,通入压缩空气至气缸,由于气缸中的气动活塞带动曲面轴打开闸门,浮动进水头开始排水。 停止排水时,只需将输气软管中空气排出,通过曲轴将闸门关闭。滗水器不工作时闸门处于常闭状态。
式中:H——反应池有效水深(m) QO——周期内进水量(m3/周期)V有效——反应池有效容积(m3)N——池的座数L.B——单池反应池的长×宽(m)(9)剩余污泥量W(Kg/d)W=aQLr-bVXv(Kg/d)式中:Q——平均日污水量(m3/d)Lr、V、Xv均同上a、b——分别为0.5~0.65、0.05~0.1
2. 数据1)计算在给定条件下SBR法的有机物去除率η(2)生物相的描述包括污泥的颜色、生物相是否丰富、菌胶团是否致密、边界是否明显和典型的微生物。
4. 思考题
1 简述SBR法与传统的活性污泥法的异同?2 SBR法工艺上的特点及滗水器的作用。3 如果对脱氮除磷有要求,应怎样调整各阶段的控制时间?
(6)计算总需氧量O2和需氧速率R a. 总需氧量O2 当只考虑有机物氧化,则O2=a′QLr +b′VXv(Kg O2/d)公式中:Q-平均日污水量(m3/d) Lr-Co-Ce, Co 、Ce分别为进、出水BOD5浓度,g/m3 V-反应池总有效容积(m3) Xv-反应池MLSS浓度,等于0.75MLSS浓度(g/ m3) a′、b′——分别为0.5, 0.11 当考虑有机物氧化和NO3—N硝化时,则应考虑二部分的需氧量。 b. 需要速率R=氧气/一日内曝气时间(h) (7)根据需氧量O2求出标准状态下曝气池设备的供氧量和供气量其计算与普通活性污泥法相同。 (8)排水口距反应池底高度h(m)最佳排水深度控制:

SBR的设计与应用

SBR的设计与应用

SBR的设计与应用SBR (Sequencing Batch Reactor)是一种逐批操作的生物反应器。

它通过将废水连续注入反应器,然后在一个逐步分阶段的过程中处理废水,最终达到净化水质的目标。

本文将介绍SBR的设计和应用,并探讨其在废水处理领域的潜力。

SBR的设计通常包括以下几个主要步骤:进水、反应、沉淀、抽出悬浮物和出水。

首先,废水通过进水管道进入反应器,然后开始进行处理。

反应器内的生物群落利用有机物质进行生长和繁殖,从而将有机物质转化为无机物质。

在反应阶段结束后,废水会在反应器中停留一段时间,以便悬浮物沉淀到底部。

然后,废水中的悬浮物被抽出,并最终处理掉,以确保出水质量达到标准。

SBR的应用非常广泛,特别是在城市和工业废水处理中。

它已被证明在去除有机物质、氮和磷等废水中的一些污染物方面具有极高的效率。

此外,SBR还可以适应废水流量的变化,因此可以应对不同规模的废水处理需求。

这使得SBR在应对季节性废水负荷波动、人口增长和工业发展等情况下具有很大的潜力。

SBR与传统的连续流生物反应器相比具有一些显著的优势。

首先,SBR可以一次处理废水的所有阶段,即进水、反应、沉淀和抽出悬浮物,这样就可以减少所需设备数量和空间需求。

其次,SBR操作灵活,可以根据需要进行运行时间和周期的调整,从而适应不同条件下的废水处理要求。

此外,SBR的操作相对简单,并且具有较低的运维成本。

然而,SBR也存在一些挑战和限制。

首先,SBR操作需要精确的控制和监测,因为每个处理阶段需要在正确的时间段内进行。

因此,自动化控制系统的设计和使用非常重要。

其次,SBR的废水处理效率可能会受到温度、进水水质以及有机物质浓度等因素的影响。

因此,需要对SBR的操作参数进行优化和调整,以获得最佳的处理结果。

最后,SBR在处理高浓度废水时可能会面临氧气限制问题,因为反应器中的氧气通常是通过搅拌或通气来供应的。

尽管存在一些挑战,但SBR在废水处理领域仍具有巨大潜力。

SBR法处理城镇生活污水工艺设计

SBR法处理城镇生活污水工艺设计

SBR法处理城镇生活污水工艺设计Sanitary sewage processing;SBR Craft;The denitrogenation eliminates the phosphorus城市污水是造成水体污染的重要污染源,对城市污水进行妥善收集、处理和排放是减轻或防止水体污染是十分重要一项对策,污水处理厂在这一过程中扮演了重要角色。

近年來,我国在城市污水处理方面加大了一些工程建设的投入,全国各地陆续建设了一批污水处理厂,对于保护大中型城市的环境,治理水污染起到了重要作用。

随着我国城市化进程的加快,中小城镇的发展十分迅速,大量的中小城镇将迅速兴起,中小城镇的污水排放量约占全国排放总量的一半左右,而全国*****多个建制镇绝大多数都没有污水处理设施,从长远的环境发展角度来看,中小城市在环境保护方面起着重要作用,特别是水污染治理方面。

因此,探索和发展适合我国国情的中小城市(镇)污水处理工艺,掌握一批在中小城市(镇)具有代表性的污染源治理和城市污水处理技术,就势在必行。

为了选取适合中小城市是污水处理的需要,本设计通过对不同工艺生活污水处理效果的比较,最终设计选用SBR 工艺,设计目标是出水水质达到我国《城镇污水处理厂污染物排放标准》(GB 1819-2002)一级B类排放标准。

1 污水状况及设计规模、目标1.1 污水水质本次设计进水水质:pH=6-9;BOD5=150mg/L;COD=300mg/L;SS=200mg/L;NH3-N=30mg/L;TP=10mg/L。

1.2 设计规模污水的平均处理量为Q平=*****m3/d;日变化系数取K日为1.2,时变化系数取K时为1.2,总变化系数取K总为1.44。

1.3 污水治理目标污水厂出水执行《城镇污水处理厂污染物排放标准》一级标准的B类标准。

即:pH=6-9;BOD5≤20mg/L;COD≤60mg/L;SS≤20mg/L;NH3-N≤8mg/L;TP≤1mg/L2 处理工艺的选择根据设计的排水水质标准,且BOD5/COD≥0.3具有易生化性,此污水可进行生化处理。

城镇污水处理SBR工艺详解

城镇污水处理SBR工艺详解

SBR工艺详解SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。

SBR优点①理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。

②运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。

③耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。

④工艺过程中的各工序可根据水质、水量进行调整,运行灵活。

⑤处理设备少,构造简单,便于操作和维护管理。

⑥反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。

⑦SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。

⑧脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。

⑨工艺流程简单、造价低。

主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。

SBR系统的适用范围①中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。

②需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。

③水资源紧缺的地方。

SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。

④用地紧张的地方。

⑤对已建连续流污水处理厂的改造等。

⑥非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。

SBR设计需特别注意的问题主要设施与设备1、设施的组成本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。

SBR工艺处理设计使用说明

SBR工艺处理设计使用说明

前言随着科学技术的不断发展,环境问题越来越受到人们的普遍关注,为保护环境,解决城市排水对水体的污染以保护自然环境、自然生态系统,保证人民的健康,这就需要建立有效的污水处理设施以解决这一问题,这不仅对现存的污染状况予以有效的治理,而且对将来工、农业的发展以及人民群众健康水平的提高都有极为重要的意义,因此,城市排水问题的合理解决必将带来重大的社会效益。

第一章绪论1.1、本次课程设计应达到的目的:本课程设计是水污染控制工程教学的重要实践环节,要求综合运用所学的有关知识,在设计中熟悉并掌握污水处理工艺设计的主要环节,掌握水处理工艺选择和工艺计算的方法,掌握平面布置图、高程图及主要构筑物的绘制,掌握设计说明书的写作规范。

通过课程设计使学生具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,训练设计与制图的基本技能。

1.2、本课程设计课题任务的内容和要求:m/3,进水水质如下:某城镇污水处理厂设计日平均水量为20000d⑴、污水处理要达到《城镇污水处理厂污染物排放标准》中的一级B标准。

⑵、生化部分采用SBR工艺。

⑶、来水管底标高446.0m.受纳水体位于厂区南侧150m。

50年一遇最高水位448.0m。

⑷、厂区地势平坦,地坪标高450.0m。

厂址周围工程地质良好,适合修建城市污水处理厂。

⑸、所在地区平均气压730.2mmHg柱,年平均气温13.1℃,常年主导风向为东南风。

具体设计要求:⑴、计算和确定设计流量,污水处理的要求和程度。

⑵、污水处理工艺流程选择(简述其特点及目前国内外使用该工艺的情况即可)⑶、对各处理构筑物进行工艺计算,确定其形式、数目与尺寸,主要设备的选取。

⑷、水力计算,平面布置设计,高程布置设计。

第二章SBR工艺流程方案的选择2.1、SBR工艺主要特点及国内外使用情况:SBR是序列间歇式活性污泥法的简称,与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

SBR反应池容积计算方法

SBR反应池容积计算方法

SBR反应池容积计算方法及评价SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR 改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。

现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。

1 现行设计方法1.1 负荷法该法与连续式曝气池容的设计相仿。

已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容:容积负荷法V=nQ0C/Nv (1)Vmin=[SVI·MLSS/106]·V污泥负荷法 Vmin=nQ0C·SVI/Ns (2)V=Vmin+Q1.2 曝气时间内负荷法鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式:容积负荷法V=nQ0Ctc/Nv·ta(3)污泥负荷法 V=24QC0/nta·MLSS·NS(4)1.3 动力学设计法由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。

根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况:限制曝气 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)非限制曝气V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)](6)半限制曝气V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)但在实际应用中发现上述方法存有以下问题:① 对负荷参数的选用依据不足,提供选用参数的范围过大[例如文献推荐Nv=0.1~1.3kgBOD5/(m3·d)等],而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响;② 负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小;③ 在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象;④ 曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR 池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR 池容惊人地偏大。

SBR工艺设计及计算

SBR工艺设计及计算

1、普通SBR
SBR工艺的优化
1.反应池数量与运行周期的优化 对反应池数量(原则上大于2座)、运行周期、排水比 进行核算
2.曝气系统的优化 控制各组反应池的曝气时间,尽可能实现交替曝气, 提高风机的利用率
3.出水的优化 控制出水时间和周期,实现均匀出水,提高后续设备 的利用率
1、普通SBR 主要设备
组合式构造方法,利于废水处理厂的扩建和改造 处理后出水水质好
良好的自控系统,良好的脱氮除磷效果
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
局限性:
①由于工艺过程对自控系统要求较高,所以自控仪表、元件 质量的好坏直接影响到工艺的正常运行,并对操作和维护人 员的技术水平要求很高;
SBR工艺设计及计算
目录
一、SBR工艺介绍 二、预处理段设计 三、生化阶段设计
一、 SBR工艺介绍
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
1.1 概述
1914年,由英国学者Ardern和Locket发明。是一种 比较成熟的污水处理工艺。
2、 常见SBR工艺的变种
2.4 DAT—IAT工艺------连续和间歇曝气工艺
200-400%
3h
连续
连续 溶氧1.5-2.5mg/L
间歇
2、 常见SBR工艺的变种
2.5AICS工艺------交替式内循环活性污泥法
沉淀区负荷宜在1.52.5m3/(m2.h)
2、 常见SBR工艺的变种
沉淀区负荷宜在1.02.0m3/(m2.h)

SBR工艺设计规范

SBR工艺设计规范

SBR工艺设计规范南京海澜环保工程有限公司二0一一年八月SBR工艺设计规范一、工艺特点间歇式活性污泥法,也称序批示活性污泥法,简称 SBR按工作周期运行,一个工作周期程序依次为进水、反应、沉淀、排水、待机。

进水及排水用水位控制,反应及沉淀用时间控制。

有效池容为周期内进水与所需污泥体积之和。

二、设计参数(2)进出水污染物浓度C O、c e:根据设计数据确定。

(4)每天周期n;根据实际需要确定,水量大时,可由计算得出。

(5)排水比(排除比)1/m ; 0.25~0.5之间。

(6)反应池水深H:3~6m(7)混合液污泥浓度X: 1500~5000mg/L.(8)安全高度E:E—般采用 0.3~0.5m(9)曝气时间T A(10)沉淀时间T s(11)曝气池个数N(12)曝气池组数N0 (每组含N个曝气池数)二、计算公式(1) 曝气时间T AT A=24*C o/(Ns*m*X)(2) 沉淀时间T S= (H*1/m+ E) /VmaxVmax=7.4X 104x t x X-1.7t—水温(C)设计水温低点时(例如冬季10C) , Vmaxl;设计水温高点时(例如冬季 20C),Vmax2;E—安全高度,一般采用 0.3~0.5m。

注意:T s根据情况选择不利条件下的数据。

(3) 排出时间T DT D取 2.0h(4) 进水时间T1T1 一般可取0.5* T A,亦可以根据经验确定。

(5) —个周期需要时间T=T A+T S+T D+T1(6) 曝气池个数NN=T/T1(7) 每天周期次数nn=24T8)单组曝气池容积 VV=m*Q/(n* N),注意 Q 为单组水池日处理量(9)单组曝气池平面尺寸F=V/H( 10)曝气池总高H'H+E四、主要设备滗水器:能随水位变化而调节的出水堰。

滗水器主要形式:旋转式滗水器、无动力旋转式滗水器、虹吸滗水器、浮筒滗水器等。

SBR设计要点、主要参数

SBR设计要点、主要参数

SBR设计要点、主要参数1、运行周期(T)的确定SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。

充水时间(tv)应有一个最优值。

如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。

当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。

充水时间一般取1~4h。

反应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。

对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。

一般在2~8h。

沉淀排水时间(tS+D)一般按2~4h设计。

闲置时间(tE)一般按2h设计。

一个周期所需时间tC≥tR﹢tS﹢tD周期数 n﹦24/tC2、反应池容积的计算假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n•N。

各反应池的容积为:V:各反应池的容量1/m:排出比(排出比——每周期排水量与反应池容积之比。

1/6-1/3为低负荷运行,高负荷时1/4-1/2(又说1/2-3/4)。

CASS≤1/3)n:周期数(周期/d)N:每一系列的反应池数量q:每一系列的污水进水量(设计最大日污水量)(m3/d)3、曝气系统序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。

在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。

常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。

sbr工艺研究总结p

sbr工艺研究总结p

SBR 工艺研究总结简介: 关于SBR 工艺的书籍和文章很多。

本文在这些资料的基础上整理总结,对经典SBR 工艺的发展和应用进行了综述,归纳了经典SBR 工艺的特点;对于各种新型SBR 工艺作以简述。

关键字:污水处理 SBR 工艺 变型工艺 优点序批式活性污泥法(SBR-Sequencing Batch Reactor )是早在1914年英国学者Ardern 和Lockett 发明活性污泥法之时,首先采用的水处理工艺。

70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR 工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印地安那州的Culver 城改建并投产了世界上第一个SBR 法污水处理厂[1]。

80年代前后,由于自动化、计算机等高新技术的迅速发展以及在污水处理领域的普及与应用,此项技术获得重大进展,使得间歇活性污泥法(也称"间歇式活性污泥法")的运行管理也逐渐实现了自动化。

澳大利亚的污水处理以SBR 工艺所著称。

近十几年来,建成SBR 工艺污水处理厂600余座,其中在中型和大型污水处理厂的应用也日益增多,并且开始兴建日处理量21万吨大型SBR 工艺污水处理厂。

由于处理工艺流程简单,处理效果好的独特优点,逐渐引起世界污水处理界的广泛关注。

我国也于80年代中期开始对SBR 进行研究,迄今应用已比较广泛。

目前,几座城市污水处理厂采用SBR 法工艺处理城市混合污水,其处理效果较好,如:昆明市日处理污水量最高可达30万吨的第三污水处理厂,采用ICEAS 技术(SBR 法的发展工艺),自投产以来,运行正常,出水水质稳定,达到了设计标准;天津经济技术开发区污水处理厂所采用的DAT-IAT 工艺是一种SBR 法的变形工艺,该污水处理厂是中国目前最大的SBR 法城市污水处理厂。

正在兴建的广州市猎德污水处理厂二期工程采用SBR 的新式变形工艺UNITANK 工艺;广州兴丰垃圾卫生填埋厂渗滤液处理回用系统采用经典SBR 工艺,并应用了自动化控制技术。

SBR工艺的总结

SBR工艺的总结

SBR工艺的总结摘要:序批式活性污泥法(sbr-sequencing batch reactor)是早在1914年就由英国学者ardern和locket发明了的水处理工艺。

70年代初,美国natre dame 大学的r.irvine 教授采用实验室规模对sbr工艺进行了系统深入的研究,并于1980年在美国环保局(epa)的资助下,在印第安那州的culwer 城改建并投产了世界上第一个sbr法污水处理厂。

sbr工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

关键词:sbr工艺序批式活性污泥法(sbr—sequencing batch reactor)是早在1914年就由英国学者ardern和locket发明了的水处理工艺。

70年代初,美国natre dame 大学的r.irvine 教授采用实验室规模对sbr工艺进行了系统深入的研究,并于1980年在美国环保局(epa)的资助下,在印第安那州的culwer城改建并投产了世界上第一个sbr法污水处理厂。

sbr工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

由于sbr在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。

对于sbr反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。

因此,sbr工艺发展速度极快,并衍生出许多种新型sbr处理工艺。

间歇式循环延时曝气活性污泥法(iceas—intermittent cyclic extended system)是在1968年由澳大利亚新威尔士大学与美国abj公司合作开发的。

1976年世界上第一座iceas 工艺污水厂投产运行。

iceas与传统sbr相比,最大特点是:在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统sbr低。

SBR工艺计算方法分析与比较

SBR工艺计算方法分析与比较

SBR工艺计算方法分析与比较张洋;姜天【摘要】经典SBR工艺发展较早,工艺随着自动化世代的发展得到广泛应用,其计算方法多种多样,各有利弊,本文通过对多种经典方法总结对比,讨论SBR的经典计算方法.【期刊名称】《资源节约与环保》【年(卷),期】2015(000)012【总页数】2页(P51-52)【关键词】SBR;计算方法;对比分析【作者】张洋;姜天【作者单位】北京航天试验技术研究所北京 100074;北京航天试验技术研究所北京 100074【正文语种】中文间歇式活性污泥法简称为SBR工艺,其初期工艺操作复杂,不能集成自动化运行,随着20世纪70年代以后各类型新型不堵塞曝气器、浮动出水堰、PLC控制系统的应用和发展,SBR间歇操作运行的复杂问题得以简化,从而使SBR大规模进入工程应用。

SBR反应池由于其集进水、调节、反应、沉淀于一体,从而简化普通活性污泥法工艺流程,实现了活性污泥在时间上的推流和空间上的完全混合状态[1]。

基于经典的SBR工艺,依据不同的应用条件和污染物的去除要求,演变出了许多的SBR进阶工艺,如ICEAS、CASS、UNITANK、MSBR、DAT-IAT等,每种工艺的计算方法都以经典SBR的计算做基础,因此,本文以经典SBR的几种计算方法作为研究目标进行分析。

SBR工艺的生化反应动力学和污染物去除机理的探索还不够深入,目前对于SBR 工艺的计算和设计还没有推出广泛接受的标准设计方法,仅有前人所介绍的一些经典计算以供参考。

2.1 污泥负荷法和容积负荷法[2]污泥负荷法和容积负荷法已知进水有机物浓度以及设计污泥负荷和容积负荷,拟定处理周期和有效时间,通过经验设计计算反应器的容积,负荷法计算反应器容积较简单。

2.1.1 污泥负荷法V-单个反应器容积,m3;-废水流量,m3/d,So-进水BOD5,mg/L;e-曝气时间比,e=nTA/24;-反应器内混合液平均MLSS浓度,mg/L;Ls-污泥负荷[kgBOD/(KgMLSS·d)]2.1.2 容积负荷法Lv-BOD容积负荷,KgBOD/(m3·d);-进水BOD5,Kg/m3负荷法所用负荷值由经验拟定,选择有一定盲目性,由于高负荷和低负荷选择范围过宽,易造成池容量和曝气系统计算不准确,且只能计算针对有机物去除的工艺,没有考虑SBR转换缺氧厌氧过程对氮磷的去除效果。

经典SBR计算

经典SBR计算

一、经典SBR工艺设计计算(一)设计条件:污水厂海拔高度950m设计处理水量Q=12000m 3/d=500.00m 3/h=0.14m 3/s 总变化系数Kz= 1.57进水水质:出水水质:进水COD Cr =2800mg/L COD Cr =60mg/L BOD 5=S 0=250mg/L BOD 5=S z =20mg/L TN=45mg/L TN=20mg/L NH 4+-N=35mg/L NH 4+-N=15mg/LTP 0=6mg/L Tp e =0.5mg/L 碱度S ALK =280mg/L pH=7.2SS=300mg/L SS=C e =20mg/L VSS=210mg/Lf b =VSS/SS=0.7曝气池出水溶解氧浓度2mg/L 夏季平均温度T1=25℃硝化反应安全系数K=3冬季平均温度T2=10℃活性污泥自身氧化系数K d(20)=0.06污泥龄θc =25d 活性污泥产率系数Y=0.6混合液浓度MLSS,X=4000mgMLSS/L出水VSS/SS=f=0.7520℃时反硝化速率常数q dn,20=0.12kgNO 3--N/kgMLVSS若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、运行周期反应器个数n 1=2,周期时间t=6h,周期数n 2=4每周期处理水量:1500m 3每周期分进水、曝气、沉淀、排水4个阶段进水时间t e =24/n 1n 2=3h根据滗水顺设备性能,排水时间t d =0.5h污泥界面沉降速度u=46000X -1.26= 1.33m曝气池滗水高度h 1= 1.2m 安全水深ε=0.5m 沉淀时间t s =(h 1+ε)/u= 1.3h曝气时间t a =t-t e -t s -t d = 1.2h反应时间比e=t a /t=0.202、曝气池体积V计算(1)估算出水溶解性BOD 5(Se)13.6mg/L =-=e d z e fC K S S 1.7(2)曝气池体积V27840m 3(3)复核滗水高度h1:有效水深H=5m h 1=HQ/(n 2V)=0.5m (4)复核污泥负荷0.13kgBOD 5/kgMLSS3、剩余污泥量(1)生物污泥产量T=10℃时0.04d -1681kg/d T=10℃时,ΔX V(10)=1012kg/d(2)剩余非生物污泥量ΔX S 1596kg/d(3)剩余污泥量ΔXΔX=ΔX V +ΔX s =2277kg/d T=10℃时剩余污泥量ΔX=2608kg/d 设剩余污泥含水率按99.20%计算,湿污泥量为284.6m 3/d T=10℃时设剩余污泥含水率按99.20%计算,湿污泥量为326.0m 3/d4、复核出水BOD 5K 2=0.01820.83mg/L5、复核出水氨氮浓度微生物合成去除的氨氮N w =0.12ΔX V /Q冬季微生物合成去除的氨氮ΔN w(10)=10.12mg/L 冬季出水氨氮为N e(10)=N 0-ΔN W(10)=24.88mg/L 夏季微生物合成去除的氨氮ΔN (20)= 3.27mg/L 夏季出水氨氮为N e(20)=N 0-ΔN W(20)=31.73mg/L复核结果表明无论冬季或夏季,仅靠生物合成不能使出水氨氮低于设计标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。

现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。

1 现行设计方法1.1 负荷法该法与连续式曝气池容的设计相仿。

已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容:容积负荷法V=nQ0C0/Nv (1)Vmin=〔SVI·MLSS/106]·V污泥负荷法Vmin=nQ0C0·SVI/Ns (2)V=Vmin+Q01.2 曝气时间内负荷法鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式:容积负荷法V=nQ0C0tc/Nv·ta (3)污泥负荷法V=24QC0/nta·MLSS·NS (4)1.3 动力学设计法由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。

根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况:限制曝气V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)非限制曝气V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)] (6)半限制曝气V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)但在实际应用中发现上述方法存有以下问题:①对负荷参数的选用依据不足,提供选用参数的范围过大〔例如文献推荐Nv=0.1~1.3kgBOD5/(m3·d)等〕,而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响;②负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小;③在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象;④曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR池容惊人地偏大。

上述问题的存在不仅不利于SBR法对污水的有效处理,而且进行多方案比较时也不可能全面反映SBR法的工程量,会得出投资偏高或偏低的结果。

针对以上问题,提出了一套以总污泥量为主要参数的SBR池容综合设计方法。

2 总污泥量综合设计法该法是以提供SBR反应池一定的活性污泥量为前提,并满足适合的SVI条件,保证在沉降阶段历时和排水阶段历时内的沉降距离和沉淀面积,据此推算出最低水深下的最小污泥沉降所需的体积,然后根据最大周期进水量求算贮水容积,两者之和即为所求SBR池容。

并由此验算曝气时间内的活性污泥浓度及最低水深下的污泥浓度,以判别计算结果的合理性。

其计算公式为:TS=naQ0(C0-Cr)tT·S (8)Vmin=AHmin≥TS·SVI·10-3 (9)Hmin= Hmax-ΔH (10)V=Vmin+ΔV (11)式中 TS——单个SBR池内干污泥总量,kgtT·S——总污泥龄,dA——SBR池几何平面积,m2Hmax、Hmin——分别为曝气时最高水位和沉淀终了时最低水位,m ΔH——最高水位与最低水位差,mCr——出水BOD5浓度与出水悬浮物浓度中溶解性BOD5浓度之差。

其值为:Cr=Ce-Z·Cse·1.42(1-ek1t) (12)式中 Cse——出水中悬浮物浓度,kg/m3k1——耗氧速率,d-1t——BOD实验时间,dZ——活性污泥中异养菌所占比例,其值为:Z=B-(B2-8.33Ns·1.072(15-T))0.5 (13)B=0.555+4.167(1+TS0/BOD5)Ns·1.072(15-T) (14)Ns=1/a·tT·S (15)式中 a——产泥系数,即单位BOD5所产生的剩余污泥量,kgMLSS/kgBOD5,其值为:a=0.6(TS0/BOD5+1)-0.6×0.072×1.072(T-15)1/〔tT·S+0.08×1.072(T-15) (16)式中TS、BOD5——分别为进水中悬浮固体浓度及BOD 5浓度,kg/m3T——污水水温,℃由式(9)计算之Vmin系为同时满足活性污泥沉降几何面积以及既定沉淀历时条件下的沉降距离,此值将大于现行方法中所推算的Vmin。

必须指出的是,实际的污泥沉降距离应考虑排水历时内的沉降作用,该作用距离称之为保护高度Hb。

同时,SBR池内混合液从完全动态混合变为静止沉淀的初始5~10min内污泥仍处于紊动状态,之后才逐渐变为压缩沉降直至排水历时结束。

它们之间的关系可由下式表示:vs(ts+td-10/60)=ΔH+Hb (17)vs=650/MLSSmax·SVI (18)由式(18)代入式(17)并作相应变换改写为:〔650·A·Hmax/TS·SVI〕(ts+td-10/60)=ΔV/A+Hb (19)式中 vs——污泥沉降速度,m/hMLSSmax——当水深为Hmax时的MLSS,kg/m3ts、td——分别为污泥沉淀历时和排水历时,h式(19)中SVI、Hb、ts、td均可据经验假定,Ts、ΔV均为已知,Hmax可依据鼓风机风压或曝气机有效水深设置,A为可求,同时求得ΔH,使其在许可的排水变幅范围内保证允许的保护高度。

因而,由式(10)、(11)可分别求得Hmin、Vmin和反应池容。

3 工程算例3.1 设计基本条件某城镇平均污水处理量为10000m3/d,进、出水质见表1。

表1 设计进、出水质项目CODCr(mg/L) BOD5(mg/L) SS(mg/L) NH3-N(mg/L) NO3-N(mg/L) TP(mg/L) 水温(℃) pH 进水380 200 200 40 0 4 15 出水60 20 20 5 5 0.5 6~93.2 SBR池容计算按前述设计方法及推荐采用的参数,以及提出的总污泥量综合计算法和相应的参数推求公式,依表1的要求进行SBR池容计算。

为便于结果比较,该工程设SBR池2座,交替分批进水,周期长6h,Hmax=4.2m,变化系数k2=1.2,计算结果见表2。

表2 单个SBR池参数及结果比较设计参数一法二法三法四法新法Nv 〔kgBOD5/(m3·d)〕0.50 0.24 Nv〔kgBOD5/(kgMLSS·d〕0.255 (0.074) (0.074) 0.074 SVI(mL/g) 90 150 (120) (120) 120 MLSSmax(mg/L) 3000 (3235) (3235) 3235 a〔kgMLSS/(kgBOD5·d)〕0.906 tT·S(d) 15TS(kg) (12571) (12571) 12571 Z(%) 0.302 ta(h) (3.0) (3.0)ts+td(h) 1.0+1.0 A(m2) 476 438 1984 1798 925 ΔH(m) 3.07 2.85 2.57 2.57 1.62 Vmin(m3) 540 588 3234 2931 2386 V(m3) 2000 1838 8333 7550 3886 ΔV(m3) 1460 1250 5099 4619 1500 HRT(h) 9.6 8.8 40.0 36.2 18.7 注:①一法至四法依次指:容积负荷法、总污泥负荷法、曝气时间内负荷法、动力学设计法,新法系指总污泥量综合设计法;②前四种方法中参数A、ΔH值系由V及Hmax反推而得,列出目的是为便于比较;③一法和二法中Ns、Nv、SVI值系直接引用相应参考文献中采用的数据,其他方法中凡带( )者为文中假定或移用新法推算值。

4 设计方法评价根据表2结果进行合理性分析,对SBR池容设计的各种方法作综合评价如下:①曝气时间内负荷法和动力学设计法所得池容明显偏大,停留时间过长,ΔH 已超出允许范围,实际的MLSSmax仅为1508 mg/L和1655mg/L,要达到假定的活性污泥浓度必须使总污泥龄达30d左右,这样则污泥负荷过小,不利于除磷脱氮。

故该两法若用于目前的设计,尚有待改进和完善,但其设想及动力学的理论原理和对SBR池容设计的进步将具有一定的研究价值。

②容积负荷法和总污泥负荷法实质上系属同一种方法,当采用相应参考文献中的设计参数时所得池容偏小、停留时间过短、ΔH也已超出允许范围;当负荷参数采用总污泥量综合设计法的公式推算值时,则所得SBR池容趋于合理、偏差缩小,但仍然存有ΔH、Hmax等参数与沉降速度、沉淀面积及保护高度之间的关系相脱节的缺陷,最终将影响处理效果。

因此该两法宜谨慎采用,特别是对公式中的负荷参数应以通过计算代替假设,但对式(15)应进行修正,以与该两法的计算公式相适应。

③总污泥量综合设计法中所考虑的因素及出发点均与SBR反应池的功能特性密切结合,避免了前几种方法中所存在的问题及缺陷。

通过包括硝化、反硝化和厌氧三个反应阶段所需反应历时及阶段污泥龄的校核计算(方法略)得三个阶段的反应历时分别为2.1、1.4、0.5h;所需污泥龄分别为5、8及10d。

而本算例假定总污泥龄为15d,其SBR池容完全能满足进行除磷脱氮的需要,且维持了合理的负荷及活性污泥浓度。

④从有关参数得知:总污泥量综合设计法SBR池容合理;ΔH在允许范围内;MLSSmax=3235mg/L,在3000~4000mg/L之间;Ns=0.074kgBOD5/(kgMLSS·d),在0.06~0.10kgBOD5/(kgMLSS·d)范围内;Nn=0.013kgNH3-N/(kgMLSS·d),符合除磷脱氮负荷要求;MLSSmin=5269mg/L 近似于6000mg/L;ΔV/V=38.6%≤40%,符合最佳充水比。

该法在所有设计参数中除SVI、ts、td按经验假定外,均依据进水水质由公式推算而得,不会产生与其他现行方法的矛盾。

同时在推求池容过程中确定了SBR 池的几何尺寸,这是其他方法所不及的。

相关文档
最新文档