奥数练习3稍复杂的鸡兔同笼问题
鸡兔同笼题目精选练习
鸡兔同笼题目精选练习鸡兔同笼是中国古代著名的数学趣题,也是小学数学中常见的一类问题。
通过解决这类问题,可以锻炼我们的逻辑思维和数学运算能力。
下面为大家精选了一些鸡兔同笼的题目,并提供详细的解题思路和答案,让我们一起来练习吧!题目一:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚。
问鸡和兔各有多少只?解题思路:我们可以假设笼子里都是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 70 只脚。
但实际上有 94 只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子有 4 只脚,比鸡多 2 只脚,用多出来的脚数除以 2 就能得到兔子的数量,再用总数减去兔子的数量就是鸡的数量。
具体计算:兔子的数量=(94 35×2)÷(4 2)=(94 70)÷ 2= 12(只)鸡的数量= 35 12 = 23(只)题目二:一个笼子里鸡兔共有 20 只,脚共有 56 只,问鸡兔各有多少只?解题思路:同样先假设都是鸡,20 只鸡应该有 40 只脚,而实际有56 只脚,多出来的就是兔子的。
计算过程:兔子数量=(56 20×2)÷(4 2)=(56 40)÷ 2 = 8(只)鸡的数量= 20 8 = 12(只)题目三:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,问鸡兔各有多少只?解题思路:这道题我们可以设兔有 x 只,那么鸡就有 x + 10 只。
一只兔 4 只脚,一只鸡 2 只脚,根据脚的总数列出方程求解。
设兔有 x 只,则鸡有 x + 10 只。
4x + 2×(x + 10)= 1104x + 2x + 20 = 1106x = 90x = 15所以兔有 15 只,鸡有 15 + 10 = 25 只。
题目四:有鸡兔共 18 只,兔子的脚比鸡的脚多 12 只,问鸡兔各有多少只?解题思路:设鸡有 x 只,兔有 18 x 只。
兔子有 4 只脚,鸡有 2 只脚,根据兔子脚比鸡脚多 12 只列出方程。
小学奥数 鸡兔同笼问题
第五课鸡兔同笼问题例:鸡兔同笼,上有40个头,下有100只足。
鸡兔各有多少只?1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
复杂的鸡兔同笼问题
复杂的鸡兔同笼问题专题训练一、知识要点和基本方法1.鸡兔同笼的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只.(1)解决鸡兔同笼问题的方法通常是用假设法,解题思路是:先假设笼子里装的全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔.(2)解决鸡兔同笼问题的基本关系式是:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).注意,这两个基本关系式不必都用,用其中一个算出兔数或鸡数,又知总数,所以另一个也就知道了.2.鸡兔同笼问题的变型有两类:(1)将鸡、兔的总头数和总脚数中的“两数之和”变成“两数之差”,这样得到三种情况:已知鸡、兔头数之差和总脚数,求鸡兔各有多少只;已知鸡、兔脚数之差和总头数,求鸡兔各有多少只;已知鸡、兔头数之差和脚数之差,求鸡兔各有多少只.(2)将基本问题中同笼的是鸡、兔两种不同东西,还可以引伸到同笼中不同东西是三种,四种等等.注意:鸡兔同笼问题的两种变型均可转化成基本问题来解决.二、例题精讲例1、在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有兔、鸡各多少只?分析:题目中给出了鸡、兔共有40只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也捆起来,也看成是一只脚,那么兔子就成了2只脚(即把兔子都当成两只脚的鸡).鸡兔总的脚数是40×2=80(只)比题中所说的130只要少130-80=50(只).现在松开一只兔子脚上的绳子,总的脚数就会增加2,即80+2=82.再松开一只兔子脚上的绳子,总的脚数又增加2,即82+2=84,…一直继续下去,直至增加到50.因此,兔子数是50÷2=25(只).实际上,这就是上述基本关系式(2).解:(130-40×2)÷(4-2)=(130-80)÷2=50÷2=25(只).40-25=15(只).答:笼子中有兔子25只,有鸡15只.例2、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共21只,有140条腿和24对翅膀,求每种小虫各几只?分析:此题中出现了3种昆虫,不仅有腿的比较,而且又出现了翅膀,显然比例1复杂了.解此题的关键就是将3种昆虫转化为2种昆虫,这样解起来就比较容易了.突破口在于:蝉和蜻蜓都有6条腿.解:因为蜻蜓和蝉都有6条腿,所以从腿的数目考虑,可以把昆虫分成“8条腿”和“6条腿”两种,利用基本关系式算出8条腿的蜘蛛数=(140-6×21)÷(8-6)=(140-126)÷2=14÷2=7(只).因此,知道了6条腿的昆虫共有21-7=14(只),也就是蜻蜓和蝉共有14只.因为蜻蜓和蝉共有24对翅膀,现在再用一次基本关系式,得蝉数=(14×2-24)÷(2-1)=(28-24)÷1=4(只).因此,蜻蜓数是14-4=10(只).答:有7只蜘蛛,4只蝉,10只蜻蜓.例3、鸡与兔共40只,鸡的脚数比兔的脚数少70,问鸡与兔各多少只?解:假设再补上70只鸡脚,也就是再有鸡70÷2=35(只),则鸡与兔的脚数就相等,兔的脚数是鸡的脚数4÷2=2(倍).于是鸡的只数是兔的只数的2倍.因此,兔的只数是(40+70÷2)÷(2+1)=25(只),鸡的只数是40-25=15(只).答:鸡15只,兔25只.例4、在一个停车场上,停放的车辆(汽车和三轮摩托车)数恰好是24.其中每辆汽车有四个轮子,每辆摩托车有三个轮子.这些车共有86个轮子.那么,三轮摩托车有多少辆?分析:我们可将汽车“看作兔子”,将三轮摩托车“看作鸡”,轮子“看作腿”,就可用鸡兔同笼的原理来解此题.解:24辆车如果都算作汽车,那么将有24×4=96(个)轮子.比现有的86个多10个轮子.每一辆三轮摩托车比每一辆汽车少一个轮子,故要有10辆三轮摩托车来抵消10个轮子.答:共有10辆三轮摩托车.公式套用:若用基本关系式,鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)“翻译”为摩托车车辆数计算公式(这里将摩托车看作“鸡”):摩托车数=(汽车轮子数×车辆总数-轮子总数)÷(汽车轮子数-摩托车轮子数),即有摩托车数:(4×24-86)÷(4-3)=10(辆).三、专题特训1.有一首民谣:“一队猎手一队狗,二队并着一起走,数头一共三百六,数腿一共八百九。
鸡兔同笼最难的奥数题
鸡兔同笼最难的奥数题
这道题叫鸡兔同笼,又叫兔鸡同框,不管叫啥,其实都是一个数学题,
它考察数学的一些思路问题,具体来说:
问题是:一个笼子里有30只动物,其中有鸡和兔,他们合计有94只脚,问这笼子里有多少只鸡多少只兔?
这个问题在初中数学里面比较常见,只是有的时候可能物种、数量或者
脚都会稍有不同,不过解法却都是一样的。
首先,我们要基于一个数学等式来解答这个问题:
30只动物合计有94只脚其实就是说鸡+兔=30,鸡脚+兔脚=94。
使用这个等式,我们就可以确定,鸡脚数x,兔脚数y // x+y=94
再假定:鸡数c,兔数r // c+r=30
组合上面两个等式,再假定,每只鸡有2只脚,兔有4只脚
那么最终x=2c,y=4r,把它代入之前等式里,就得到一个二元一次方程组:
2c+4r=94
c+r=30
可以用带入/消元法来求解,比如从左边把第一个方程乘2,变为
4c+8r=188,再加上第二个方程它们就变成了5c+9r=218;
把右边减去第二个方程就变成了5c=188,即可求得c=37
再将c=37代入第二个方程就得到了r=30-37=-7,k小于0则没有解,而且动物不可能负数,也不可能是小数更何况有脚所以根据现实原理该方程也
不存在解
加法综上,我们可以得到正确答案:
笼子里有37只鸡,30只兔。
通过解题步骤,我们发现这道题不仅考察学生的数学思路,也是在考察学生的计算能力。
所以,做这道题,首先要了解问题,看懂实际情况,然后构造数学方程,再运用数学算法求解问题,最后做出正确的结论。
六年级奥数第三讲 鸡兔同笼问题
六年级奥数第三讲鸡兔同笼问题【解题技巧】解决鸡兔同笼问题常用假设法。
1.全鸡法:假设全是鸡,(总脚数-鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数2.全兔法:假设全是兔,(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数3.砍足法:总脚数÷2-总头数=兔的只数,总只数-兔的只数=鸡的只数例题1.鸡兔同笼共14只,它们的脚数一共是38只,笼子里鸡和兔各有多少只?例题2.鸡兔同笼,鸡比兔多26只,共274只足,问鸡、兔各几只?趁热打铁习题(1)1.笼中有鸡、兔若干只,从上面数有8个头,从下面数有26只脚,鸡、兔各有多少只?2.有5元和10元的人民币共43张,共340元,5元人民币和10元人民币各有多少张?4.鸡与兔共40只,鸡的脚数比兔的脚数少70.那么鸡、兔各有多少只?例题3.学校举办两次环保知识竞赛,第一次24道题,答对1道题得5分,答错(包含不答)1道题倒扣1分;第二次15道题,答对一道题8分,答错或不答1道题倒扣2分,小华两次竞赛共答对30道题,但第一次比第二次的得分多10分小华两次测试各得了多少分?例题4.一个和尚挑水吃,两个和尚抬水吃,庙里有许多和尚,两个小和尚用一条扁担一个桶抬水,一个和尚用一条扁担两个桶挑水,共用了38条扁担和58个桶,那么有多少个小和尚抬水?多少个大和尚挑水?趁热打铁习题(2)1.在一次数学竞赛中,只有25道题,做对一题得4分,不做或做错要倒扣2分,小明共得64分,他做对了几道题?2.古诗中,五言绝句是四句诗,每句都是5个字;七言绝句是四句诗,每句都是7个字,有一个诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字。
问:两种诗各有多少首?3.100个和尚吃140个馒头,大和尚1人吃3个,小和尚1人吃1个,大、小和尚各有几个?4.文昌小学师生100人共植100棵树,教师每人植3棵,学生平均每3人植1棵,老师和学生各有多少人?5.小明爱好集邮,他用10元钱买了8角和4角邮票共20张,那么他买了多少张8角邮票?买了多少张4角邮票?6.12张乒乓球台上同时有34人在进行乒乓球比赛,正在进行单打和双打的球台各有几张?7.鸡与兔共有100只,鸡的脚比兔的脚多80只,鸡、兔各几只?8.一张科学试卷,只有25道选择题,做对一题得4分,做错一题倒扣1分,不做不得分也不扣分。
最难的鸡兔同笼类奥数题
最难的鸡兔同笼类奥数题在进行讨论最难的鸡兔同笼类奥数题之前,我们先了解一下鸡兔同笼问题的基本概念。
鸡兔同笼问题是一种常见的数学问题,它是通过利用已知条件,求解未知变量的数学题目。
题目:有一笼子里关着一些鸡和兔,已知总共有n只头,而且总共有m只脚。
问这个笼子里到底有多少只鸡和兔?解答:这是一道经典的鸡兔同笼问题,也是较为难解的一类奥数题。
首先,我们先分析一下题目的已知条件和需要求解的未知变量。
已知条件:- 总共有n只头,代表着鸡和兔的总数量。
- 总共有m只脚,代表着鸡和兔的总脚数。
需要求解的未知变量:- 鸡的数量。
- 兔的数量。
接下来,我们通过建立方程来求解这道题。
假设鸡的数量为x,兔的数量为y。
根据已知条件可得:(1)x + y = n (鸡和兔的总数量等于总头数)(2)2x + 4y = m (鸡的脚数乘以2加上兔的脚数乘以4等于总脚数)我们可以通过解这个方程组来求解题目。
首先,用第一个方程解出一个变量,比如将x表示为 n-y。
将第一个方程带入第二个方程,得到:2(n-y) + 4y = m简化得到:2n - 2y + 4y = m2n + 2y = m整理得到:2y = m - 2ny = (m - 2n) / 2现在我们已经求得了兔的数量y,我们可以将其带入第一个方程,得到:x + (m - 2n) / 2 = n进一步整理得到:2x + m - 2n = 2n继续整理得到:2x = 4n - mx = (4n - m) / 2现在我们已经求得了鸡的数量x和兔的数量y,根据题目要求得出答案。
需要注意的是,由于题目要求鸡和兔的数量是正整数,所以我们需要对x和y进行约束条件的判断。
判断约束条件:1. x和y为正整数。
2. 鸡和兔的总数量等于总头数。
3. 鸡的脚数乘以2加上兔的脚数乘以4等于总脚数。
根据上述步骤,我们能得出最终的答案。
综上所述,这道题目虽然难度较大,但通过建立方程,代入已知条件和未知变量,再通过解方程组得出答案,我们可以很好地解决这个问题。
小学奥数 鸡兔同笼问题(三) 精选练习例题 含答案解析(附知识点拨及考点)
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例 1】 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【考点】鸡兔同笼问题 【难度】4星 【题型】解答【关键词】假设思想方法【解析】 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为618108⨯=(条),所例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(三)差11810810-=(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118108)(86)5-÷-=(只)蜘蛛.这样剩下的18513-=(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数11313-=(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计⨯=(对),比实际数少20137算所差,这样蜻蜓只数可求7(21)7÷-=(只).【答案】7只【巩固】希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标本室里有只蜘蛛。
鸡兔同笼超难练习题
鸡兔同笼问题(4)超难级1.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。
这三种硬币各有多少枚?2.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?3.100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4.大油瓶一瓶装4千克,小油瓶两瓶装1千克。
现在100千克油装了60个瓶。
求大,小油瓶各有多少个?5.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。
有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?6.某校数学竞赛,共有20道填空题。
评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是69分,那么小英有几题没做?7.某校数学竞赛,共有20道填空题。
评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是72分,那么小英有几题没做?8.某次数学抢答比赛共20题,做对一题得5分,做错一题倒扣2分,不做倒扣1分.小华得了74分,问他做对几题?答错几题?没答的有几题?9.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天?10.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?11.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡兔各有多少只?12.鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?11.鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?12.甲乙两人射击比赛,每人各射10发。
奥数鸡兔同笼问题
奥数鸡兔同笼问题1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,•也就是244 + 2=122 (只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数+ 2-总头数二兔子数.2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了 16支,花了 2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19x 16-280) + (19-11)=24 + 8=3 (支).红笔数=16-3=13 (支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成, 现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30 + 6=5 (份),乙每小时打30 + 10=3 (份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡” 头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数二(30-3X7)・(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了 4.5小时,乙打字用了 2.5小时.答:甲打字用了 4小时30分.4.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(25X4-86) + (4-3) =14 (岁).1998年,兄年龄是14-4=10 (岁).父年龄是(25-14)X4-4=40 (岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10) + (3-1) =15 (岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的蜘蛛数二(118-6X18)0(8-6)=5 (只).因此就知道6条腿的小虫共18-5=13 (只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数二(13X2-20)0(2-1) =6 (只).因此蜻蜓数是13-6=7 (只).答:有5只蜘蛛,7只蜻蜓,6只蝉.6.某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对7道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39 (人).他们共做对181Tx7-5X6=144 (道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)+2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5X39) + (4-1.5) =31 (人).答:做对4道题的有31人.7.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分------------------------------------------------ 百度文库 ---------------------------------------------- 的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8X40) + (8+4) =30 (张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70 (张).答:买了 8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4X20+8X60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1 张4分,就要增加1张8分,每种要增加的张数是(680-4X20-8X60) + (4+8) =10 (张).因此4分有20+10=30 (张),8分有60+10=70 (张).------------------------------------------------ 百度文库 ----------------------------------------------- 8.一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8X3) + (10+8) = 7 (天).雨天是7+3=10天,总共7+10=17 (天).答:这项工程17天完成.。
鸡兔同笼奥数题超难变形题
1.自行车与三轮车停放在一处,共有24辆车,68个轮子。
其中三轮车有多少辆?A.8辆B.12辆(答案)C.16辆D.20辆2.某次数学竞赛共有20道题,评分标准是:每做对一题得5分,每做错一题倒扣2分。
小刘做了全部题目,共得72分。
他做对了多少道题?A.12道B.14道(答案)C.16道D.18道3.古代士兵排阵,每排5人则多出2人,每排6人则多出3人,每排7人则多出4人。
问士兵至少有多少人?A.97人B.103人(答案)C.107人D.113人4.某次考试,小赵的语文和数学总分是180分,语文和英语的总分是185分,数学和英语的总分是190分。
小赵的三门课各是多少分?其中英语分数是:A.85分B.90分(答案)C.95分D.100分5.停车场里有三轮车和自行车共20辆,共有42个轮子。
自行车有多少辆?A.6辆B.8辆(答案)C.10辆D.12辆6.小红的储蓄罐里有1角和5角的硬币共30枚,总计5.5元。
其中1角硬币有多少枚?A.5枚B.10枚C.15枚(答案)D.20枚7.一次知识竞赛,共有25道题,每道题都给出4个答案,其中只有一个答案正确。
选对得4分,选错或不选倒扣2分。
小明得了70分,他选对了多少道题?A.18道B.19道(答案)C.20道D.21道8.某学校进行数学竞赛,共有15道题,每做对一题得8分,每做错一题倒扣4分。
小明最终得了72分,他做对了多少道题?A.10道B.11道(答案)C.12道D.13道9.商店里出售两种不同价格的笔记本,已知2本甲种笔记本和3本乙种笔记本共需10元,而3本甲种笔记本和2本乙种笔记本共需9元。
那么,1本甲种笔记本和1本乙种笔记本共需多少元?A. 3.5元B.4元C. 4.5元(答案)D.5元10.动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤。
该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?其中小动物有多少只?A.25只B.50只C.75只(答案)D.80只。
奥数练习3稍复杂的鸡兔同笼问题
奥数练习稍复杂的鸡兔同笼应用题2 姓名_______ 2016/7/14例1、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现有蜘蛛、蜻蜓和蝉三种小虫16只,共有110条腿和14对翅膀,每种小虫各有几只答:蜘蛛()只,蝉()只,蜻蜓()只。
练习:已知蜘蛛8条腿,蜻蜓6条腿,两对翅膀,蝉有6条腿,一对翅膀,现在有这三种动物47只,共有腿324条,翅膀37对,问这三种动物各有几只答:蜘蛛()只,蝉()只,蜻蜓()只。
例2、大嫂家里养了一些鸡和兔,已知鸡比兔多48只,而鸡脚比兔脚多38只,那么大嫂家中养的鸡和兔各多少只答:鸡()只,兔()只。
练习:鸡兔同笼,鸡比兔多25只,鸡脚比兔脚多20只,鸡、兔各有多少只答:鸡()只,兔()只。
例3、鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只,鸡兔各有几只练习:鸡兔同笼,共有脚106只,如果将鸡换成兔,兔换成鸡,则共有脚122只,鸡兔各有多少只答:鸡()只,兔()只。
例4、传说中,九头鸟有9个头1个尾,五尾鸟有1个头5个尾。
如果共有头9999个,共有尾5555个,那么九头鸟有多少只五尾鸟有多少只答:九头鸟有()只五尾鸟有()只练习:九尾狐(每只含1头9尾)和九头鸟(每只含9头1尾)共有头84个,尾116只,问狐和鸟各有多少只答:狐()只,鸟()只。
例5、育才小学3名同学去参加数学竞赛,共10道题,答对一题得10分,答错一题扣3分,这3名同学都回答了所有的题,小勇得87分,小亮得74分,小明得9分,他们三人共答对了多少道题答:他们三人共答对了()题。
练习1、甲、乙两人参加数学竞赛,每做对一题得20分,每做错一题倒扣12分,两人各做了10题,共得208分,其中甲比乙多得64分,甲、乙两人各做对几题奥数综合练习姓名_______2016/7/141、某粮库,甲仓存粮比乙仓多18吨,要使乙仓存粮比甲仓多4吨,要从甲仓取出()吨粮食放入乙仓。
2、姐妹两人共有480元,如果姐给妹34元,则两人钱数相等,原来姐妹两人各有多少元答:原来姐姐()元,妹妹()元3、大书架有书124本,小书架有书98本,应从小书架取出()本书放入大书架,才能使大书架上的书的本数是小书架的2倍4、大小两数的和是136,大数是小数的3倍,求两数各是多少答:大数(),小数()。
小学奥数各类型鸡兔同笼问题练习题及答案参考
小学奥数各类型鸡兔同笼问题练习题及答案参考小学奥数各类型鸡兔同笼问题练习题及答案参考公式1.已知总头数和总脚数,求鸡、兔各多少:方法一:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例1 有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?解法一 (100-236)(4-2)=14(只)36-14=22(只)鸡。
解法二 (436-100)(4-2)=22(只)36-22=14(只)兔。
公式2.已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,求鸡、兔各多少:方法一:(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法二:(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
公式3.已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的.总脚数多时,求鸡、兔各多少。
方法一:(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)公式4.得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?解一 (41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)=1000-1852519=1000-975=25(个)(答略)(得失问题也称运玻璃器皿问题,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。
小学六年级奥数鸡兔同笼问题专项强化训练题(高难度)
小学六年级奥数鸡兔同笼问题专项强化训练题(高难度)例题1:把鸡和兔子一共放在一个笼子里,一共有20个头,64只脚。
问鸡和兔子各有多少只?解析:设鸡的数量为x,兔子的数量为y。
根据题意,可列出以下方程组:x + y = 20 (1)(鸡和兔子的总数为20)2x + 4y = 64 (2)(鸡和兔子的脚的总数为64)通过方程(1)将y表示为x的式子,代入方程(2)得:2x + 4(20 - x) = 642x + 80 - 4x = 64-2x = -16x = 8将x = 8代入方程(1)得:8 + y = 20y = 12所以,鸡有8只,兔子有12只。
专项练习题:1. 把鸡和兔子一共放在一个笼子里,一共有28个头,84只脚。
问鸡和兔子各有多少只?2. 把鸡和兔子一共放在一个笼子里,一共有16个头,40只脚。
问鸡和兔子各有多少只?4. 把鸡和兔子一共放在一个笼子里,一共有24个头,56只脚。
问鸡和兔子各有多少只?5. 把鸡和兔子一共放在一个笼子里,一共有10个头,28只脚。
问鸡和兔子各有多少只?6. 把鸡和兔子一共放在一个笼子里,一共有40个头,110只脚。
问鸡和兔子各有多少只?7. 把鸡和兔子一共放在一个笼子里,一共有18个头,50只脚。
问鸡和兔子各有多少只?8. 把鸡和兔子一共放在一个笼子里,一共有12个头,26只脚。
问鸡和兔子各有多少只?9. 把鸡和兔子一共放在一个笼子里,一共有14个头,44只脚。
问鸡和兔子各有多少只?10. 把鸡和兔子一共放在一个笼子里,一共有36个头,98只脚。
问鸡和兔子各有多少只?11. 把鸡和兔子一共放在一个笼子里,一共有20个头,52只脚。
问鸡和兔子各有多少只?12. 把鸡和兔子一共放在一个笼子里,一共有22个头,60只脚。
问鸡和兔子各有多少只?13. 把鸡和兔子一共放在一个笼子里,一共有26个头,68只脚。
问鸡和兔子各有多少只?14. 把鸡和兔子一共放在一个笼子里,一共有32个头,88只脚。
四年级鸡兔同笼奥数题及答案
四年级鸡兔同笼奥数题及答案
鸡兔同笼的例题及答案【1】
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只?
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的.只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
鸡兔同笼的例题及答案【2】
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!。
鸡兔同笼题目及详细解答
鸡兔同笼题目及详细解答鸡兔同笼问题,是我国古代著名的趣味数学题之一,常常让很多同学感到头疼,但只要掌握了方法,其实并不难。
接下来,我们就通过几个具体的题目来深入了解一下。
题目一:笼子里有若干只鸡和兔,从上面数,有8 个头,从下面数,有 26 只脚。
问鸡和兔各有几只?解答:我们可以用假设法来解决这个问题。
假设笼子里全是鸡,因为每只鸡有 2 只脚,那么 8 只鸡就应该有 8×2 = 16 只脚。
但实际上有26 只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子有 4 只脚,比鸡多 2 只脚。
所以多出的 26 16 = 10 只脚,就是因为把兔子当成鸡少算的脚。
每只兔子少算了 2 只脚,那么兔子的数量就是 10÷2 = 5 只。
鸡的数量就是 8 5 = 3 只。
我们再来看一道稍微复杂一点的题目。
题目二:一个笼子里鸡兔共有35 个头,94 只脚,鸡兔各有多少只?还是用假设法,假设全是鸡,35 只鸡应该有 35×2 = 70 只脚,实际有 94 只脚,多出来的 94 70 = 24 只脚就是兔子多出来的。
每只兔子比鸡多 2 只脚,所以兔子的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
除了假设法,我们还可以用方程来解决鸡兔同笼问题。
题目三:笼子里鸡兔共有 20 只,脚有 56 只,求鸡兔各有几只?设鸡有 x 只,那么兔就有 20 x 只。
因为每只鸡有 2 只脚,每只兔有 4 只脚,所以可以列出方程 2x + 4×(20 x) = 56 。
展开括号得到 2x + 80 4x = 56 ,移项得到 2x 4x = 56 80 ,合并同类项得到-2x =-24 ,解得 x = 12 。
所以鸡有 12 只,兔有 20 12 = 8 只。
我们再来看一个变化形式的题目。
题目四:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?这道题我们可以设兔有 x 只,那么鸡就有 x + 10 只。
四年级奥数《鸡兔同笼》练习题
第二讲《鸡兔同笼》(必做与选做)1.鸡兔同笼,有头76个,有脚133双,鸡、兔各有()只。
A. 19 57B. 20 56C. 22 55D. 23 54解析:鸡与兔一共有头76个,就是鸡与兔76只,鸡与兔一共有133双脚,即有脚133×2=266(只),假设76只都是鸡,现在脚有76×2=152(只),比已知少266-152=114(只)脚,因此用少掉的脚除以每只兔少算的脚得到就是兔子的只数,即114÷(4-2)=57(只),鸡的只数就是76-57=19(只)。
所以选A。
2.幼儿园园长去超市买皮球,大皮球每个5元,小皮球每个3元,共买了39 个皮球,付了129元。
大、小皮球各买了()个。
A. 39 0B. 30 9C. 6 33D. 5 34解析:假设39个都是大皮球,则一共花39×5=195(元),比实际多了195-129=66(元),这66元是将小皮球算成大皮球多算的,所以用66÷(5-3)=33(个),就是小球的个数,则大皮球的个数为39-33=6(个)。
所以选C。
3.蜜蜂采花粉,晴天每天可以采50克花粉,阴天每天可以采36克花粉,8天共采330克花粉,晴天有()天。
A. 3B. 4C. 5D. 6解析:假设这8天都是阴天,则共采花粉36×8=288(克),比实际少采330-288=42(克),少了的原因是晴天也按阴天算,所以用42÷(50-36)=3(天)就是晴天。
所以选A。
4. 芭啦啦小学四年级465名学生去参观科技展览,租用17辆客车刚好坐满,其中每辆大客车限乘50人,每辆小客车限乘15人。
租用了大客车()辆,小客车()辆。
A. 11 6B. 9 8C. 6 11D. 4 13解析:假设17辆车都是大客车,则可坐17×50=850(人),比实际可乘坐的人数多850-465=385(人);多的原因是将小客车乘坐人数也按大客车算,所以385÷(50-15)=11(辆)是小客车的数量,然后用17-11=6(辆)是大客车的数量。
小学生奥数鸡兔同笼问题(精选)
1.小学生奥数鸡兔同笼问题1、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?2、鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?3、鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?4、鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?5、鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?6、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?7、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8、张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?9、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?10、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?2.小学生奥数鸡兔同笼问题1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?2、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?3、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?4、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?5、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?6、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?7、在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。
小明答了全部题目,但最后只得了14分,他答错几题?8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。
已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数练习稍复杂的鸡兔同笼应用题2 姓名______________ 2016/7/14
例1、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现有蜘蛛、蜻蜓和蝉三种小虫16只,共有110条腿和14对翅膀,每种小虫各有几只?
答:蜘蛛()只,蝉()只,蜻蜓()只<练习:已知蜘蛛8条腿,蜻蜓6条腿,两对翅膀,蝉有6条腿,一对翅膀,现在有这三种动物47只,共有腿324条,翅膀37对,问这三种动物各有几只?
答:蜘蛛()只,蝉()只,蜻蜓()只。
例2、大嫂家里养了一些鸡和兔,已知鸡比兔多48只,而鸡脚比兔脚多38只,那么大嫂家中养的鸡和兔各多少只?
答:鸡()只,兔()只练习:鸡兔同笼,鸡比兔多25只,鸡脚比兔脚多20只,鸡、兔各有多少只?
答:鸡()只,兔()只例3、鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只,鸡兔各有几只?
答:鸡()只,兔()只
练习:鸡兔同笼,共有脚106只,如果将鸡换成兔,兔换成鸡,则共有脚122只,鸡兔各有多少只?
答:鸡()只,兔()只。
例4、传说中,九头鸟有9个头1个尾,五尾鸟有1个头5个尾。
如果共有头9999个,共有尾5555个,那么九头鸟有多少只?五尾鸟有多少只?
答:九头鸟有()只?五尾鸟有()只练习:九尾狐(每只含1头9尾)和九头鸟(每只含9头1尾)共有头84个,尾116只,问狐和鸟各有多少只?
答:狐()只,鸟()只。
例5、育才小学3名同学去参加数学竞赛,共10道题,答对一题得10分,答错一题扣3分, 这3名同学都回答了所有的题,小勇得87分,小亮得74分,小明得9分,他们三人共答对了多少道题?
答:他们三人共答对了()题。
练习1、甲、乙两人参加数学竞赛,每做对一题得20分,每做错一题倒扣12分,两人各做了10题,共得208分,其中甲比乙多得64分,甲、乙两人各做对几题?
答:甲做对()题,乙做对()题
奥数综合练习姓名________ 2016/7/14
1、某粮库,甲仓存粮比乙仓多18吨,要使乙仓存粮比甲仓多4吨,要从甲仓取出()吨粮食放入乙仓。
2、姐妹两人共有480元,如果姐给妹34元,则两人钱数相等,原来姐妹两人各有多少元?
答:原来姐姐()元,妹妹()元3、大书架有书124本,小书架有书98本,应从小书架取出()本书放入大书架,才能使大书架上的书的本数是小书架的2倍?
4、大小两数的和是136,大数是小数的3倍,求两数各是多少?
答:大数(),小数()
5、大数比小数多88,大数是小数的9倍,两数各是多少?
答:大数(),小数()
6、鸡兔同笼,共54个头,144只脚,求鸡和兔各多少只?
答:鸡()只,兔()只
7、一个饲养小组一共养鸡、兔55只,共有脚170只,求鸡兔各多少只?
答:鸡()只,兔()只。
&一张试卷25题,答对一题得4分,答错一题或不答倒扣4分,小红得了60分,她答对了()题?
9、甲乙两箱苹果共96千克,如果从甲箱取出16千克放入乙箱,那么乙箱的千克数是甲箱的3倍,两箱原来有苹果各是多少千克?
答:甲箱原来有()千克,乙箱原来有()千克。
10、甲乙两筐梨,一共有120个,如果从乙筐取13个放入甲筐,则甲筐的个数是乙筐的2倍, 求甲乙两筐原来有梨各多少个?
答:甲筐原来()个,乙筐原来()个。
11、东水池有水3830立方米,西水池有水850立方米,如果东水池里的水每分钟以32立方米的速度流入西水池,求多少分钟后东水池中的水是西水池中的水的3倍?
答:()分钟后东水池中的水是西水池中的水的3倍12、游泳馆里有大小两个水池,大水池里有水2800立方米,小水池里有水1000立方米,如
果大水池以每分钟20立方米的速度流入小水池,那么,多少分钟后小水池中的水是大水池的4倍?
答:()分钟后小水池中的水是大水池的4倍13、一个粮油店运来两桶油,大桶有油120千克,小桶有油90千克,两桶油卖出同样多后, 大桶剩下的油刚好是小桶剩的油的4倍,两桶各剩多少千克油?各卖出多少千克油?
答:大桶剩下()千克,小桶剩下()千克。
各卖出()千克油。