如何确定函数自变量的取值范围

合集下载

函数自变量取值范围

函数自变量取值范围

函数自变量取值范围函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素,一直是中考的热点问题之一,下面举例谈谈这类问题的常见类型和解法供供同学们学习时参考。

一、教法点拨:1.在一般的函数关系式中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含偶次方根:被开方数≥0;(4)函数关系式含0指数或负整数指数:底数≠0.(5)解析式是上述几种形式组合而成时,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分;2. 实际问题中自变量的取值范围:(1)注意自变量自身表示的意义;(2)问题中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。

3. 几何图形中函数自变量的取值范围:(1)使函数式有意义;(2)考虑几何图形的构成条件及运动范围。

注意记清各种情况,判断哪一类型,准确计算即可。

二、题型分类:题型一:函数关系式中自变量取值范围1.解析式是整式时, 函数自变量取值范围是全体实数。

(原创题)①y = x2-3 ;②y = 2x -1;③ y =-3x .2.解析式是分式时,自变量的取值范围是使分母不为0的实数。

①(2018哈尔滨)函数y= 中,自变量x的取值范围是_________。

②(2018武汉)若分式在实数范围内有意义,则实数x 的取值范围是()[来源:学科网ZXXK] A.x>-2B.x<-2C.x=-2D.x≠-2③(2017哈尔滨)函数Y= 中,自变量X取值范围是____________。

④(2018•宿迁)函数y= 中,自变量x的取值范围是()A.x≠0B.x<1C.x>1D.x≠13.解析式是偶次根式,自变量的取值范围是被开方数为非负数。

①(2018北京市)若在实数范围内有意义,则实数的取值范围是。

②(2018湖北十堰)函数的自变量x的取值范围是。

初中数学_如何确定函数自变量的取值范围

初中数学_如何确定函数自变量的取值范围

初中数学_如何确定函数自变量的取值范围确定函数自变量的取值范围是数学中的一个重要问题。

在解决数学问题和应用函数时,我们需要正确地确定自变量的取值范围,以保证问题的有效性和解决方案的正确性。

本文将介绍一些常见的确定函数自变量取值范围的方法。

首先,我们需要明确函数的定义域。

函数的定义域是指可以使函数有意义的自变量的取值范围。

根据函数的性质和实际问题的限制,我们可以用以下几种方法确定函数的定义域。

1.代数方法:根据函数的代数表达式,我们可以通过排除无意义或不符合要求的值来确定函数的定义域。

常见的情况包括分母不能为零、平方根函数的被开方数不能为负数等。

例如,对于函数f(x)=1/x,在这个函数中,分母不能为零,所以我们可以排除x=0。

因此,定义域可以表示为x≠0。

2.几何方法:通过函数的几何意义,我们可以确定自变量的取值范围。

例如,对于平方根函数y=√x,我们知道平方根函数的被开方数不能为负数。

因此,自变量的取值范围是x≥0。

3.实际问题的限制:在解决实际问题时,问题本身可能对自变量的取值范围有限制。

例如,一些问题要求在一个已知的范围内解决,那么自变量的取值范围可以限定在这个已知范围内。

其次,我们需要注意函数图像的特点,以确定函数自变量的取值范围。

1.函数的增减性:考虑函数的增减性可以帮助我们确定自变量的取值范围。

例如,对于一个递增函数,在这个函数中,随着自变量的增加,函数值也会增加。

因此,自变量的取值范围可以是无穷大或有实数限制的有界范围。

2.函数的奇偶性:如果函数是奇函数,那么函数图像关于原点对称,即f(x)=-f(-x)。

如果函数是偶函数,那么函数图像关于y轴对称,即f(x)=f(-x)。

根据函数的奇偶性可以帮助我们确定函数自变量的取值范围。

例如,如果函数是奇函数,那么自变量的取值范围可以限定在非负数范围内。

最后,我们可以通过函数的应用问题来确定自变量的取值范围。

1.题目限定:在解决应用问题时,问题本身可能对自变量的取值范围有限制。

1变量与函数如何确定自变量的取值范围

1变量与函数如何确定自变量的取值范围

如何确定自变量的取值范围学习了函数以后就会经常遇到求自变量的取值范围的问题,那么如何才能正确地确定自变量的取值范围呢?一般可以从以下几个方面去考虑:一、当解析式是整式时,自变量的取值范围是一切实数例1 求下列函数中自变量x 的取值范围:(1)y =2x +3;(2)y =-3x 2+1.分析 由于这两个函数的解析式都是整式型的,所以自变量的取值范围是一切实数. 解(1)自变量x 的取值范围是一切实数;(2)自变量x 的取值范围是一切实数. 说明 求解时首先应判断函数是否属于是整式型的.二、当解析式是分式时,自变量的取值范围是使分母不为零的一切实数例2 求下列函数中自变量x 的取值范围:(1)y =21x +;(2)y =-22x x x --. 分析 这两道题都是属于分式型的,所以分母不等于零即可.解(1)因为x +1≠0,所以x ≠-1.即y =21x +中的自变量x 的取值范围是x ≠-1. (2)因为x 2-x -2≠0,即(x +1)( x -2)≠0,所以x ≠-1且x ≠2.即y =-22x x x --中的自变量x 的取值范围是x ≠-1且x ≠2.说明 这里在处理(2)时应特别注意文字“或”与“且”的使用.三、当解析式是二次根式时,自变量的取值范围是使被开方数不是负数的一切实数例3 求下列函数中自变量x 的取值范围:(1)y (2)y . 分析 这两道题都是属于根式型的,所以只要被开方数不是负数,即是非负数.解(1)因为x +2≥0,即x ≥-2,所以y x 的取值范围是x ≥-2.(2因为2x -3≥0且3-2x ≥0,即x ≥32且x ≤32,所以x =32,所以y +x 的取值范围是x =32. 说明 在求解第(2)小题时,应保证使每一个根式都同时有意义.四、当解析式是由上述几种形式组合而成,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分例4 求下列函数中自变量x 的取值范围:(1)y+x ;(2)y =1x -. 分析 这两道是属于复合型的,要使函数有意义,必须保证每一个式子都有意义. 解(1)因为根式要分母上,所以只要满足3x +5>0,即x >-53,所以y +x 中的自变量x 的取值范围是x >-53.(2)要使函数有意义,必须满足①x +2≥0,②x -1≠0,即x ≥-2且x ≠-1.说明 在处理复合型函数自变量的取值范围时一定要根据题目的结构特征,分清每一部分的意义,只有保证每一部分都有意义了,才能从整体上保证函数有意义.五、当函数涉及到实际问题时,自变量的取值范围必须保证实际问题有意义例5 一次劳动技术课上,老师要求同学们制作一个周长为20cm 的等腰三角形.请你帮助同学们写出底边长y (cm )与一腰长x (cm )的函数关系式,并求出自变量x 的取值范围.分析 一个等腰三角形有两条腰,一个底边,腰与底的和等于周长,而腰长,即自变量的取值范围必须受到图形本身的限制,一方面边长应是正值,另一方面应满足三角形的两边之和大于第三边.解 依据题意,得2x +y =20,即底边长y (cm )与一腰长x (cm )的函数关系式为y =20-2x .因为x +x =2x >y ,所以0<y =20-2x <2x ,即5<x <10.所以y =80-2x (5<x <10).说明 在求解本题中自变量x 的取值范围得注意两个问题:一是边长x 应是正值,二是应满足三角形的两边之和大于第三边,缺一不可.下面几道习题选自全国部分省市的中考试卷,供同学们练习.1,(广东省)函数y =11x +中自变量x 的取值范围是 ( ) A A.x ≠-l B.x >-1 C.x =-1 D.x <-12,(潍坊市)函数y =12x -中,自变量x 的取值范围是( )D A.x ≥-2 B . x >2 C.x >-1且x ≠2 D. x ≥-1且x ≠23,(苏州市)下列函数中,自变量x 的取值范围是x >2的函数是( )CA.yB.y =C.yD.y。

变量的关系函数自变量的取值范围的确定方法

变量的关系函数自变量的取值范围的确定方法

一、自变量的取值范围的确定方法
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。

二、变量及函数的定义
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

变量:
在一个变化过程中,我们称数值发生变化的量为变量。

(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

三、变量的关系:
1.在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
2.进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。

也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
3.自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。

四、函数自变量的取值范围的确定方法:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.。

求函数自变量的取值范围的确定方法

求函数自变量的取值范围的确定方法

求函数自变量的取值范围的确定方法确定函数自变量的取值范围是数学问题中的一个重要环节,它涉及到函数的定义域、排除可能的异常情况,以及满足问题背景要求的合理取值范围等。

在本文中,我将从多个角度解释如何确定函数自变量的取值范围。

1.首先,根据函数的定义来确定自变量的取值范围。

在确定函数自变量的取值范围之前,我们需要了解函数的定义。

函数可以通过数学表达式、描述或者图像来定义。

对于数学表达式来说,自变量一般不应使函数的分母为零或者函数内存在不合法值(例如负数的平方根)等情况。

对于描述和图像来说,需要根据问题背景对自变量的限制进行理解。

例如,一个描述中可能指定了自变量必须为正整数,或者一个图像中显示了自变量只能在一些特定范围内取值。

2.其次,根据问题的背景确定自变量的取值范围。

问题的背景可能涉及到实际世界的限制条件,例如物理问题中对时间、空间的限制。

在这种情况下,我们需要根据问题的具体要求来确定自变量的取值范围。

例如,如果问题要求求解一个物体在一段时间内的位移,那么时间必须在非负范围内取值。

3.然后,考虑函数所处的数学领域以及函数类型。

不同的数学领域和函数类型对自变量的取值范围有不同的要求。

例如,对于实数域上的函数,自变量的取值范围可以是整个实数集;对于复数域上的函数,自变量的取值范围可以是整个复平面。

此外,特殊类型的函数(例如三角函数、指数函数)也会有特定的自变量取值范围。

在确定函数自变量的取值范围时,需要考虑到这些领域和类型的特殊要求。

4.最后,通过排除可能的异常情况来确定自变量的取值范围。

在解决实际问题时,常常需要考虑一些异常情况,例如除零错误或其他无法计算的情形。

在这些情况下,我们需要通过排除这些异常情况来确定自变量的取值范围。

例如,如果函数在一些自变量值附近没有定义,则需要将这个值排除在自变量的取值范围之外。

总结起来,确定函数自变量的取值范围需要结合函数的定义、问题的背景、数学领域和函数类型以及异常情况等因素综合考虑。

初中数学用三招确定“函数自变量取值范围”

初中数学用三招确定“函数自变量取值范围”

初中数学用三招确定“函数自变量取值范围”一、问题提出:一个函数关系式的自变量取值是有一定范围的,自变量取值范围必须使关系式或题中条件有意义。

那么如何才能准确地确定自变量的取值范围呢?二、问题解决:第一招: 必须使含自变量的代数式有意义1、解析式是整式时,自变量取值范围是全体实数例如:指出下列各函数的自变量取值范围:①21y x =-;②32y x =-; ③5y x =- .解:这三个函数式中,右边的式子都是含自变量x 的整式,所以它们的自变量取值范围是全体实数。

2、解析式是分式时,自变量的取值范围是使分母不为0的实数例如: 确定下列函数的自变量取值范围:①y= 2x-; ②y=21x + ; ③ y = 211x - 解:这三个函数解析式中,右边的式子都是含自变量x 的分式,所以分母不为零时,右边的代数式有意义。

因此①中的x ≠0;②中的x ≠-1;③中的x ≠1且x ≠-13、解析式是偶次根式,自变量的取值范围是被开方数为非负数例如:确定下列函数的自变量取值范围:①y=; ②y= ; ③y= ;④y = ;⑤解:① x ≥2; ②x ≥-1;③ 全体实数 ;④010x ≥⎧⎪≠ 即 x ≥0且x ≠1;⑤ 全体实数4、解析式含有零指数、负整指数幂的函数,自变量的取值范围是使底数不为零的实数 例如:确定下列函数的自变量取值范围:①()02y x =-;②)31y -=解: ①x-2≠0, x ≠2 ; ②10110x x +≥⎧⎪⎨+-≠⎪⎩ 即x ≥-1且x ≠0 第二招:必须使实际问题有意义例如:一辆汽车的油箱中有汽油40升,该车每千米油耗为0.4升,请写出油箱剩余油量Q (升)与行驶路程s (千米)之间的函数关系式,并确定自变量取值范围。

解:Q = 40 -0.4s ∵0400Q s ≤≤⎧⎨≥⎩∴0400.4400s s ≤-≤⎧⎨≥⎩ ∴0≤s ≤10 ∴自变量取值范围为0≤s ≤100第三招:必须使图形存在例1:A 、B 、C 、D 四个人做游戏,A 、B 、C 三人站在三个不同的点上构成一个三角形,且∠BAC=40°,D 在△ABC 内部移动,但不能超越△ABC ,则D 与B 、C 构成一个三角形。

初中数学如何确定函数自变量的取值范围(最新编写)

初中数学如何确定函数自变量的取值范围(最新编写)

如何确定函数自变量的取值范围湖北省黄石市下陆中学宋毓彬为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.初中阶段确定函数自变量的取值范围大致可分为以下三种类型:一、函数关系式中自变量的取值范围在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.例1.在下列函数关系式中,自变量x的取值范围分别是什么?⑴y=2x-5;⑵y=;⑶y=;⑷y=;⑸y=(x-3)0解析:⑴为整式形式:x的取值范围为任意实数;⑵为分式形式:分母2x+1≠0∴x≠-∴x的取值范围为x≠-;⑶含算术平方根:被开方数3x-4≥0 ∴x≥∴x的取值范围为x≥;⑷既含分母、又含算术平方根,故∴x≥-2且x≠0x的取值范围为:x≥-2且x≠0⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.二、实际问题中自变量的取值范围.在实际问题中确定自变量的取值范围,主要考虑两个因素:⑴自变量自身表示的意义.如时间、用油量等不能为负数.⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.例2、某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:甲种车辆甲种车辆载客量(单位:人/辆)45 30租金(单位:元)400 280设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x的取值范围.解析:⑴由题设条件可知共需租车6辆,租用甲种车x辆,则租用乙种车辆(6-x)辆.y=400x+280(6-x)=120x+1680∴y与x的函数关系式为:y=120x+1680⑵自变量x需满足以下两个条件:240名师生有车坐:45x+30(6-x)≥240 ∴x≥4费用不超过2300元:120x+1680≤2300 ∴x≤5∴自变量x的取值范围是:4≤x≤5三、几何图形中函数自变量的取值范围几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.例3.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.解析:底边长y与腰长x的函数关系式为:y=20-2x①x表示等腰三角形腰长:x≥0②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5③等腰三角形底边长y>0,20-2x>0,∴x<10∴自变量x的取值范围是:5<x<10作者简介:宋毓彬,男,43岁,中学数学高级教师.在《中学数学教学参考》、《数哩天地》、《中学生数学》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》等报刊发表教学辅导类文章40多篇.主要致力于初中数学中考及解题方法、技巧等教学方面的研究.。

求函数自变量的取值范围的确定方法

求函数自变量的取值范围的确定方法

求一次函数自变量取值的方法1 函数自变量取值范围的确定在一个变化过程中,如果有两个变量x 与y ,如果对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.在解答与函数有关的问题时,常常要求出函数的自变量x 的取值范围,下面我们来介绍这一类问题的解法.经典例题在函数32--=x x y 中,求自变量x 的取值范围. 解题策略2x -分子中的二次根式被开方数必须为非负数,而且分母不为0.即自变量x 为下面不等式组的解:20,30.x x -≥⎧⎨-≠⎩ 解这个不等式组便可求得自变量x 的取值范围是x ≥2,且x ≠3.画龙点睛求函数自变量的取值范围,要注意以下几点:1. 若函数的解析式是整式,自变量的取值范围是全体实数;2. 若函数的解析式是分式,自变量的取值范围是使分母不等于0的一切实数;3. 若函数的解析式是二次根式,自变量的取值范围是使被开方数不小于0的一切实数;4. 若函数的解析式含有以上几类式子时,则应分别求出各自的取值范围,再求出它们的公共部分.举一反三1.下列函数中,自变量x 的取值范围是x >2的函数是( ).(A )2-=x y(B )12-=x y (C )21-=x y (D )121-=x y2.求函数2||1--=x x y 中自变量x 的取值范围. 3.求函数1||y x =-x 的取值范围. 融会贯通4.若函数25(2)34kx y k x k+=++-自变量x 的取值范围是一切实数,求实数k 的取值范围.参考答案1.C .在四个选择分支A 、B 、C 、D 中,它们的自变量x 的取值范围依次是x ≥2,x ≥12,x >2,x >12.故选C .2.由不等式组10,||20,x x -≥⎧⎨-≠⎩解得x ≤1, 且x ≠-2.3.由不等式1-|x |>0,得|x |<1,于是-1<x <1.4.要使函数自变量x 的取值范围是一切实数,就必须使分母不等于0.(1)当k =0时,分母等于3;(2)当k >0时,k (x +2)2≥0,要使分母不等于0,就应有3-4k >0,k <34,于是有0<k <34;(3)当k <0时,k (x +2)2≤0,要使分母不等于0,就应有3-4k <0,于是有k >34,这与k <0矛盾.综上所述,k 的取值范围是0≤k <34.。

函数中自变量的取值范围的确定

函数中自变量的取值范围的确定

函数中自变量的取值范围的确定作者:严小松来源:《成才之路》 2012年第24期贵州遵义● 严小松研究函数,确定自变量的取值范围是一个重要问题。

在新课标中,这也是中考内容的一个重要知识点。

然而,怎样确定自变量的取值范围呢?很多同学对此不很明确,常常因考虑不周而出现错误。

为了使同学们学习这部分知识时不出错或少出错,现将自己多年积累的经验归纳说明如下,供大家参考。

一、整式型例1 求函数y=2x-3的自变量的取值范围。

分析:因为不论x取任意实数,2x-3都有意义,所以自变量x的取值范围是全体实数。

例2 在函数y=x2+3x+1中,自变量x的取值范围是( )。

A.全体实数B.x≤0C.x≠-1D.x≥0分析:不论x取任意实数, x2+3x+1都有意义,所以自变量x的取值范围是全体实数。

故正确答案应为A。

二、分式型当函数解析式是分式时,自变量的取值范围是使分母不为零的实数。

例3 在函数y=1/x-3中,自变量x的取值范围是()。

A.X≠3B.X≠0C.X>3D.X≠-3分析:当X=3时,1/x-3没有意义,所以自变量X的取值范围是X≠3。

故答案为A。

例4 判断函数y1=x1与y2=x是否相同?分析:两个函数是否相同,必须具备两个条件:(1)函数解析式相同(化简后);(2)自变量的取值范围相同。

函数y1=x2/x=x中,自变量x的取值范围是x≠ 0 ;而函数y2=x 中,自变量x的取值范围是全体实数。

两个函数的解析式虽然相同,但自变量x的取值范围不同,所以它们不同。

三、偶次根式型当函数解析式是偶次根式时,自变量的取值范围是使被开方式非负的实数。

四、实际问题型当遇到实际问题或几何问题时,自变量的取值还必须符合实际意义或几何意义。

例6 南京到上海的铁路长为311千米,一列火车以90千米/时的速度从南京开往上海,h 小时后火车距上海S千米,用解析式表示S与h之间的函数关系,并求自变量h的取值范围(不考虑停站时间)。

函数自变量取值范围的确定方法

函数自变量取值范围的确定方法

函数自变量取值范围的确定方法在数学中,函数是一种映射关系,它将自变量的取值映射到因变量的取值。

确定函数自变量的取值范围是非常重要的,它决定了函数的定义域,也就是函数能够接受的有效输入。

以下是几种确定函数自变量取值范围的方法:1.函数定义式:函数的自变量取值范围可以通过函数的定义式来确定。

例如,对于一个有理函数f(x)=1/(x+1),我们可以通过分析定义式知道x的取值范围不能为-1,因为分母不能为零。

2.分段函数:如果一个函数在不同的自变量范围内有不同的定义式,那么我们需要考虑每个定义式的自变量取值范围。

例如,对于一个分段函数f(x)=,x,我们知道在x<0时,f(x)=-x;在x≥0时,f(x)=x。

因此,对于x<0和x≥0,我们需要考虑两个不同的自变量取值范围。

3.函数图象:函数的图象可以提供有关函数自变量的取值范围的一些线索。

我们可以通过观察函数的图象来确定函数自变量的取值范围。

例如,对于一个简单的二次函数f(x)=x^2,我们可以看到函数图象是一个开口朝上的抛物线,意味着函数自变量的取值范围为实数集。

4.函数的性质和约束:函数的性质和约束也可以提供有关函数自变量取值范围的信息。

例如,对于一个表示物体高度的位置函数f(t),我们知道物体不能以负的高度存在,因此自变量t的取值范围不能小于零。

5.实际问题:当函数被用于解决实际问题时,问题所涉及的条件和限制可以帮助确定函数自变量取值范围。

例如,对于一个描述人的体重变化的函数f(t),我们知道体重不能为负,因此自变量t的取值范围不能小于零。

总之,确定函数自变量取值范围的方法包括分析函数的定义式、分段函数的定义式、观察函数图象、考虑函数的性质和约束以及解决实际问题时考虑问题所涉及的条件和限制等。

通过这些方法,我们可以确定函数自变量的取值范围,从而确保函数的定义域是有效的。

初中数学如何确定函数自变量的取值范围

初中数学如何确定函数自变量的取值范围

如何确定函数自变量的取值范围湖北省黄石市下陆中学宋毓彬为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.初中阶段确定函数自变量的取值范围大致可分为以下三种类型:一、函数关系式中自变量的取值范围在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.例1.在下列函数关系式中,自变量x的取值范围分别是什么?⑴y=2x-5;⑵y=;⑶y=;⑷y=;⑸y=(x-3)0解析:⑴为整式形式:x的取值范围为任意实数;⑵为分式形式:分母2x+1≠0∴x≠-∴x的取值范围为x≠-;⑶含算术平方根:被开方数3x-4≥0 ∴x≥∴x的取值范围为x≥;⑷既含分母、又含算术平方根,故∴x≥-2且x≠0x的取值范围为:x≥-2且x≠0⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.二、实际问题中自变量的取值范围.在实际问题中确定自变量的取值范围,主要考虑两个因素:⑴自变量自身表示的意义.如时间、用油量等不能为负数.⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.例2、某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x的取值范围.解析:⑴由题设条件可知共需租车6辆,租用甲种车x辆,则租用乙种车辆(6-x)辆.y=400x+280(6-x)=120x+1680∴y与x的函数关系式为:y=120x+1680⑵自变量x需满足以下两个条件:240名师生有车坐:45x+30(6-x)≥240 ∴x≥4费用不超过2300元:120x+1680≤2300 ∴x≤5∴自变量x的取值范围是:4≤x≤5三、几何图形中函数自变量的取值范围几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.例3.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.解析:底边长y与腰长x的函数关系式为:y=20-2x①x表示等腰三角形腰长:x≥0②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5③等腰三角形底边长y>0,20-2x>0,∴x<10∴自变量x的取值范围是:5<x<10作者简介:宋毓彬,男,43岁,中学数学高级教师.在《中学数学教学参考》、《数哩天地》、《中学生数学》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》等报刊发表教学辅导类文章40多篇.主要致力于初中数学中考及解题方法、技巧等教学方面的研究.。

求函数自变量的取值范围方法总结

求函数自变量的取值范围方法总结

求函数自变量的取值范围方法总结函数自变量的取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.求自变量的取值范围一般从两个方面考虑:(1)使函数关系式有意义;(2)符合客观实际.确定自变量的取值范围的方法:(1)如果函数关系式的右边是关于自变量的整式,则自变量的取值范围是全体实数.例如函数1-=x y ,自变量x 的取值范围是全体实数.(2)如果函数关系式的右边是分式,则自变量的取值范围是使分母不等于零的所有实数.例如函数12-=x y ,自变量x 的取值范围是1≠x . (3)如果函数关系式的右边包含二次根号,则自变量的取值范围是使被开方数为非负数.例如函数2-=x y ,自变量x 的取值范围是x ≥2.(4)如果函数关系式是有具体问题建立的,则自变量的取值范围不但要使函数关系式有意义,还要符合实际意义.例如函数2x y =,自变量x 的取值范围是全体实数,如果x 表示正方形的边长,y 表示正方形的面积,则自变量x 的取值范围就变成了0>x (边长不能为负数).(5)有些函数自变量的取值范围是以上情况的综合,需进行多方面的考虑. 例如函数21-=x y ,自变量x 应满足两个条件:一是满足分母不等于零,二是保证被开方数为非负数,所以得到关于自变量的不等式组⎩⎨⎧≥-≠-0202x x ,求得自变量x 的取值范围是2>x .例1. 求函数131-+-=x x y 中的自变量x 的取值范围.分析:本题中,自变量x 的取值范围应同时满足分母()3-x 不等于零和被开方数()1-x 为非负数.解:⎩⎨⎧≥-≠-0103x x 解这个不等式组得:x ≥1且3≠x .∴自变量x 的取值范围是x ≥1且3≠x .习题1. 函数xx y 2+=的自变量x 的取值范围是__________. 习题2. 函数413-+-=x x y 中自变量x 的取值范围是__________. 习题3. 在函数x xy -=1中, 自变量x 的取值范围是__________.习题4. 下列函数中,自变量的取值范围是2>x 的是 【 】(A )2-=x y (B )21-=x y (C )12-=x y (D )121-=x y习题5. 函数21--=x x y 中,自变量x 的取值范围是__________. 习题6. 下列函数中,自变量的取值范围错误的是 【 】(A )2-=x y (x ≥2) (B )11+=x y (1-≠x ) (C )22x y =(x 取全体实数) (D )31+=x y (x ≥3-) 习题7. 在函数24-++=x x y 中,自变量x 的取值范围是__________.例 2. 已知等腰三角形的周长为20,求底边长y 与腰长x 的函数关系式及自变量的取值范围.分析:本题为易错题,考虑问题不全面导致自变量的取值范围不完整.解决本题要注意两个问题:(1) 边长不能为负数;(2)三角形三边之间的关系.解:由题意得:202=+y x∴y 与x 之间的函数关系式为x y 220-=∵⎪⎩⎪⎨⎧->+>->x x x x x 22002200∴自变量x 的取值范围是105<<x .习题8. 已知等腰三角形的周长为12 cm,底边长y (cm )是腰长x (cm )的函数.(1)写出这个函数关系式;(2)求自变量x 的取值范围.专题 自变量的取值范围受哪些因素的影响求函数自变量的取值范围是学习数学的难点,也是历年来中考的热点,那么,如何确定自变量的取值范围呢?一般情况下,可以遵循以下原则:如果函数解析式是整式,则自变量的取值范围是全体实数(整式型)习题9. 函数12+=x y 中,自变量x 的取值范围是__________.分析:因为函数解析式的右边12+x 是整式,所以自变量x 的取值范围是全体实数.习题10. 函数122-+=x x y 中,自变量x 的取值范围是__________.如果函数解析式含有分式,则自变量的取值范围是使分母不等于零的实数(分式型)习题11. 在函数11-=x y 中,自变量x 的取值范围是__________. 分析:因为11-x 是分式,所以要求分母不等于零,即01≠-x . 习题12. 函数52-=x x y 中,自变量x 的取值范围是__________. 如果函数解析式中含有二次根式,则自变量的取值范围是使被开方数为非负数的实数 习题13. 函数3-=x y 中自变量x 的取值范围是__________.分析:因为3-x 为被开方式,要求被开方式为非负数,所以3-x ≥0,解得x ≥3. 习题14. 函数1+-=x y 中,自变量x 的取值范围是__________.如果函数解析式中含有零指数幂或负整指数幂,则自变量的取值范围是使底数不等于零的实数(指数型)习题15. 函数()221+-=-x y 中,自变量x 的取值范围是__________. 分析:因为函数解析式中含有负整指数幂,所以要求底数02≠-x ,即2≠x . 实际上,()221+-=-x y ,即221+-=x y . 习题16. 函数()202-++=x x y 中,自变量x 的取值范围是__________. 如果函数解析式兼有上述两种或两种以上的结构特点,则先按上述方法分别求出它们的取值范围,再求它们的公共部分(综合型)习题17. 函数()023---=x x x y 中,自变量x 的取值范围是__________. 习题18. 函数31--=x x y 中,自变量x 的取值范围是__________. 习题19. 函数24-++=x x y 中,自变量x 的取值范围是__________. 自变量的取值范围必须符合客观实际,必须使实际问题有意义(如边长不能为负、人数不能为小数等)例3. 某小汽车的油箱可装汽油30升,原装有油10升,现加x 升汽油,如果油价为5元/升,求油箱内汽油的总价y (元)与x (升)之间的函数关系式,并求出自变量x 的取值范围.分析:本题先求出函数关系式,再由关系式和实际意义确定自变量的取值范围.解:由题意得:()y=x5+10∴50=xy5+∵油箱原有油10升,油箱容量为30升∴自变量x的取值范围是0≤x≤20.(也可以是x0≤20)<习题20. 某台拖拉机油箱中有油60升,工作时每小时耗油6升.(1)求出拖拉机油箱中的剩余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)求出自变量t的取值范围;(3)当拖拉机工作3小时后,油箱中还剩多少升油?。

初中数学中考函数自变量取值范围的确定方法素材

初中数学中考函数自变量取值范围的确定方法素材

函数自变量取值X 围的确定方法关于函数自变量的取值X 围的确定,主要考虑两个方面:一是考虑自变量的取值必须使解析式有意义。

①当解析式是一个只含一个自变量的整式时,自变量的取值X 围是全体实数;例如:函数y=3x 2-5x 中自变量x 的取值X 围是全体实数。

②当解析式是分式时,自变量的取值X 围是使分母不为0的全体实数;例如:函数y=121-x 中,自变量x 的取值X 围是x ≠21。

③当解析式是偶次根式时,自变量的取值X 围是使被开数为非负的一切实数;例如:函数y=63-x 中,自变量x 的取值X 围是x ≥2。

④当解析式为零指数幂或负指数幂时,自变量的取值X 围是使底数不为0的全体实数;例如:函数y=(x-3)0中自变量x 的取值X 围是x ≠3;y=(2-x)-2中自变量x 的自变量取值X 围是x ≠2。

⑤当解析式是整式、分式、二次根式、零指数或负指数的综合时,自变量的取值X 围是它们各自取值X 围的公共部分。

例如:函数y=233---x x 中,其自变量x 的取值X 围为:3-x ≥0且x-2≠0,即x ≤3且x ≠0。

注:求自变量取值X 围时还要注意以下几点:⑴自变量取值X 围可以是有限的,也可以是无限的;可以是多个数,也可以是一个数; 例如:函数y=2-x +x -2的自变量x 的取值X 围是x=2,是有限的,只有一个数。

⑵注意一些恒不等式在求函数自变量取值X 围中的作用;例如:求y=24422+-x x x 的取值X 围。

∵4x 2-4x+2=4(x-21)2+1>0,∴自变量x 的取值X 围是全体实数。

⑶注意“且”与“或”的区分;例如:求y=612--+x x x 的自变量x 的取值X 围。

先令x 2-x-6=0解得x=3或x=-2,则得不等式x 2-x-6≠0的解为x ≠3且x ≠-2,∴x 的取值X 围为x ≠3且x ≠-2。

二、当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义例1:已知等腰三角形的周长为20,则底边长y 与腰x 的函数关系式(x 为自变量)为,其中自变量x 的取值X 围是。

高中数学函数的自变量取值范围与函数值计算

高中数学函数的自变量取值范围与函数值计算

高中数学函数的自变量取值范围与函数值计算在高中数学中,函数是一个非常重要的概念。

函数的自变量是指函数中的输入值,而函数的值则是指函数对应的输出值。

在解题过程中,确定自变量的取值范围以及计算函数的值是必不可少的步骤。

本文将通过具体的例子,分析函数的自变量取值范围与函数值计算的考点,并给出解题技巧和指导。

一、自变量取值范围的确定在确定函数的自变量取值范围时,我们需要考虑两个方面的因素:函数定义域和实际问题的限制条件。

1. 函数定义域的确定函数的定义域是指自变量的取值范围,也就是使函数有意义的输入值的集合。

例如,对于函数y = √x,由于根号下不能为负数,所以定义域为x ≥ 0。

在解题时,我们需要根据函数的定义域确定自变量的取值范围。

2. 实际问题的限制条件有些函数在实际问题中存在一些限制条件,这些条件也会影响自变量的取值范围。

例如,如果一个函数表示一个物体的运动轨迹,那么自变量的取值范围可能会受到时间、空间等方面的限制。

在解题时,我们需要考虑这些限制条件,确定自变量的取值范围。

二、函数值的计算确定了自变量的取值范围之后,我们就可以计算函数的值了。

计算函数的值需要根据函数的表达式和自变量的取值进行运算。

下面通过几个例子来说明函数值的计算方法。

例1:计算函数y = 2x + 1在x = 3时的值。

解析:将x = 3代入函数表达式中,得到y = 2 × 3 + 1 = 7。

因此,函数y = 2x + 1在x = 3时的值为7。

这个例子中,我们只需要将给定的自变量的值代入函数表达式中进行计算即可得到函数的值。

例2:计算函数y = |x - 2|在x = 4时的值。

解析:将x = 4代入函数表达式中,得到y = |4 - 2| = 2。

因此,函数y = |x - 2|在x = 4时的值为2。

这个例子中,函数的表达式中含有绝对值符号,我们需要根据自变量的值的正负情况进行计算。

当x - 2 ≥ 0时,|x - 2| = x - 2;当x - 2 < 0时,|x - 2| = -(x - 2)。

如何确定函数自变量的取值范围

如何确定函数自变量的取值范围

如何确定函数自变量的取值范围确定函数自变量的取值范围历来是中考的热点问题之一,考题中多以填空、选择形式出现,现在将常见的几种类型及解法归纳如下,以供同学们参考。

一、自变量的取值必须使含有自变量的代数式有意义。

1、函数关系式是一个含有自变量的整式或奇次根式时,自变量的取值范围是全体实数。

例1、函数y=15-的自变量取值范围是。

解析:由于15-是整式,所以的取值范围是全体实数。

2、当函数关系式是分式时,自变量的取值范围是使分母不为零的实数。

例2、(哈尔滨)函数34x y x -=-的自变量x 的取值范围是。

解析:43--x x 是分式,由分母-4≠0得≠4,所以的取值范围是≠4。

3、当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数。

例3、(武汉)在函数1-=x y 中,自变量的取值范围是()。

A 、≥-1B 、≠1 C、≥1D、≤1解析:此函数关系式是二次根式,由被开方数为非负数可知,-1≥0,所以≥1。

故选C 。

4、当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解。

例4、(芜湖)函数y = A .≥1-B .≠3 C.≥1-且≠3D.1x <-解析:自变量同时含在分式、二次根式中,所以的取值范围是它们的公共解。

列不等式组得⎩⎨⎧≠-≥+0301x x 解得≥-1且≠3。

故选C 。

二、自变量的取值必须使实际问题有意义。

当函数关系式表示实际问题或几何问题时,自变量的取值范围既要使函数表达式有意义,也要同时使实际问题及几何问题有意义。

例5、已知等腰三角形的面积为20cm 2,设它的底边长为(cm ),则底边上的高y (cm )关于的函数关系式为,自变量的取值范围是:。

解析:由等腰三角形的面积=底×高×得,y 与的函数关系式为y=。

由于自变量是等腰三角形的底边长,同时函数关系式又是分式,因此自变量的取值范围是>0例6、汽车由北京驶往相距850千米的沈阳.它的平均速度为80千米/时.求汽车距沈阳的路程S 千米与行驶时间t 小时的函数关系式,写出自变量的取值范围。

函数自变量取值范围

函数自变量取值范围

函数自变量取值范围
我们学习数学时,经常会接触到函数。

函数是表示一种变化关系的数学工具。

简单来说,函数就是一个数值映射,将一个自变量映射成一个因变量。

这个数值映射的自变量取
值范围很重要。

下面我们来介绍一下函数自变量取值范围。

1. 实数范围
函数的自变量通常是实数,也就是可以表示所有可能的数值,包括正数,负数,和零。

通常情况下,函数的自变量取值范围是用实数集合来表示。

实数集合包含了所有有理数和
无理数,可以表示为:
R = {a | a 是一个实数}
这个范围是实数轴上的所有点,是一个无限范围。

所有的实数都可以作为函数的自变量。

有时,函数的自变量只能取自然数,通常是因为自变量表示了某种计数器,比如“第
几个人”、“第几项”等。

自然数包括了所有正整数,可以用如下符号表示:
N = {1, 2, 3, …}
通常,函数的自变量取自然数范围的时候,我们使用一个大写字母 N 来表示这个范围。

4. 区间范围
有些函数的自变量只能在一定的区间内取值,比如时间、长度等等。

这时候,我们使
用一个区间来表示自变量的取值范围。

区间包含了一段连续的数值,比如 [a, b] 表示的
是从 a 到 b 的所有数值,包括 a 和 b。

标记的方式有两种:
(1)闭区间:[a, b] 表示 a 和 b 都在这个区间内。

总之,函数自变量取值范围很重要,要根据实际问题来选定。

不同的自变量取值范围
有不同的意义和用途,应该根据具体问题选择合适的范围来进行计算和分析。

函数自变量取值范围的确定方法

函数自变量取值范围的确定方法

函数自变量取值范围的确定策略金山初级中学 庄士忠 201508函数是初中数学一个十分重要的内容,为保证函数式有意义或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。

函数自变量的取值范围是函数成立的先决条件,初中阶段确定函数自变量的取值范围大致可分为三种类型:(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。

一、 函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0。

典型例题:例1:函数y=x 1-的自变量x 的取值范围在数轴上可表示为【 】A .B .C .D .【分析】根据二次根式有意义的条件,计算出y=x 1-的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

根据二次根式被开方数必须是非负数的条件,要使y=x 1-在实数范围内有意义,必须x 10-≥ x 1⇒≥。

故在数轴上表示为:。

故选D 。

例2:函数y =1x 2- 中自变量x 取值范围是【 】A .x =2 B .x ≠2 C .x >2 D .x <2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 2-在实数范围内有意义,必须x 20x 2-≠⇒≠。

故选B 。

例3:函数x+2x 的取值范围是【 】A .x >﹣2 B .x ≥2 C .x ≠﹣2 D .x ≥﹣2 【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x+2在实数范围内有意义,必须x+20x 2x >2x+20x 2≥≥-⎧⎧⇒⇒-⎨⎨≠≠-⎩⎩。

求函数自变量的取值范围的方法总结

求函数自变量的取值范围的方法总结

求函数自变量的取值范围的方法总结函数自变量的取值范围是指函数中自变量可以取的所有实数值的集合。

确定函数自变量的取值范围有多种方法,以下总结了几种常见的方法:1.根据函数的定义域确定自变量的取值范围:-如果函数的定义域是实数集(即没有限制),则自变量的取值范围也是实数集。

-如果函数的定义域有限制,需要根据这个限制来确定自变量的取值范围。

例如,如果一个函数的定义域是正实数集(即大于零的实数),则自变量的取值范围也是正实数集。

2.根据函数的图像确定自变量的取值范围:-观察函数的图像,确定自变量在图像上的取值范围。

例如,如果一个函数的图像是一个上升的直线,那么自变量的取值范围是整个实数集。

-需要注意的是,函数图像的性质可能会给出一些限制,例如函数图像是一个分段函数,那么需要根据每个分段函数的定义域确定自变量的取值范围。

3.使用代数方法确定自变量的取值范围:-对于一些特殊的函数,可以使用代数方法来确定自变量的取值范围。

例如,对于有分母的函数,需要考虑分母不能等于零的条件。

这样就可以通过求解不等式来确定自变量的取值范围。

-另一个例子是要求函数的值在一定范围内,可以通过解方程或者不等式来确定自变量的取值范围。

例如,对于一个二次函数,如果要求函数的值在大于等于0的范围内,可以通过求解不等式来确定自变量的取值范围。

4.使用函数性质确定自变量的取值范围:-函数的一些性质可以给出自变量取值范围的一些限制。

例如,对于奇函数来说,只有在定义域的一些小范围内,自变量的正负不同,才能保证函数是奇函数。

在具体问题中,需要根据函数性质来确定自变量的取值范围。

总结起来,确定函数自变量的取值范围需要根据函数的定义域、图像、代数方法和函数性质等多方面的因素综合考虑。

根据具体的问题,选择合适的方法来确定自变量的取值范围,可以帮助我们更好地理解函数的特性和解决相关的数学问题。

求函数自变量的取值范围的确定方法

求函数自变量的取值范围的确定方法

求函数自变量的取值范围的确定方法确定一个函数自变量的取值范围是数学和实际问题中的一个重要部分。

它可以帮助我们确保函数在给定范围内有定义,避免产生错误或无意义结果。

在确定函数自变量的取值范围时,我们需要考虑函数的定义域、实际问题的限制以及常见的数学规则。

首先,我们需要了解函数的定义域。

函数的定义域是指使函数有意义的自变量的取值范围。

定义域可以通过函数的数学表达式来确定,也可以通过实际问题的限制来确定。

例如,对于函数f(x)=√x,由于平方根只对非负数有定义,因此函数的定义域是x≥0。

其次,我们需要考虑实际问题的限制。

在解决实际问题时,函数的自变量通常具有一些限制条件。

这些限制条件可以是来自实际问题的物理、经济或几何约束。

例如,如果我们正在解决一个关于时间的问题,函数的自变量可能被限制在一些时间段内,如t≥0。

通过考虑这些限制条件,我们可以确定函数自变量的取值范围。

此外,我们还需要考虑数学规则。

在数学中,有一些常见的规则可以帮助我们确定函数自变量的取值范围。

例如,对于分式函数,我们需要排除分母为零的情况,因为分母为零会导致函数无定义。

又如,对于对数函数log(x),由于对数只对正数有定义,因此函数的自变量需要满足x>0。

通过应用这些数学规则,我们可以确定函数自变量的取值范围。

在实际问题中,我们还可以利用图像来帮助确定函数自变量的取值范围。

通过绘制函数的图像,我们可以观察函数的趋势和特征,从而确定自变量的取值范围。

例如,对于一个上升趋势的函数,自变量的取值范围可以是负无穷到正无穷。

最后,我们需要根据具体问题的要求来确定函数自变量的取值范围。

不同的问题可能对函数的自变量有不同的要求,如非负、整数或实数。

通过仔细阅读和分析问题的描述,我们可以得出函数自变量的取值范围的具体要求。

在数学和实际问题中,确定函数自变量的取值范围是解决问题和避免错误的关键步骤。

通过了解函数的定义域,考虑实际问题的限制,应用数学规则,利用图像和根据问题要求确定自变量的取值范围,我们可以确保函数在给定范围内有定义,从而有效地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何确定函数自变量的取值范围
湖北省黄石市下陆中学宋毓彬
为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.
初中阶段确定函数自变量的取值范围大致可分为以下三种类型:
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.
例1.在下列函数关系式中,自变量x的取值范围分别是什么?
⑴y=2x-5;⑵y=;⑶y=;⑷y=;⑸y=(x-3)0
解析:⑴为整式形式:x的取值范围为任意实数;
⑵为分式形式:分母2x+1≠0∴x≠-∴x的取值范围为x≠-;
⑶含算术平方根:被开方数3x-4≥0 ∴x≥∴x的取值范围为x≥;
⑷既含分母、又含算术平方根,故∴x≥-2且x≠0
x的取值范围为:x≥-2且x≠0
⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量等不能为负数.
⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.
例2、某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:
设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x的取值范围.解析:⑴由题设条件可知共需租车6辆,租用甲种车x辆,则租用乙种车辆(6-x)辆.y=400x+280(6-x)=120x+1680
∴y与x的函数关系式为:y=120x+1680
⑵自变量x需满足以下两个条件:
240名师生有车坐:45x+30(6-x)≥240 ∴x≥4
费用不超过2300元:120x+1680≤2300 ∴x≤5
∴自变量x的取值范围是:4≤x≤5
三、几何图形中函数自变量的取值范围
几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.
例3.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.
解析:底边长y与腰长x的函数关系式为:y=20-2x
①x表示等腰三角形腰长:x≥0
②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5
③等腰三角形底边长y>0,20-2x>0,∴x<10
∴自变量x的取值范围是:5<x<10。

相关文档
最新文档