《化学工程与工艺专业英语》课文翻译Unit 21 Chemical Industry and Environment
化学工程与工艺专业英语第16-21单元翻译
Unit 16 Evaporation, Crystallization and Drying第十六单元蒸发、结晶和干燥1.蒸发蒸发器是利用加热来浓缩溶液,或是利用热把溶解的固体从饱和溶液沉淀析出以对之回收。
蒸发器是有着特殊规定的再沸器,以用于分离气液两相,或当固体物质沉淀或结晶析出时,用于除去该固体物质。
在一些应用中,尤其当提供足够的干舷时,简单的釜式再沸器就足够了。
管式的蒸发器或是水平的或是垂直的,或长或短;液体可位于管内或管外,循环可以是自然循环或是以泵或推进器驱动的强制性循环。
自然循环型的蒸发器是最常见的。
强制循环型循环器非常适合于处理粘性或腐蚀性的物料,但是购置和维修的费用高。
在长管式垂直设计中,由于蒸发,液体处于在环流或膜流中,相应地,该蒸发器称之为升膜式蒸发器。
在降膜式蒸发器,液体分布于蒸发器的顶部,然后以流体的形式向下流。
静压头可忽略,压降只不过是汽流的摩擦力,传热效果较好。
由于接触时间短以及两相分离完全,降膜式蒸发适合于热敏性物料。
长管式蒸发器(或是自然循环或是强制循环)用得最广泛。
管的直径范围从19~63 mm,长度12~30 ft。
排管式蒸发器管长3~5 ft,它的中央降压管的面积与该管的横截面积相等。
有时,排管式蒸发器中的循环以推进器来驱动。
在某些类型的蒸发器中,固体直到它们达到所需的尺度时才开始循环。
在蒸发器的设计和操作时,热经济是一个主要考虑因素。
因为离开的蒸汽的潜热没有被利用而是丢弃,所以单效蒸发器浪费能量。
然而,利用多效蒸发器可以回收和再次利用大部分潜热。
已经开发了各种各式的蒸发器以用于特殊工业中的特殊应用。
蒸发器的设计可分成如下基本类型:直接加热蒸发器该类型的蒸发器包括盐池和浸泡燃烧装置。
浸泡燃烧蒸发器可应用于那些由燃烧产物引起的溶液污染可接受的场所。
长管蒸发器在该类型蒸发器中,液体以薄膜的形式在长的垂直的热的蒸发管中流动,既可用降膜式蒸发器又可用升膜式蒸发器,处理能力大,适合于低粘度的溶液。
化学工程与工艺专业英语课文翻译
化学工程与工艺专业英语课文翻译Chemical Engineering and Process TechnologyChemical engineering is a branch of engineering that applies physical sciences (physics and chemistry) and life sciences (biology, microbiology, biochemistry) togetherwith mathematics and economics to produce, transform, transport, and properly use chemicals, materials and energy. It essentially deals with the design and operation ofplants and equipment for performing chemical reactions onan industrial scale.Chemical engineers are responsible for the development and production of a diverse range of products, such as fuels, pharmaceuticals, food and drink, and plastics. They also work in a variety of industries, including oil and gas, water treatment, and environmental management.The field of chemical engineering is constantly evolving, with new technologies and processes beingdeveloped to improve efficiency and sustainability. This requires chemical engineers to stay up-to-date with the latest developments in their field and to continually adapt their skills and knowledge.Process technology, on the other hand, focuses on the methods and techniques used to transform raw materials into useful products. This includes the design, operation, and optimization of chemical, physical, and biological processes. Process technologists work closely with chemical engineers to ensure that the processes are efficient, safe, and environmentally friendly.Some of the key areas of study within chemical engineering and process technology include thermodynamics, fluid mechanics, heat transfer, mass transfer, reaction kinetics, process control, and process design. These subjects form the foundation of the discipline and are essential for understanding and solving the complex problems that chemical engineers and process technologists face in their work.In recent years, there has been a growing emphasis on sustainability and green engineering within the field of chemical engineering and process technology. This has led to the development of new processes and technologies that minimize waste, reduce energy consumption, and limit the environmental impact of chemical production.One example of this is the use of renewable feedstocks, such as biomass, in place of traditional fossil fuels. By utilizing sustainable raw materials, chemical engineers and process technologists can help to reduce the reliance on finite resources and decrease the carbon footprint of chemical processes.Another important development in the field is the use of process intensification, which involves the integration of multiple processes into a single, more efficient system. This approach can lead to significant improvements in productivity, energy efficiency, and cost savings.As the demand for chemical products continues to grow, the role of chemical engineers and process technologists inaddressing global challenges, such as climate change and resource depletion, becomes increasingly important. By applying their knowledge and skills to develop innovative and sustainable solutions, they can help to create a more environmentally friendly and economically viable future.In conclusion, chemical engineering and process technology are dynamic and interdisciplinary fields that play a crucial role in the production of a wide range of products. With a focus on sustainability and innovation, chemical engineers and process technologists are well-positioned to address the challenges of the 21st century and contribute to the development of a more sustainable and prosperous world.。
化工专业英语翻译全单元
化学工程与工艺专业英语课文翻译Unit 1 Chemical Industry化学工业..................................................................................... - 1 -Unit 2 Research and Development研究和开发................................................................ - 5 -Unit 3 Typical Activities of Chemical Engineers化学工程师的例行工作 ................ - 11 -Unit 4 Sources of Chemicals化学资源 ............................................................................. - 16 -Unit 5 Basic Chemicals基本化学品 .................................................................................. - 20 -Unit 6 Chlor-Alkali and Related Processes氯碱及其相关过程 ................................... - 22 -Unit 7 Ammonia, Nitric Acid and Urea氯、硝酸和尿素............................................. - 27 -Unit 8 Petroleum Processing石油加工............................................................................. - 32 -Unit 9 Polymers 聚合物.................................................................................................... - 35 -Unit 10 What Is Chemical Engineering?什么是化学工程学 ........................................ - 40 -Unit 11 Chemical and Process Thermodynamics化工热力学...................................... - 45 -Unit 12 What do we mean by transport phenomena ?如何定义传递现象................. - 50 -Unit 13 Unit Operations in Chemical Engineering化学工程中的单元操作 ............ - 54 -Unit14 Distillation蒸馏........................................................................................................ - 57 -Unit 15 Solvent Extraction, Leaching and Adsorption溶剂萃取,浸取和吸附...... - 62 -Unit 16 Evaporation, Crystallization and Drying蒸发、结晶和干燥......................... - 67 -Unit 17 Chemical Reaction Engineering化学反应工程 ................................................ - 72 -Unit18 Chemical Engineering Modeling化工建模 ......................................................... - 78 -Unit 19 Introduction to Process Design过程设计简介................................................. - 82 -Unit 20 Material Science and Chemical Engineer材料科学和化学工程.................... - 87 -Unit 21 Chemical Industry and Environment化学工业与环境................................... - 92 -Unit 1 Chemical Industry化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》课文翻译-完整版
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin discovery if the first synthetic dyestuff —mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world war Ⅰ in 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的) 。
最新化工专业英语翻译(全21单元)01620资料
化学工程与工艺专业英语课文翻译Unit 1 Chemical Industry化学工业 ...................................................................................... - 1 -Unit 2 Research and Development研究和开发................................................................... - 3 -Unit 3 Typical Activities of Chemical Engineers化学工程师的例行工作............................ - 5 -Unit 4 Sources of Chemicals化学资源 ................................................................................. - 7 -Unit 5 Basic Chemicals基本化学品...................................................................................... - 9 -Unit 6 Chlor-Alkali and Related Processes氯碱及其相关过程.......................................... - 10 -Unit 7 Ammonia, Nitric Acid and Urea氯、硝酸和尿素 ................................................... - 12 -Unit 8 Petroleum Processing石油加工 .............................................................................. - 15 -Unit 9 Polymers 聚合物 ................................................................................................... - 16 -Unit 10 What Is Chemical Engineering?什么是化学工程学 .............................................. - 18 -Unit 11 Chemical and Process Thermodynamics化工热力学 ........................................... - 21 -Unit 12 What do we mean by transport phenomena ?如何定义传递现象 ...................... - 23 -Unit 13 Unit Operations in Chemical Engineering化学工程中的单元操作...................... - 24 -Unit14 Distillation蒸馏....................................................................................................... - 26 -Unit 15 Solvent Extraction, Leaching and Adsorption溶剂萃取,浸取和吸附................ - 28 -Unit 16 Evaporation, Crystallization and Drying蒸发、结晶和干燥................................. - 31 -Unit 17 Chemical Reaction Engineering化学反应工程 ..................................................... - 33 -Unit18 Chemical Engineering Modeling化工建模 ............................................................. - 36 -Unit 19 Introduction to Process Design过程设计简介...................................................... - 37 -Unit 20 Material Science and Chemical Engineer材料科学和化学工程........................... - 39 -Unit 21 Chemical Industry and Environment化学工业与环境 ......................................... - 42 -Unit 1 Chemical Industry化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化工专业英语翻译
化工专业英语翻译Unit1ChemicalIndutry化学工业1.OriginoftheChemicalIndutry尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。
比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3.我们会注意到所有这些都是无机物。
有机化学工业的开始是在十九世纪六十年代以WilliamHenryPerkin发现第一种合成染料—苯胺紫并加以开发利用为标志的。
20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。
这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。
而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。
这方面所取得的成绩对德国很有帮助。
特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。
这种深刻的改变一直持续到战后(1918-1939)。
datebaketo/from:回溯到dated:过时的,陈旧的tandb.ingoodtead:对。
很有帮助Since1940thechemicalindutryhagrownataremarkablerate,although thihalowedignificantlyinrecentyear.Thelion‘hareofthigrowthhabee nintheorganicchemicalectorduetothedevelopmentandgrowthofthepetro chemicalareaince1950.Thee某ploivegrowthinpetrochemicalinthe1960and1970walargelyduetotheenormouincreaeindemandforyntheticpolymeruchapolyethylene,polypropyle ne,nylon,polyeterandepo某yrein.1940年以来,化学工业一直以引人注目的速度飞速发展。
最新《化学工程与工艺专业英语》课文翻译-完整版
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化工专业英语翻译全单元
化学工程与工艺专业英语课文翻译Unit 1 Chemical Industry化学工业............................... - 2 -Unit 2 Research and Development研究和开发...................... - 6 -Unit 3 Typical Activities of Chemical Engineers化学工程师的例行工作- 11 -Unit 4 Sources of Chemicals化学资源........................... - 16 -Unit 5 Basic Chemicals基本化学品.............................. - 20 -Unit 6 Chlor-Alkali and Related Processes氯碱及其相关过程..... - 22 -Unit 7 Ammonia, Nitric Acid and Urea氯、硝酸和尿素............ - 26 -Unit 8 Petroleum Processing石油加工........................... - 31 -Unit 9 Polymers 聚合物....................................... - 34 -Unit 10 What Is Chemical Engineering?什么是化学工程学......... - 39 -Unit 11 Chemical and Process Thermodynamics化工热力学......... - 45 -Unit 12 What do we mean by transport phenomena ?如何定义传递现象- 49 -Unit 13 Unit Operations in Chemical Engineering化学工程中的单元操作- 53 -Unit14 Distillation蒸馏....................................... - 55 -Unit 15 Solvent Extraction, Leaching and Adsorption溶剂萃取,浸取和吸附- 60 -Unit 16 Evaporation, Crystallization and Drying蒸发、结晶和干燥- 65 -Unit 17 Chemical Reaction Engineering化学反应工程............. - 70 -Unit18 Chemical Engineering Modeling化工建模.................. - 76 -Unit 19 Introduction to Process Design过程设计简介............ - 80 -Unit 20 Material Science and Chemical Engineer材料科学和化学工程- 84 -Unit 21 Chemical Industry and Environment化学工业与环境....... - 90 -Unit 1 Chemical Industry化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》中英文翻译(doc 70页)
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals i ndustry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》课文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
(完整word)《化学工程与工艺专业英语》课文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries。
Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking。
It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia。
《化学工程与工艺专业英语》课文翻译完整版
Unit 1 Chemic al Indust ry化学工业1.Origin s of the Chemic al Indust ryAlthou gh the use of chemic als datesback to the ancien t civili zatio ns, the evolut ion of what we know as the modern chemic al indust ry starte d much more recent ly. It may be consid eredto have begunduring the Indust rialRevolu tion, about1800, and develo ped to provid e chemic als roe use by otherindust ries. Exampl es are alkali for soapma king, bleach ing powder for cotton, and silica and sodium carbon ate for glassm aking. It will be notedthat theseare all inorga nic chemic als. The organi c chemic als indust ry starte d in the 1860swith the exploi tatio n of Willia m HenryPerkin‘sdiscov ery if the firstsynthe tic dyestu ff—mauve. At the startof the twenti eth centur y the emphas is on resear ch on the applie d aspect s of chemis try in German y had paid off handso mely, and by 1914 had result ed in the German chemic al indust ry having 75% of the worldmarket in chemic als. This was basedon the discov ery of new dyestu ffs plus the develo pment of both the contac t proces s for sulphu ric acid and the Haberproces s for ammoni a. The laterrequir ed a majortechno logic al breakt hroug h that of beingable to carryout chemic al reacti ons undercondit ionsof very high pressu re for the firsttime. The experi encegained with this was to standGerman y in good stead, partic ularl y with the rapidl y increa sed demand for nitrog en-basedcompou nds (ammoni um saltsfor fertil izers and nitric acid for explos ivesmanufa cture) with the outbre ak of worldwarⅠin 1914. This initia ted profou nd change s whichcontin ued during the inter-war years(1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》中英文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first sy nthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》课文翻译-完整版
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》课文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
《化学工程与工艺专业英语》中英文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的开展却是非常近代〔才开始的〕。
《化学工程与工艺专业英语》中英文翻译
Unit 1 Chemical Industry化学工业1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化学工程与工艺专业英语第九单元翻译
Unit 1 Chemical Industry化学工业化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。
比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。
有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。
20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。
这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。
而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。
这方面所取得的成绩对德国很有帮助。
特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。
这种深刻的改变一直持续到战后(1918-1939)。
date bake to/from: 回溯到dated: 过时的,陈旧的stand sb. in good stead: 对。
很有帮助1940年以来,化学工业一直以引人注目的速度飞速发展。
尽管这种发展的速度近年来已大大减慢。
化学工业的发展由于1950年以来石油化学领域的研究和开发大部分在有机化学方面取得。
石油化工在60年代和70年代的迅猛发展主要是由于人们对于合成高聚物如聚乙烯、聚丙烯、尼龙、聚脂和环氧树脂的需求巨大增加。
今天的化学工业已经是制造业中有着许多分支的部门,并且在制造业中起着核心的作用。
它生产了数千种不同的化学产品,而人们通常只接触到终端产品或消费品。
这些产品被购买是因为他们具有某些性质适合(人们)的一些特别的用途,例如,用于盆的不粘涂层或一种杀虫剂。
这些化学产品归根到底是由于它们能产生的作用而被购买的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Unit 21 Chemical Industry and Environment化学工业与环境How can we reduce the amount of waste that is produced? And how we close the loop by redirecting spent materials and products into programs of recycling? All of these questions must be answered through careful research in the coming years as we strive to keep civilization in balance with nature.我们怎样才能减少产生废物的数量?我们怎样才能使废弃物质和商品纳入循环使用的程序?所有这些问题必须要在未来的几年里通过仔细的研究得到解决,这样我们才能保持文明与自然的平衡。
1.Atmospheric ChemistryCoal-burning power plants, as well as some natural processes, deliver sulfur compounds to the stratosphere, where oxidation produces sulfuric acid particles that reflect away some of the incoming visible solar radiation. In the troposphere, nitrogen oxides produced by the combustion of fossil fuels combine with many organic molecules under the influence of sunlight to produce urban smog. The volatile hydrocarbon isoprene, well known as a building block of synthetic rubber, is also produced naturally in forests. And the chlorofluorocarbons, better known as CFCs, are inert in automobile air conditioners and home refrigerators but come apart under ultraviolet bombardment in the mid-stratosphere with devastating effect on the earth’s stratospheric ozone layer. The globally averaged atmospheric concentration of stratospheric ozone itself is only 3 parts in 10 million, but it has played a crucial protective role in the development of all biological life through its absorption of potentially harmful shout-wavelength solar ultraviolet radiation.1.大气化学燃煤发电厂像一些自然过程一样,也会释放硫化合物到大气层中,在那里氧化作用产生硫酸颗粒能反射入射进来的可见太阳辐射。
在对流层,化石燃料燃烧所产生的氮氧化物在阳光的影响下与许多有机物分子结合产生都市烟雾。
挥发的碳氢化合物异戊二烯,也就是众所周知的合成橡胶的结构单元,可以在森林中天然产生含氯氟烃。
我们所熟悉的CFCs,在汽车空调和家用冰箱里是惰性的,但在中平流层内在紫外线的照射下回发生分解从而对地球大气臭氧层造成破坏,全球大气层中臭氧的平均浓度只有3ppm,但它对所有生命体的生长发育都起了关键的保护作用,因为是它吸收了太阳光线中有害的短波紫外辐射。
During the past 20 years, public attention has been focused on ways that mankind has caused changes in the atmosphere: acid rain, stratospheric zone depletion, greenhouse warming, and the increased oxidizing capacity of the atmosphere. We have known for generations that human activity has affected the nearby surroundings, but only gradually have we noticed such effects as acid rain on a regional then on an intercontinental scale. With the problem of ozone depletion and concerns about global warming, we have now truly entered an era of global change, but the underlying scientific facts have not yet been fully established.在过去的二十年中,公众的注意力集中在人类对大气层的改变:酸雨、平流层臭氧空洞、温室现象,以及大气的氧化能力增强,前几代人已经知道,人类的活动会对邻近的环境造成影响,但意识到像酸雨这样的效应将由局部扩展到洲际范围则是慢慢发现的。
随着臭氧空洞问题的出现,考虑到对全球的威胁,我们已真正进入到全球话改变的时代,但是基本的科学论据还没有完全建立。
2.Life Cycle AnalysisEvery stage of a product’s life cycle has an environmental impact, starting with extraction of raw materials, continuing through processing, manufacturing, and transportation, and concluding with consumption and disposal or recovery. Technology and chemical science are challenged at every stage. Redesigning products and processes to minimize environmental impact requires a new philosophy of production and a different level of understanding of chemical transformations. Environmentally friendly products require novel materials that are reusable, recyclable, or biodegradable; properties of the materials are determined by the chemical composition and structure. To minimize waste and polluting by-products, new kinds of chemical process schemes will have to be developed. Improved chemical separation techniques are needed to enhance efficiency and to remove residual pollutants, which in turn will require new chemical treatment methods in order to render them harmless. Pollutants such as radioactive elements and toxic heavy metals that cannot be readily converted into harmless materials will need to be immobilized in inert materials so that they can be safely stored. Finally, the leftover pollution of an earlier, less environmentally aware era demands improved chemical and biological remediation techniques.2.生命周期分析产品生命循环周期的每一个阶段都会对环境造成影响。
从原材料的提取,到加工、制造和运输的过程,最后到被消耗和丢弃或回收,每一个阶段都对工艺学和化学提出了挑战。
重新设计产品和过程以减少对环境的影响需要新的生产原理和在不同的水平层面上理解化学变化,对环境友善的产品要求有新的原料,它们应是可再使用的,可循环的,或者可生物降解的。
物质的性质是由其化学组成和结构决定的,要减少废品和有污染的副产品,就要开发新的化学工艺线路,已开发的化学分离技术需要有效地提高以分离出剩余的污染物,这反过来又要求新的化学处理方法使它们变得无害。
而诸如放射性元素和那些不容易转化为无害物质的重金属污染物则需要把它们固定为惰性物质以便能安全地储放。
还有最后一点,早期的污染残留物,对环境污染程度尚未很意识到的一些物质要求进一步用化学和生物的修复技术进行处理。
Knowledge of chemical transformations can also help in the discovery of previously unknown environmental problems. The threat to the ozone layer posed by CFCs was correctly anticipated through fundamental studies of atmospheric chemistry, eventually leading to international agreements for phasing out the production of these otherwise useful chemicals in favor of equally functional but environmentally more compatible alternatives. On the other hand, the appearance of the ozone hole over the Antarctic came as a surprise to scientists and only subsequently was traced to previously unknown chlorine reactions occurring at the surface of nitric acid crystals in the frigid Antarctic stratosphere. Thus it is critically important to improve our understanding of the chemical processes in nature, whether they occur in fresh water, saltwater, soil, subterranean environments, or the atmosphere.了解化学反应的机理可以帮助我们发现以前不知道的环境问题,CFCs对臭氧层造成的威胁能够正确地预防要得益于大气化学的基础研究。