湖南省高考数学试卷

合集下载

湖南省长沙市(新版)2024高考数学部编版测试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版测试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数在上的图象大致为()A.B.C.D.第(2)题已知椭圆的左、右焦点分别为,左顶点为A,离心率为,经过的直线与该椭圆相交于P,Q两点(其中点P在第一象限),且,若的周长为,则该椭圆的标准方程为()A.B.C.D.第(3)题若曲线有三条过点的切线,则实数的取值范围为()A.B.C.D.第(4)题已知三棱锥的底面是边长为3的等边三角形,且,,平面平面,则其外接球的表面积为()A.B.C.D.第(5)题已知,,则的最大值为()A.B.C.D.第(6)题已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,则B.若,则C.若,则D.若,则第(7)题函数,下列说法不正确的是()A.当时,恒成立B.当时,存在唯一极小值点C.对任意在上均存在零点D.存在在上有且只有一个零点第(8)题已知等比数列的前项和为,则()A.63B.728C.730D.64二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.数据6,5,3,4,2,7,8,9的上四分位数(75%分位数)为7B.样本数据与样本数据满足,则两组样本数据的方差相同C.若随机事件,满足:,则,相互独立D.若,且函数为偶函数,则第(2)题已知点,,,,则下列结论正确的是()A.若,则B.若,则C.若,D.的最大值为第(3)题已知函数,则()A.是偶函数B.存在实数使得,C.在上单调递增D.存在极值点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知A为双曲线的右顶点,为双曲线右支上一点,点关于原点的对称点为,记直线,的倾斜角分别为,,且,则双曲线的离心率为______.第(2)题在我国古代,是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与相关的设计.例如,北京天坛丘的地面由扇环形的石板铺成,如图,最高一层的中心是一块天心石,围绕它的第一圈有块石板,从第二圈开始,每一圈比前一圈多块,共圈,则第圈的石板数为___________,前圈的石板总数为___________.第(3)题设实数,满足约束条件,则的取值范围为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆的上顶点为,且经过点.(1)求的标准方程;(2)过点的直线与交于,两点,判断的形状并给出证明.第(2)题将8株某种果树的幼苗分种在4个坑内,每坑种2株,每株幼苗成活的概率为0.5.若一个坑内至少有1株幼苗成活,则这个坑不需要补种,若一个坑内的幼苗都没成活,则这个坑需要补种,每补种1个坑需15元,用X表示补种费用.(1)求一个坑不需要补种的概率;(2)求4个坑中恰有2个坑需要补种的概率;(3)求X的数学期望.第(3)题已知函数.(1)讨论的零点个数;(2)若有两个零点,,求证:.第(4)题已知椭圆的方程为,在椭圆上,离心率,左、右焦点分别为,.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于,两点,连接,并延长交椭圆于,两点,连接,求与之间的函数关系式.第(5)题已知数列满足.(1)求数列的通项公式;(2)对任意的正整数n,令,求数列的前2n项的和.。

湖南省长沙市(新版)2024高考数学统编版测试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版测试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若曲线有三条过点的切线,则实数的取值范围为()A.B.C.D.第(2)题在三棱锥中,侧棱,,两两垂直,且.设,该三棱锥的表面积为函数,以下判断正确的是()A.为常数B.有极小值C.有极大值D.是单调函数第(3)题椭圆的离心率为,则()A.B.C.D.2第(4)题声音的等级(单位:dB)与声音强度(单位:W/m2)满足.喷气式飞机起飞时,声音的等级约为140 dB;一般说话时,声音的等级约为60 dB,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的( )A.106倍B.108倍C.1010倍D.1012倍第(5)题的展开式中的系数是()A.B.C.D.第(6)题在平面直角坐标系中,为不等式组,所表示的区域上一动点,则直线斜率的最小值为A.B.C.D.第(7)题已知抛物线C:的焦点为F,直线交抛物线C于A,B两点,且点A在第一象限,若为等腰直角三角形,则()A.B.C.D.第(8)题已知正实数x,y满足,则下列不等式恒成立的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题抛物线的焦点为,、是抛物线上的两个动点,是线段的中点,过作准线的垂线,垂足为,则()A.若,则直线的斜率为或B.若,则C.若和不平行,则D.若,则的最大值为第(2)题下列命题中真命题是()A.设一组数据的平均数为,方差为,则B.将4个人分到三个不同的岗位工作,每个岗位至少1人,有36种不同的方法C.一组数据148,149,154,155,155,156,157,158,159,161的第75百分位数为158D.已知随机变量的分布列为,则第(3)题函数的定义域为,值域为,下列结论中一定成立的结论的序号是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知等差数列的公差,首项,则__________.第(2)题已知,则__________.第(3)题设平面内有条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用表示这条直线交点的个数,则________;当时,______(用表示);四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,已知在三棱柱中,,,F是线段BC的中点,点O在线段AF上,,D是侧棱中点,.(1)证明:平面;(2)若,点在平面ABC内的射影为O,求直线OE与平面所成角的正弦值.第(2)题已知抛物线的焦点为,点在抛物线上,该点到原点的距离与到的准线的距离相等.(1)求抛物线的方程;(2)过焦点的直线与抛物线交于,两点,且与以焦点为圆心2为半径的圆交于,两点,点,在轴右侧.①证明:当直线与轴不平行时,②过点,分别作抛物线的切线,,与相交于点,求与的面积之积的取值范围.第(3)题如图,等腰梯形ABCD中,,,现以AC为折痕把折起,使点B到达点P的位置,且.(1)证明:平面平面ADC;(2)若M为PD上一点,且三棱锥的体积是三棱锥体积的2倍,求二面角的余弦值.第(4)题已知函数.(1)若,求证;函数的图象与轴相切于原点;(2)若函数在区间,各恰有一个极值点,求实数的取值范围.第(5)题某公司研制了一种对人畜无害的灭草剂,为了解其效果,通过实验,收集到其不同浓度()与灭死率的数据,得下表:浓度()灭死率0.10.240.460.760.94(1)以为解释变量,为响应变量,在和中选一个作为灭死率关于浓度()的经验回归方程,不用说明理由;(2)(i)根据(1)的选择结果及表中数据,求出所选经验回归方程;(ii)依据(i)中所求经验回归方程,要使灭死率不低于,估计该灭草剂的浓度至少要达到多少?参考公式:对于一组数据,,,,其经验回归直线的斜率和截距的最小二乘法估计分别为,.。

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(培优卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(培优卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若函数是定义在上的偶函数,在上是减函数,且,则使得的的取值范围是()A.B.C.D.第(2)题设集合,,,,其中,下列说法正确的是A.对任意,是的子集,对任意,不是的子集B.对任意,是的子集,存在,使得是的子集C.对任意,使得不是的子集,对任意,不是的子集D.对任意,使得不是的子集,存在,使得不是的子集第(3)题2020年1月17日,国家统计局发布了2019年全国居民人均消费支出及其构成的情况,并绘制了如图的饼图.根据饼图判断,下列说法不正确的是()A.2019年居民在“生活用品及服务”上人均消费支出的占比为6%B.2019年居民人均消费支出为21350元C.2019年居民在“教育文化娱乐”上人均消费支出小于这8项人均消费支出的平均数D.2019年居民在“教育文化娱乐”、“生活用品及服务”、“衣着”上的人均消费支出之和大于在“食品烟酒”上的人均消费支出第(4)题已知集合,,则()A.B.C.D.第(5)题对四组数据进行统计,获得如图散点图,关于其相关系数的比较,正确的是()A.B.C.D.第(6)题面直角坐标系中,角的顶点为,始边为轴非负半轴,若点是角终边上的一点,则角的值是()A.B.,C.,D.,第(7)题如图,网格纸的小正方形的边长是,在其上用粗实线和粗虚线画出了某几何体的三视图,则该几何体的体积是A.B.C.D.第(8)题下了函数中,满足“”的单调递增函数是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,若不等式恒成立,则的值可以为()A.10B.9C.8D.7第(2)题下列说法中正确的是()A.若数据的方差为0,则此组数据的众数唯一B.已知一组数据2,3,5,7,8,9,9,11,则该组数据的第40百分位数为6C.若两个具有线性相关关系的变量的相关性越强,则线性相关系数r的值越大D.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高第(3)题已知函数的零点分别为,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,则实数的一个取值为__________.第(2)题勾股数是指可以构成一个直角三角形三边的一组正整数,若椭圆的一个焦点把长轴分成长度分别为的两段,且恰好为一组勾股数,则的一个标准方程为_________. (写出满足条件的一个即可)第(3)题已知抛物线的焦点为F,M是抛物线C上一点,若FM的延长线交x轴的正半轴于点N,交抛物线C的准线l于点T,且,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求曲线在点处的切线方程;(2)证明:.第(2)题“中式八球”是受群众欢迎的台球运动项目之一.在一场“中式八球”邀请赛中,甲、乙、丙、丁4人角逐最后的冠军,本次邀请赛采取“双败淘汰制”.具体赛制如下:首先,4人通过抽签两两对阵,胜者进入“胜区”,败者进入“败区”;接下来,“胜区”的2人对阵,胜者进入最后的决赛,“败区”的2人对阵,败者直接淘汰出局,获得第四名;紧接着,“败区”的胜者和“胜区”的败者对阵,胜者晋级最后的决赛,败者获得第三名;最后,剩下的2人进行最后的冠亚军决赛,胜者获得冠军,败者获得第二名.现假定甲对阵乙、丙、丁获胜的概率均为,且不同对阵的结果相互独立.(1)经抽签,第一轮由甲对阵乙,丙对阵丁.若.(I)求甲连胜三场获得冠军的概率;(Ⅱ)求甲在“双败淘汰制”下获得冠军的概率;(2)除“双败淘汰制”外,“中式八球”也经常采用传统的“单败淘汰制”;抽签决定两两对阵,胜者晋级,败者淘汰,直至决出最后的冠军.问当p满足什么条件时,“双败淘汰制”比“单败淘汰制”更利于甲在此次邀请赛中夺冠?第(3)题在公差为的等差数列中,已知,且成等比数列,为数列的前项和.(1)求;(2)若,求的最大值.第(4)题已知函数.(1)求曲线在点处的切线方程;(2)若关于的不等式恒成立,证明:且.第(5)题三阶行列式是解决复杂代数运算的算法,其运算法则如下:.若,则称为空间向量与的叉乘,其中,,为单位正交基底.以为坐标原点,分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,已知是空间直角坐标系中异于的不同两点.(1)①若,求;②证明:.(2)记的面积为,证明:;(3)问:的几何意义表示以为底面、为高的三棱锥体积的多少倍?。

2023年湖南数学高考卷

2023年湖南数学高考卷

2023年湖南数学高考卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0个B. 1个C. 2个D. 3个2. 若函数f(x)=ax²+bx+c在区间[0,1]上单调递增,则下列结论正确的是()A. a>0B. b>0C. c>0D. a+b+c>03. 已知等差数列{an}的前n项和为Sn,若S3=9,S6=27,则a4+a5+a6=()A. 9B. 12C. 15D. 184. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为()A. 3/5B. 4/5C. 3/4D. 4/35. 若复数z满足|z1|=|z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y=x上D. y=x上二、判断题(每题1分,共20分)6. 任何两个实数的和仍然是一个实数。

()7. 若函数f(x)在区间[0,1]上连续,则f(x)在[0,1]上必定有最大值和最小值。

()8. 等差数列的通项公式一定是an=a1+(n1)d。

()9. 在直角坐标系中,点P(a,b)到原点的距离等于a²+b²。

()10. 若两个复数相等,则它们的实部和虚部分别相等。

()三、填空题(每空1分,共10分)11. 已知函数f(x)=2x²4x+3,则f(1)=______。

12. 若向量a=(2,3),向量b=(1,2),则2a3b=______。

13. 在等差数列{an}中,已知a1=1,d=2,则a5=______。

14. 在△ABC中,若a=5,b=7,cosB=3/5,则sinA=______。

15. 设复数z=3+4i,则|z|=______。

四、简答题(每题10分,共10分)16. 请证明:对于任意实数x,(x+1)²≥0。

湖南高考数学试题及答案

湖南高考数学试题及答案

湖南高考数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为:A. 3B. 1C. -3D. -1答案:B2. 已知向量a=(3,-2),b=(1,2),则向量a+b的坐标为:A. (4,0)B. (2,0)C. (-1,0)D. (1,4)答案:A3. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/4D. -√3/4答案:A4. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为:A. 3x^2-6xB. 3x^2-6x+2C. x^2-3x+2D. x^3-3x^2答案:A5. 已知等差数列{an}的首项a1=1,公差d=2,求前5项和S5的值为:A. 15B. 25C. 35D. 45答案:B6. 若直线l的方程为y=2x+3,且点P(1,0)在直线l上,则直线l与x 轴的交点坐标为:A. (-3/2, 0)B. (-3, 0)C. (3/2, 0)D. (3, 0)答案:A7. 已知圆C的方程为(x-1)^2+(y+2)^2=9,求圆C的半径r的值为:A. 3B. 2√2C. √5D. √10答案:A8. 若双曲线的方程为x^2/a^2-y^2/b^2=1,且焦点在x轴上,求双曲线的离心率e的取值范围为:A. (1, +∞)B. (0, 1)C. (-∞, -1)D. (-1, 0)答案:A9. 已知函数f(x)=ln(x+√(x^2+1)),求f'(x)的值为:A. 1/(x+√(x^2+1))B. 1/xC. 1/√(x^2+1)D. 1/(x-√(x^2+1))答案:A10. 若抛物线y^2=4x的焦点为F,点P(1,2)在抛物线上,则点P到焦点F的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2x,求f(0)的值为:______。

湖南高考数学试题及答案

湖南高考数学试题及答案

湖南高考数学试题及答案一、选择题1. (2021年湖南高考数学第1题)已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求f(x)的最小值。

A. -16B. -15C. -14D. -13答案:首先求导f'(x) = 6x^2 - 6x - 12,令其等于零得到x的临界点,再判断临界点处的函数值,比较得出最小值。

2. (2021年湖南高考数学第2题)在直角坐标系中,点A(2,3)关于直线y = x的对称点B的坐标为:A. (3,2)B. (1,4)C. (4,1)D. (0,5)答案:根据点关于直线对称的性质,可以求得点B的坐标。

3. (2021年湖南高考数学第3题)已知等差数列的前三项分别为a, a+d, a+2d,若a > 0, d < 0,则此数列的第100项为:A. a - 99dB. a - 100dC. a + 99dD. a + 100d答案:根据等差数列的通项公式an = a + (n-1)d,代入n=100求得第100项。

4. (2021年湖南高考数学第4题)若复数z满足|z - 1| = |z + 1|,则z在复平面上对应的点位于:A. x轴B. y轴C. 直线y=xD. 直线y=-x答案:根据复数的几何意义,结合|z - 1|和|z + 1|的几何意义,可以判断z在复平面上的位置。

5. (2021年湖南高考数学第5题)已知圆的方程为(x - 2)^2 + (y +3)^2 = 9,直线y = 2x - 6与该圆的位置关系是:A. 相交B. 相切C. 相离D. 无法确定答案:求出圆心和半径,再求出直线与圆心的距离,与半径比较,判断位置关系。

二、填空题6. (2021年湖南高考数学第6题)已知函数g(x) = x^4 - 4x^3 +6x^2 - 4x + 1,求g(2)的值。

答案:将x=2代入函数g(x),计算得出结果。

7. (2021年湖南高考数学第7题)一个等比数列的前四项之和为30,前三项之和为20,求该等比数列的第二项。

2024年湖南省高考数学真题及参考答案

2024年湖南省高考数学真题及参考答案

2024年湖南省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

2022年湖南省高考数学真题及参考答案

2022年湖南省高考数学真题及参考答案

2022年湖南省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。

湖南省长沙市(新版)2024高考数学部编版考试(培优卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版考试(培优卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版考试(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题下列函数中,与函数的奇偶性、单调性均相同的是( ).A .B .C .D .第(2)题已知角的终边经过点,则的值等于( )A.B .C .D .第(3)题已知,分别是方程,的根,则的值为( )A .B .C .10D .5第(4)题函数的定义域是( )A .B .C .D .第(5)题已知函数的图象在处的切线与的图象交于,两点,且,则( )A.B .C .D .第(6)题已知函数,设表示,二者中较大的一个.函数.若,且,,使得成立,则的最小值为( )A.B .C .D .第(7)题魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.已知经典三阶魔方(如图)自由转动之后的色块组合约有4.3×1019种,现将下图已还原的魔方按5步打乱,且每一步互相独立,则共有( )种打乱方式.A .B .C.185D .195第(8)题函数的大致图象为( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A.的定义域为B.的图像在处的切线斜率为C.D.有两个零点,且第(2)题设是两条不同的直线,是两个不同的平面,下列命题中正确的有()A.若,则B.若,则C.若,则D.若,则第(3)题已知,则下列结论正确的有()A.的最大值为B.的最小值为C.的最小值为3D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题执行如图所示的程序框图,输出S的值为_____.第(2)题若点P是曲线上任意一点,则点P到直线的最小距离为_________.第(3)题方程的实数解的个数为_____________ .四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论函数的单调性;(2)令,若是函数的一个极值点,且,求实数a的值.第(2)题地球上两个生物种群之间通常会存在三种关系:相互竞争、相互依存、弱肉强食.已知某两个生物种群A、B在地球上会以约500年为一个周期,从一个关系逐渐过渡到另一种关系,设、、分别表示相互竞争、相互依存、弱肉强食关系,研究发现,该生物种群A、B的过渡概率如图所示,比如生物种群A、B从关系经过一个周期逐渐过渡到关系的概率为,经去年统计数据分析,生物种群A、B现在处于相互竞争关系.(1)求、、;(2)设、、表示在经过n个周期(每个周期为500年)后,生物种群处在相互竞争关系、相互依存关系、弱肉强食关系的概率.证明:数列成等比数列.第(3)题已知函数.(1)是的导函数,求的最小值;(2)已知,证明:;(3)若恒成立,求的取值范围.第(4)题已知实数列{},|满足.数列{}是公差为p的等差数列,数列是公比为p的等比数列.(1)若,求数列{}的通项公式;(2)记数列,的前n项和分别为,.若,证明:.第(5)题设椭圆的左顶点为,上顶点为.已知椭圆的离心率为.(1)求椭圆的方程;(2)设为椭圆上异于点的两动点,若直线的斜率之积为.①证明直线恒过定点,并求出该点坐标;②求面积的最大值.。

2023年湖南省高考数学真题及参考答案

2023年湖南省高考数学真题及参考答案

2023年湖南省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。

湖南省长沙市(新版)2024高考数学部编版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量,,若向量在向量方向上的投影为,则的值为()A.B.C.D.第(2)题若某空间几何体的三视图如图所示,则该几何体的体积是【】A.B.C.1D.2第(3)题某教育机构为调查中小学生每日完成作业的时间,收集了某位学生100天每天完成作业的时间,并绘制了如图所示的频率分布直方图(每个区间均为左闭右开),根据此直方图得出了下列结论,其中正确的是()A.估计该学生每日完成作业的时间在2小时至2.5小时的有50天B.估计该学生每日完成作业时间超过3小时的概率为0.3C.估计该学生每日完成作业时间的平均数为2.75小时D.估计该学生每日完成作业时间的中位数与平均数相等第(4)题复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,则A.B.C.D.第(6)题我国古代数学名著《九章算术》将两底面为直角三角形的直三棱柱称为堑堵,如图,已知直三棱是堑堵,其中,则下列说法中错误的是()A.平面B.平面平面C.D.为锐角三角形第(7)题中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用的水泡制,再等到茶水温度降至时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度随时间变化的规律()A.B.C.D.第(8)题设满足约束条件则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在某市高三年级举行的一次模拟考试中,某学科共有20000人参加考试.为了了解本次考试学生成绩情况,从中抽取了名学生的成绩(成绩均为正整数,满分为100分)进行统计,其成绩都在区间内.按照,,,,的分组作出频率分布直方图如图所示.其中,成绩落在区间内的人数为40,则下列结论正确的是()A.B.图中C.估计该市全体学生成绩的平均分为84分(同一组数据用该组区间的中点值作代表)D.若对80分以上的学生授予“优秀学生”称号,则该市约有14000人获得该称号第(2)题直角三角形中,是斜边上一点,且满足,点在过点的直线上,若,则下列结论正确的是()A.为常数B.的值可以为:C.的最小值为3D.的最小值为第(3)题已知定义在上的函数,对于给定集合,若,当时都有,则称是“封闭”函数.则下列命题正确的是()A.是“封闭”函数B.定义在上的函数都是“封闭”函数C.若是“封闭”函数,则一定是“封闭”函数D.若是“封闭”函数,则不一定是“封闭”函数三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题的展开式中常数项为________ (用数字作答)第(2)题若单位向量,满足,则,的夹角为___________.第(3)题长绒棉是世界上纤维品质最优的棉花,也是全球高端纺织品及特种纺织品的重要原料.新疆具有独特的自然资源优势,是我国最大的长绒棉生产基地,产量占全国长绒棉总产量的95%以上.新疆某农科所为了研究不同土壤环境下棉花的品质,选取甲、乙两地实验田进行种植.在棉花成熟后采摘,分别从甲、乙两地采摘的棉花中各随机抽取50份样本,测定其马克隆值,整理测量数据得到如下列联表(单位:份),其中且.注:棉花的马克隆值是反映棉花纤维细度与成熟度的综合指标,是棉纤维重要的内在质量指标之一.根据现行国家标准规定,马克隆值可分为A,B,C三个级别,A级品质最好,B级为标准级,C级品质最差.A级或B级C级合计甲地a50乙地50合计8020100当时,有99%的把握认为该品种棉花的马克隆值级别与土壤环境有关,则的最小值为______.附:0.0500.0100.001k 3.841 6.63510.828四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,且是函数的导函数,(1)求函数的极值;(2)当时,若方程有两个不等实根.(ⅰ)证明:;(ⅱ)证明:.第(2)题给出以下三个材料:①若函数可导,我们通常把导函数的导数叫做的二阶导数,记作.类似的,函数的二阶导数的导数叫做函数的三阶导数,记作,函数的三阶导数的导数叫做函数的四阶导数……,一般地,函数的阶导数的导数叫做函数的n阶导数,记作,;②若,定义;③若函数在包含的某个开区间上具有任意阶的导数,那么对于任意有,我们将称为函数在点处的泰勒展开式.例如在点处的泰勒展开式为根据以上三段材料,完成下面的题目:(1)求出在点处的泰勒展开式;(2)用在点处的泰勒展开式前三项计算的值,精确到小数点后4位;(3)现已知,试求的值.第(3)题已知椭圆C:1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P.(1)求椭圆C的离心率;(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且=+,求点Q的轨迹方程.第(4)题已知函数.(1)讨论函数的单调性;(2)若函数存在两个不同的零点,,证明:.第(5)题已知双曲线一个顶点为,直线过点且交双曲线右支于两点,记的面积分别为.当与轴垂直时,(1)求双曲线的标准方程;(2)若交轴于点,,.①求证:为定值;②若,当时,求实数的取值范围.。

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知是虚数单位,若复数满足,则的实部是( )A .B .C .D .第(2)题双曲线的离心率是( )A.B .C .D .第(3)题向量,,则( )A .B .C .D .第(4)题已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则第(5)题如图,在长方体中,,点E 是棱上任意一点(端点除外),则( )A .不存在点E ,使得B .空间中与三条直线,,都相交的直线有且只有1条C .过点E 与平面和平面所成角都等于的直线有且只有1条D .过点E 与三条棱,,所成的角都相等的直线有且只有4条第(6)题已知是抛物线上一点,为坐标原点,若线段的垂直平分线经过抛物线的焦点,则( )A .B .C .D .第(7)题如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP 的面积为定值,则动点P 的轨迹是A .圆B .椭圆C .一条直线D .两条平行直线第(8)题“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆:的焦点分别为,,P为上一点,则()A.的焦距为B.的离心率为C.的周长为D.面积的最大值为第(2)题已知平面向量,,则下列说法正确的是()A.B.在方向上的投影向量为C.与垂直的单位向量的坐标为D.若向量与向量共线,则第(3)题已知为抛物线的焦点,点在抛物线上,过点的直线与抛物线交于,两点(在第一象限),为坐标原点,抛物线的准线与轴的交点为,则下列说法正确的是()A.当取最大值时,直线的方程为B.若点,则的最小值为3C.无论过点的直线在什么位置,两条直线,的斜率之和为定值D.若点在抛物线准线上的射影为,则直线、的斜率之积为定值三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题拿破仑定理是法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知内接于单位圆,以,,为边向外作三个等边三角形,其外接圆圆心依次记为,,.若,则的面积最大值为_______.第(2)题已知函数,(e是自然对数的底数),若对,使得成立,则正整数k的最小值为__________.第(3)题已知实数满足,则的最大值为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,,.(1)当时,求的解集;(2)若关于的不等式的解集为,的解集为,若,求实数的取值范围.第(2)题如图,在四棱锥中,平面,,,,,点为的中点.(1)证明:平面平面;(2)若,求点到平面的距离.第(3)题如图,在四棱锥中,,且,设是线段上的一点,且.(1)证明:平面平面;(2)求二面角的余弦值.第(4)题为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;(2)若从乙地被抽取的8名观众中邀请2人参加调研,求参加调研的观众中恰有1人的问卷调查成绩在90分以上(含90分)的概率.第(5)题已知正整数数列满足:,,().(1)已知,,试求、的值;(2)若,求证:;(3)求的取值范围.。

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版(五四制)真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的最小正周期为()A.B.C.D.第(2)题若,z为纯虚数,且,则()A.B.5C.D.3第(3)题如图,甲秀楼位于贵州省贵阳市南明区甲秀路,是该市的标志性建筑之一.甲秀楼始建于明朝,后楼毁重建,改名“凤来阁”,清代甲秀楼多次重修,并恢复原名、现存建筑是宣统元年(1909年)重建.甲秀楼上下三层,白石为栏,层层收进.某研究小组将测量甲秀楼最高点离地面的高度,选取了与该楼底在同一水平面内的两个测量基点与,现测得,,,在点测得甲秀楼顶端的仰角为,则甲秀楼的高度约为(参考数据:,)()A.B.C.D.第(4)题已知,则()A.B.C.D.第(5)题已知点P是双曲线的右支上一点,为双曲线E的左、右焦点,的面积为20,则下列说法正确的是()①点P的横坐标为②的周长为③的内切圆半径为1④的内切圆圆心横坐标为4A.②③④B.①②④C.①②③D.①②第(6)题已知内的一点M满足,则向量与向量的夹角为()A.30°B.45°C.60°D.90°第(7)题已知复数z满足,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(8)题若曲线与恰有两条公切线,则的取值范围为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列函数中,既是偶函数,又在区间上单调递减的是()A.B.C.D.第(2)题已知函数,则().A.B.若有两个不相等的实根,则C.D.若,均为正数,则第(3)题已知函数与的定义域均为,,,且,为偶函数,下列结论正确的是()A.的周期为4B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若函数的最小正周期为,且对任意的恒成立,则的最小值是______.第(2)题对于任意实数,直线恒过定点A,且点,则直线的一个方向向量为________.第(3)题已知双曲线的左、右焦点分别为,点在双曲线上.若为直角三角形,且,则双曲线的离心率为 _______________________ .四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数:.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数有最大值,且,求实数的取值范围.第(2)题如图,在四棱锥中,底面,,,,M为线段上一点,,N为的中点.(1)证明:平面;(2)若平面与平面所成的锐二面角的余弦值为,求三棱锥的体积.第(3)题等差数列的前项和为,且.(1)求;(2)若为等比数列,,求通项公式.第(4)题已知函数.(1)当时,求曲线在点处的切线方程;(2)若,不等式恒成立,求实数的取值范围.第(5)题已知函数.(1)若,证明:.(2)若函数在处有极大值,求实数的取值范围.。

2024年湖南省长沙一中高考数学最后一卷+答案解析

2024年湖南省长沙一中高考数学最后一卷+答案解析

2024年湖南省长沙一中高考数学最后一卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,则()A.B.C.D.2.若复数z 满足,则z 可以为()A.B.C. D.3.已知随机变量X 服从正态分布,且,,则()A.B.C.D.4.已知直线,圆O :,则“”是“直线l 上存在点P ,使点P 在圆O内”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.在平行四边形ABCD 中,,点P 为该平行四边形所在平面内的任意一点,则的最小值为()A.6 B.8C.10D.126.地震震级通常是用来衡量地震释放能量大小的数值,里氏震级最早是由查尔斯里克特提出的,其计算基于地震波的振幅,计算公式为,其中M 表示某地地震的里氏震级,A 表示该地地震台测振仪记录的地震波的最大振幅,表示这次地震中的标准地震振幅.假设在一次地震中,某地地震台测振仪记录的地震波的最大振幅为5000,且这次地震的标准地震振幅为,则该地这次地震的里氏震级约为参考数据:A.级B.级C.级D.级7.已知双曲线的左、右焦点分别为,,P 为C 的渐近线上一点.若的面积为,则C 的离心率为()A.B.2C.D.8.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A. B.3 C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知函数,则下列说法正确的是()A.的最大值为2B.函数的图象关于直线对称C.不等式的解集为D.若在区间上单调递增,则的取值范围是10.某校在运动会期间进行了一场“不服来战”对抗赛,由篮球专业的1名体育生组成甲组,3名非体育生的篮球爱好者组成乙组,两组进行对抗比赛.具体规则为甲组的同学连续投球3次,乙组的同学每人各投球1次.若甲组同学和乙组3名同学的命中率依次分别为,则()A.乙组同学恰好命中2次的概率为B.甲组同学恰好命中2次的概率小于乙组同学恰好命中2次的概率C.甲组同学命中次数的方差为D.乙组同学命中次数的数学期望为11.设无穷数列的前n项和为,且若存在,使成立,则()A.B.C.不等式的解集为D.对任意给定的实数p,总存在,当时,三、填空题:本题共3小题,每小题5分,共15分。

湖南数学高考试题及答案

湖南数学高考试题及答案

湖南数学高考试题及答案1. 选择题1.若sin(2x+45°)=cos(4x-15°),则x的值为()。

A. 5°B. 60°C. 75°D. 85°2.一辆小汽车从A地出发,经过2小时到达B地。

若增加行驶速度v千米/小时,只需1.5小时就能到达B地。

则从A地到B地的路程是()。

A. vB. 1.5vC. 2vD. 2.5v3.在△ABC中,∠ACB=90°,D为BC边上的一个动点,则当直线AB经过一定的位置时,|BA|^2+|BD|^2的值()。

A. 不变B. 增大C. 减小D. 可能增大,可能减小4.解方程2sin2x-sinx-1=0,其中x∈[0, 2π],得x=kπ和x=()。

A. (5/6+k)πB. (2/3+k)πC. (1/3+k)πD. kπ+π5.已知函数f(x)=(ax^2+bx+c)/x-1,且f(3)=5,f'(3)=11,则f(9)的值为()。

A. 21B. 24C. 27D. 30答案及解析:1. 解:根据公式sinA=cos(90°-A),可得2x+45°=4x-15°,化简得2x=60°,解得x=30°。

因此,答案选B. 60°。

2. 解:设原路程为d千米,则根据题意,可得d/v=2和d/(v+u)=1.5,其中u为原速度增加后的数值。

由此,得到d=2v和d=1.5(v+u)。

联立两式,消去d可得2v=1.5(v+u)。

解得0.5v=1.5u,化简得u=v/3。

因此,答案选C. 2v。

3. 解:根据勾股定理,以及题目中的∠ACB=90°,可得|BA|^2+|BD|^2=|DA|^2+|DB|^2。

由此可知,当直线AB通过点D时,|BA|^2+|BD|^2的值保持不变。

因此,答案选A. 不变。

4. 解:根据已知方程可得2sin^2x-sinx-1=0。

湖南省湘潭市(新版)2024高考数学统编版测试(综合卷)完整试卷

湖南省湘潭市(新版)2024高考数学统编版测试(综合卷)完整试卷

湖南省湘潭市(新版)2024高考数学统编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题执行如图所示程序框图,则输出的()A.501B.642C.645D.896第(2)题设集合,,则()A.B.C.D.第(3)题杨辉是我国南宋末年的一位杰出的数学家,其著作《详解九章算法》中画了一张表示二项式展开式后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现简称为“杨辉三角”,比西方的“帕斯卡三角形”早了300多年.若用表示三角形数阵中的第m行第n个数,则()A.5050B.4851C.4950D.5000第(4)题如图,在四面体中,,,则四面体外接球的表面积为()A.B.C.D.第(5)题已知函数f(x)=2sin2x(sin2x+cos2x)﹣1,则下列说法正确的是()A.f(x)的最小正周期为πB.f(x)的最大值为2C.f(x)在[0,]上是增函数D.f(x)在[0,]上有4个零点第(6)题已知集合,,则()A.B.C.D.第(7)题在的展开式中,x的系数为()A.9B.15C.D.第(8)题根据分类变量x与y的成对样本数据,计算得,依据的独立性检验,结论为()参考值:0.10.050.012.7063.841 6.635A.x与y不独立B.x与y不独立,这个结论犯错误的概率不超过0.05C. x与y独立D.x与y独立,这个结论犯错误的概率不超过0.05二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设抛物线:焦点为,点为抛物线准线上的点,经过点的动直线与抛物线交于不同的两点,其中坐标原点为,则()A.若,则B.若,则C.若,则D.若,则第(2)题下列结论中正确的是()A.若,则B.若a是第二象限角,则为第一象限或第三象限角C.若角a的终边过点P(3k,4k)(k≠0),则D.若扇形的周长为6,半径为2,则其中心角的大小为1弧度第(3)题时代青年李华同学既读圣贤书,也闻窗外事,他关注时政,养成了良好的摘抄习惯,以下内容来自他的摘抄笔记:过去一年,我们统筹推进疫情防控和经济社会发展,主要做了以下工作:全年国内生产总值增长2.3%;城镇新增就业1186万人,全国城镇调查失业率降到5.2%;年初剩余的551万农村贫困人口全部脱贫;……今年发展主要预期目标是:国内生产总值增长6%以上;城镇新增就业1100万人以上,城镇调查失业率5.5%左右;居民收入稳步增长;生态环境质量进一步改善,主要污染物排放量继续下降;粮食产量保持在1.3万亿斤以上;……——摘自李克强总理2021年3月5日政府工作报告全国总人口为1443497378人,其中:普查登记的大陆31个省(未包括中国香港、澳门特别行政区和台湾省)、自治区、直辖市和现役军人的人口共1411778724人;香港特别行政区人口为7474200人;澳门特别行政区人口为683218人;台湾地区人口为23561236人;……——摘自2021年5月11日第七次人口普查公报过去一年全年主要目标任务较好完成,“十四五”实现良好开局,我国发展又取得新的重大成就;国内生产总值达到114万亿元,增长8.1%;城镇新增就业1269万人,城镇调查失业率平均为5.1%;居民人均可支配收入实际增长8.1%;污染防治攻坚战深入开展,主要污染物排放量继续下降,地级及以上城市细颗粒物平均浓度下降9.1%;粮食产量1.37万亿斤,比上一年增长,创历史新高;落实常态化防控举措,疫苗全程接种覆盖率超过85%;……—摘自李克强总理2022年3月5日政府工作报告根据以上信息,下列结论正确的有( )A.2020年国内生产总值不足100万亿元B.2021年城镇新增就业人数比预期目标增幅超15%C.2020年、2021年粮食产量都超1.3万亿斤D.2021年完成新冠疫苗全程接种人数约12亿三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在直角坐标系xOy中,点A、B分别在射线和上运动,且的面积为1,则周长的最小值为______________.第(2)题已知,过点倾斜角为的直线交于、两点(在第一象限内),过点作轴,垂足为,现将所在平面以轴为翻折轴向纸面外翻折,使得,则几何体外接球的表面积为______.第(3)题已知全集为,集合,则的补集可用区间表示为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,(a,b∈R)(1)当a=﹣1,b=0时,求曲线y=f(x)﹣g(x)在x=1处的切线方程;(2)当b=0时,若对任意的x∈[1,2],f(x)+g(x)≥0恒成立,求实数a的取值范围;(3)当a=0,b>0时,若方程f(x)=g(x)有两个不同的实数解x1,x2(x1<x2),求证:x1+x2>2.第(2)题中国男篮历史上曾次参加亚运会,其中次夺得金牌,是亚运会夺冠次数最多的球队第届亚运会将于年月日至月日在杭州举办.(1)为了解喜爱篮球运动是否与性别有关,某学校随机抽取了男生和女生各名进行调查,得到列联表如下:喜爱篮球不喜爱篮球合计男生女生合计依据小概率值的独立性检验,能否认为喜爱篮球运动与性别有关?(2)校篮球队中的甲、乙、丙三名球员将进行传球训练,第次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到记开始传球的人为第次触球者,第次触球者是甲的概率记为,即.(i)求,,并证明:为等比数列;(ii)比较第次触球者是甲与第次触球者是乙的概率的大小.参考公式:,其中为样本容量.参考数据:第(3)题《中华人民共和国未成年人保护法》是为保护未成年人身心健康,保障未成年人合法权益.根据宪法制定的法律,某中学为宣传未成年人保护法,特举行一次未成年人保护法知识竞赛、竞赛规则是:两人一组,每一轮竞赛中,小组两人分别选答两题,若答对题数合计不少于3题,则称这个小组为“优秀小组”.已知甲乙两位同学组成一组,且甲、乙同学答对每道题的概率分别为,.(1)若,,则在第一轮竞赛中,求他们获“优秀小组”的概率;(2)当,且每轮比赛互不影响,如果甲乙同学在此次竞赛活动中获得“优秀小组”的次数为6次,请问至少要进行多少轮竞赛.第(4)题某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额(单位:亿元)对年盈利额(单位:亿元)的影响,通过对“十二五”和“十三五”规划发展10年期间年研发资金投入额和年盈利额数据进行分析,建立了两个函数模型:;,其中、、、均为常数,为自然对数的底数,令,,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立关于的回归方程.(系数精确到0.01)附:相关系数回归直线中:,.第(5)题蓝莓种植技术获得突破性进展,喷洒A型营养药有--定的改良蓝莓植株基因的作用,能使蓝莓果的产量和营养价值获得较大提升.某基地每次喷洒A型营养药后,可以使植株中的80%获得基因改良,经过三次喷洒后没有改良基因的植株将会被淘汰,重新种植新的植株.(1)经过三次喷洒后,从该基地的所有植株中随机检测一株,求-株植株能获得基因改良的概率;(2)从该基地多个种植区域随机选取-一个,记为甲区域,在甲区域第一次喷洒A型营养药后,对全部N株植株检测发现有162株获得了基因改良,请求出甲区域种植总数N的最大可能值;(3)该基地喷洒三次A型营养药后,对植株进行分组检测,以淘汰改良失败的植株,每组n株,一株检测费为10元,n株混合后的检测费用为元,若混合后检测出有未改良成功的,还需逐一检测,求n的估计值,使每株检测的平均费用最小,并求出最小值.(结果精确到0.1元)。

湖南省长沙市(新版)2024高考数学统编版真题(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版真题(综合卷)完整试卷

湖南省长沙市(新版)2024高考数学统编版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图,四棱锥中,底面为正方形,是正三角形,,平面平面,则与所成角的余弦值为()A.B.C.D.第(2)题设是虚数单位.若复数是纯虚数,则的值为()A.-3B.1C.-1D.3第(3)题已知全集,集合,则()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题已知,,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件第(6)题使得成立的x的取值范围是A.B.C.D.第(7)题已知,,复数和在复平面内对应的点分别为A、B,则线段AB长度为()A.B.C.1D.第(8)题将个座位连成一排,安排个人就坐,恰有两个空位相邻的不同坐法有A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题四边形ABCD为边长为1的正方形,M为边CD的中点,则()A.B.C.D.第(2)题如图,点E为正方形ABCD边CD上异于点C、D的动点,将沿AE翻折成,在翻折过程中,下列说法正确的是()A.存在点E和某一翻折位置,使得SB⊥SEB.存在点E和某一翻折位置,使得AE∥平面SBCC.存在点E和某一翻折位置,使得直线SB与平面ABC所成的角为45°D.存在点E和某一翻折位置,使得二面角S﹣AB﹣C的大小为60°第(3)题已知函数,则()A.函数在处取得最大值B.函数在区间上单调递减C.函数有两个不同的零点D.恒成立三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知球的直径,C,D是球面上的两点,且,若,则三棱锥的体积的最大值是______.第(2)题在△ABC中,,将△ABC绕BC旋转至△BCD的位置,使得,如图所示,则三棱锥外接球的体积为_____________.第(3)题圆:的圆心到直线的距离为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知A是椭圆C:的左顶点,直线l与椭圆C相交于P,Q两点,满足.当P的坐标为时,的面积为(O为坐标原点).(1)求椭圆C的标准方程;(2)设F是椭圆C的右焦点,求四边形PAQF面积的最大值.第(2)题在等差数列中,.(1)求的通项公式;(2)求数列的前项和.第(3)题已知函数的最小值为3,其中.(1)求不等式的解集;(2)若关于的方程有实数根,求实数的取值范围.第(4)题已知函数.(1)当时,求的单调区间:(2)若,求的取值范围.第(5)题某校即将举办春季运动会,组委会对一项新增的运动项目进行了调查,以了解学生对该项目是否有兴趣.组委会随机抽取人进行问卷调查,经统计知男女生人数之比为,对该项目没有兴趣的学生有人,其中女生占.(1)完成列联表,并判断能否有的把握认为对该项目有兴趣与性别有关?有兴趣没有兴趣总计男女总计(2)若从对该运动项目没有兴趣的学生中按性别用分层抽样的方法抽取人,再从这人中随机选出人进一步了解没有兴趣的原因,求选出的人均为男生的概率.附:,其中.。

湖南省长沙市(新版)2024高考数学人教版真题(评估卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版真题(评估卷)完整试卷

湖南省长沙市(新版)2024高考数学人教版真题(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在长方体中,与平面相交于点M,则下列结论一定成立的是()A.B.C.D.第(2)题设,则()A.B.C.D.第(3)题设集合,,则().A.B.C.D.第(4)题某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍第(5)题设A、B是半径为的球体O表面上的两定点,且,球体O表面上动点M满足,则点M的轨迹长度为()A.B.C.D.第(6)题设集合,集合,则集合()A.B.C.D.第(7)题正四面体棱长为6,,且,以为球心且半径为1的球面上有两点,,,则的最小值为()A.24B.25C.48D.50第(8)题设双曲线的左、右焦点分别为,,且焦距为4,其中一条渐近线的方程为.点P是该双曲线右支上的动点,则的值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题是等比数列的前项和,若存在,使得,则()A.B.是数列的公比C.D.可能为常数列第(2)题已知函数在处取得极小值,与此极小值点最近的图象的一个对称中心为,则下列结论正确的是()A.B.将的图象向左平移个单位长度即可得到的图象C.在区间上单调递减D.在区间上的值域为第(3)题已知直线,圆,则下列结论正确的是()A.直线l恒过定点B.直线l与圆C恒有两个公共点C.直线l与圆C的相交弦长的最大值为D.当时,圆C与圆关于直线l对称三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题3名男生和2名女生随机站成一排,恰有2名男生相邻,则不同的排法种数为______第(2)题9人身高各不相等,排成前后排,前排5人,要求每排从左至右身高逐渐增加,则不同的排法共有______种(用数字作答).第(3)题关于的方程有两个不等实根,则实数的取值范围是___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,角,,的对边分别为,,,点在边上,,,.(1)若,求;(2)若,求的面积.第(2)题某公司有5台旧仪器,其中有2台仪器存在故障,(1)现有一位工人从这5台仪器中随机选择3台进行检测,记ξ为这3台仪器中存在故障的台数,求ξ的分布列和数学期望;(2)为了提高生产,该公司拟引进20台此种新仪器,若每台仪器的运行相互独立,且每台机器在运行过程中发生问题的概率为0.03,记X为这20台新仪器在运行过程中发生故障的台数,借助泊松分布,估计时的概率.附:①若随机变量ξ的分布列为则称随机变量ξ服从泊松分布.②设,当且时,二项分布可近似看成泊松分布.即,其中.③泊松分布表(局部)表中列出了的值(如:时,…0.50.60.7…0…0.6065310.5488120.496585…1…0.3032650.3292870.347610…2…0.0758160.0987860.121663…3…0.0126360.0197570.028388…4…0.0015800.0029640.004968…5…0.0001580.0003560.000696…6…0.0000130.0000360.000081…7…0.0000010.0000030.000008…第(3)题体育运动是强身健体的重要途径,随着“中国儿童青少年体育健康促进行动方案(2020-2030)”的发布,体育运动受到各地中小学的高度重视,众多青少年的体质健康得到很大的改善.我们把每周体育锻炼时间超过8小时的学生称为“运动达人”,为了了解“运动达人”与性别是否有关系,我们对随机抽取的80名学生的性别进行了统计,其中女生与男生的人数之比为,男生中“运动达人”占,女生中“运动达人”占.(1)根据所给数据完成下面的列联表,并判断能否有90%的把握认为“运动达人”与性别有关?女生男生合计运动达人非运动达人合计(2)现从抽取的“运动达人”中,按性别采用分层抽样抽取3人参加体育知识闯关比赛,已知其中男、女生独立闯关成功的概率分别为与,在恰有两人闯关成功的条件下,求有女生闯关成功的概率.附:,.0.1000.0500.0250.010k 2.706 3.841 5.024 6.635第(4)题对于数列,定义,满足,记,称为由数列生成的“函数”.(1)试写出“函数” ,并求的值;(2)若“函数” ,求n的最大值;(3)记函数,其导函数为,证明:“函数” .第(5)题已知椭圆:的长轴为双曲线的实轴,且椭圆过点.(1)求椭圆的标准方程;(2)点、是椭圆上异于点的两个不同的点,直线与的斜率均存在,分别记为,,且,求证:直线恒过定点,并求出定点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2008年普通高等学校单独招生统一考试数学试卷时量150分钟,满分150分参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 如果事件A 在1次实验中发生的概率是P ,那么n 次独立重复实验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(球的表面积公式24S R π=球,体积公式334R V π=球, 其中R 表示球的半径一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的) 1.函数2(x2x 1)2y log -+=(x>1)的反函数为y=1()f x -,则1(2)f -等于 ……………………( ) A .3 B .2 C .0 D .-22.设集合{}x A (x,y)y 2==,{}B (x,y)y a,a R ==∈,则集合A B I 的子集个数最多有( )A .1个B .2个C .3个D .4个 3. 从双曲线虚轴的一个端点看两个顶点的视角为直角,则双曲线的离心率为……… ( )A.12 B .2 C D 4.过P (1,1)作圆224x y +=的弦AB ,若12AP BA =-u u u r u u u r ,则AB 的方程是………( ) A y=x+1 B.y=x +2 C.y= -x+2 D.y= -x-25.在310(1x )(1x)-+展开式中,5x 的系数是 ………………………………………… ( )A . 297-B . 252-C .297D .2076.函数y 2si n(2x)3π=-的单调递增区间是 ………………………………………… ( )A .5k ,k 1212ππ⎡⎤π-π+⎢⎥⎣⎦(k z)∈ B . 511k ,k 1212ππ⎡⎤π+π+⎢⎥⎣⎦(k z)∈ C .k ,k 36ππ⎡⎤π-π+⎢⎥⎣⎦(k z)∈ D . 2k ,k 63ππ⎡⎤π+π+⎢⎥⎣⎦(k z)∈ 7.若n n b lim 1()11b →∞⎡⎤-=⎢⎥-⎣⎦,则b 的取值范围是 …………………………………………( ) A .1b 2<<1 B . 11b 22-<< C .1b 2< D .10b 2<<8.设0x <<1,则y=49x 1x +-的最小值为 ………………………………………… ( ) A .24 B .25 C .26 D .19.如图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则有多少种不同的涂色方法 ……………………………………………………………………………( )A .24种B .72种C .84种D .120种10.平面α的一条斜线l 与平面α交于点P ,Q 是l 上一定点,过点Q 的动直线m 与l 垂直,那么m 与平面α交点的轨迹是……… ( )A .直线 B. 圆 C. 椭圆 D. 抛物线(第9题图) 得分 评卷人 复评人二、填空题(本大题共5小题,每小题5分 ,共25分,把答案填在答题卡中对应题号后的横线上)11.3(1i)(2i)i --+= . 12.不等式11(sin x 2)0x 1x 1⎛⎫+-< ⎪++⎝⎭g 的解集为 . 13.设M 是椭圆22143x y +=上的动点,1A 和2A 分别是椭圆的左、右顶点,则12MA MA •u u u u r u u u u r 的 最小值等于 .14.设f (x)是定义在R 上的奇函数,且f (x 3)f (x)1+=-g ,f (1)2-=,则f (2008)= .15.将一个钢球置于由6根长度为2m 的钢管焊接成的正四面体的钢架内,那么,这个钢球的最大体积为 3(m ).三.解答题(本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤)得分 评卷人 复评人16.(本小题满分12分)已知ABC ∆的外接圆的半径为2,内角A 、B 、C 的对边分别为a 、b 、c ,又向量m (sin A sin C,b a)=--u u r ,2n (sin A sin B)=+r ,且m n ⊥u u r r (I )求角C;(II )求三角形ABC 的面积S 的最大值.得分 评卷人 复评人17.(本小题满分12分)湖南省某单位从5名男职工和3名女职工中任意选派3人参加省总工会组织的“迎奥运,争奉献”演讲比赛.(I )求该单位所派3名选手都是男职工的概率;(II )求该单位男职工、女职工都有选手参加比赛的概率;(III )如果参加演讲比赛的每一位选手获奖的概率均为13,则该单位至少有一名选手获奖的概率是多少?18. (本小题满分12分)把边长为2的正三角形ABC 沿BC 上的高AD 折成直二面角,设折叠后BC 的中点为P.(I )求异面直线AC ,PD 所成的角的余弦值;(II )求二面角C —AB —D 的大小;(III )在AB 上是否存在一点S ,使得AC ⊥面PSD ?若存在,试确定S 的位置,若不存在,试说明理由.19.(本小题满分12分)设函数2f (x)x(x a)=-(I )证明: a 3<是函数f (x)在区间(1,2)上递减的必要而不充分的条件;(II )若x 0,a 1∈⎡+⎤⎣⎦时,2f (x)2a <恒成立,且f (0)0=,求实数a 的取值范围.20.(本小题满分13分)已知曲线C 上的动点M 到y 轴的距离比到点F (1,0)的距离小1.(I )求曲线C 的方程;(II )过F 作弦PQ 、RS ,设PQ 、RS 的中点分别为A 、B ,若0PQ RS •=u u u r u u u r ,求AB u u u r 最小时,弦PQ 、RS所在直线的方程;(III )是否存在一定点T ,使得AF TB FT λ=-u u u r u u r u u u r ?若存在,求出P 的坐标,若不存在,试说明理由.21.(本小题满分14分)数学社区提供已知曲线C :2f (x)3x 1=-,C 上的两点A 、n A 的横坐标分别为2与n a (n 1,2,3,)=…,1a 4=,数列{}n x 满足[]n 1n tx f (x 1)113+=-++(t 0>且1t 2≠,t 1≠).设区间[]n n n D 1,a (a 1)=>,当n x D ∈时,曲线C 上存在点n n n p (x ,f (x )),使得点n p 处的切线与n AA 平行.(I )建立n x 与n a 的关系式;(II )证明:{}n (x1)t log 1-+是等比数列;(III )当n 1D +n D ⊂≠对一切n N +∈恒成立时,求t 的范围.参考答案一. 选择题(每小题5分) 题号 1 2 3 4 5 6 7 8 9 10答案 A B D C D B C B C A二. 填空题(每小题5分)11.3i -- 12。

{1}x x >- 13。

-1 14。

12 15。

6π三. 解答题16.02sin sin )sin sin )()sin 04m n m n A C A C b a B ⊥⇒=∴-++-=u r r u r r Q g 解:(I)((……………2分且2R=22,由正弦定理得:222()()()02242a cbb a R R R -+-=化简得: 222c a b ab =+- ……………4分由余弦定理:2222cos c a b ab C =+-133sin 3242S ab C ab ==≤11分所以,max 33,2S ABC =∆此时,为正三角形……………12分17.解:(I )记事件A=“该单位所派的选手都是男职工” ……………1分则P (A )=3538528C C = ……………3分(II )记事件B=“该单位男职工、女职工选手参加比赛” ……………4分则P (B )=2112535333884556C C C C C C +=……………7分(III )设该单位至少有一名选手获奖的概率为P ,则或32191327P P =-=033(0)=1-C ()……………12分18.(解法一)(I )取AB 的中点为Q ,连接PQ ,则PQ AC P ,所以,DPQ ∠为AC 与BD 所成角……………2分又CD=BD=1,2PD ∴=PQ=1,DQ=1 2222cos 24PD PQ OQ DPQ PD PQ +-∴∠==⋅……………4分 (II )过D 作DR AB ⊥,连接CR ,ACD ABD ⊥Q 面面,CD ABD ∴⊥面CR AB ∴⊥CRD C AB D ∴∠--就是二面角的平面角……………6分在Rt ADB ∆中,3DR AB AD BD DR ⋅=⋅⇒= 23tan 3CD CRD DR ∴∠==……………8分 C AB D ∴--23二面角的大小为arctan3……………9分 (解法二)(I )如图,以D 为坐标原点,DB 、AD 、DC 所在直线分别为x,y,z 轴建立直角坐标系。

则A (0,3,0),C (0,0,1),B (1,0,0),P (11,0,22),D (0,0,0) 3,1)AC ∴=u u u r ,11(,0,)22PD =u u u r ……2分 所以,异面直线AC 与BD 所成角的余弦值为24……………4分 (II )面DAB 的一个法向量为1(0,0,1)n =u r ………5分设面ABC 的一个法向量2(,,)n x y z =u u r ,则12030030n AC z n AB x ⎧⎧=+=⎪⎪⇒⎨⎨=+=⎪⎪⎩⎩u r u u u r g u u r u u u r g ,取2(3,3,3)n =-u u r ,……………7分则 1211221cos ,7n n n n n ∴<>==u r u u r u r r g u r u u r ……………8分 C AB D ∴--21二面角的大小为arccos 7…………9分 (III )不存在。

若存在S 使得AC PSD ⊥面,则AC PD ⊥,与(I )矛盾。

故不存在…12分19.解:(I )f Q (x )在区间(1,2)上递减,其导函数22f (x)3x 4ax a '=-+……………1分 '2'2(1)0430(2)0812********f a a f a a a a a a ⎧⎧<-+<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎩⎩<<⎧⇒⇒<<⇒<⎨<<⎩……………4分故a 3<是函数f (x)在区间(1,2)上递减的必要而不充分的条件……………5分(II )2()()f x x x a =-Qa f (x)3(x a)(x )3'=--……………6分当a>0时,函数()y f x =在(,3a -∞)上递增,在(,)3a a 上递减,在(,)3a +∞上递增,故有 22()227132(1)2a f a a f a a ⎧<⎪⇒<<⎨⎪+<⎩……………9分 当a 〈0时,函数()y f x =在(,)3a +∞上递增,∴只要232(1)246510f a a a a a -<⇒-+-> 令32()4651g a a a a =-+-,则'221()1212512()202g a a a a =-+=-+>…………11分 所以()g a 在(,0)-∞上递增,又(0)10g =-<2(1)2f a a ∴-<不能恒成立。

相关文档
最新文档