仪器分析知识点总结大全
仪器分析全知识点
分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。
紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光围的光谱行为。
第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。
纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。
2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。
在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。
单色光: 单一频率(波长)的光7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数:注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示8人们对光吸收定律认识,经历了较长历史过程。
仪器分析知识点总结大全
苯环或烯烃上的H被各种取代基取代,多产生红移。 5)pH值:红移或蓝移 6)溶剂效应:红移或蓝移
由n-*跃迁产生的吸收峰,随溶剂极性增加,形成 H 键的能力增加, 发生蓝移;由-*跃迁产生的吸收峰,随溶剂极性增加,激发态比基态
应时,可以试样作参比(不能加显色剂)。
第四章 原子发射光谱分析
4.1 概述 4.2 基本原理 4.3 AES 仪器 4.4 定性定量分析方法
关键词: 1)分析对象为大多数金属原子; 2)物质原子的外层电子受激发射产生特征谱线(线光谱); 3)谱线波长——定性分析;谱线强度——定量分析。
定义:AES是据每种原子或离子在热或电激发下,发射出特征的电磁 辐射而进行元素定性和定量分析的方法。
标准曲线法; 标准加入法; 内标法。
第二章 光学分析方法导论
光学分析方法: 利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射 强度等光学特性,进行物质的定性和定量分析的方法。
电磁辐射具有波动性和微粒性;E = hν = h c /λ 发射光谱
吸收光谱
线光谱: 由处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约
定义,概念,名词解释 方法原理、特点 仪器 定性、定量分析 误差来源及消除
仪器分析方法及分类
仪器分析
光分析法
原子 光谱
分子 光谱
电化学分析法
电 电库 伏 导 位仑 安
色谱分析法
气相 色谱
液相 色谱
热分析法, 质谱分析法, 分析仪器联用技术
原 原原 子 子子 发 吸荧 射 收光
紫分 红 外子 外 可荧 见 光、
(完整版)仪器分析知识点整理..
(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。
仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。
化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。
⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。
2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。
3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。
4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。
5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。
⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。
需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。
二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。
仪器分析 知识点总结
仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。
其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。
2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。
在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。
在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。
在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。
二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。
其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。
红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。
其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。
质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。
3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。
其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。
气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。
4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。
其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。
离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。
三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。
仪器分析知识点
仪器分析题库第一章1. 几个常用公式:v=λν(v:传播速度,λ:波长,ν:频率)1eV=1.602*10^-19 J波动性:c=λf=f/σ(f:频率,σ=1/λ:波数)微粒性:E=hν=hc/λ(h:普朗克常数,其值为6.626*10^-34 J·s)2. 电磁波谱:电磁辐射按照波长或频率的大小顺序排列γ射线→X射线→紫外光→可见光→红外光→微波→无线电波(从左到右:波长越来越大,频率越来越小,能量越来越小)3. 光谱法按物质与能量作用形式(能量交换方向)分类:1)吸收能量(基态→激发态)M+hν→M*2)发射、辐射(激发态→基态)M*→M+hν按作用的物质对象分类:1)原子光谱,2)分子光谱4. 共振线:原子中的电子的基态和激发态能量差的辐射称为共振线第一共振线:从基态跃迁至能量最低的激发态(第一激发态)产生的共振线称为第一共振线(由于各类元素的第一共振线不同,故这种共振线称为元素的特征谱线)。
第一共振线灵敏度最高,所以又称为最灵敏线。
第二章1. 紫外-可见吸收光谱法(UV-Vis)是分子吸收光谱方法,也是带状光谱,是由分子中的价电子发生能级跃迁发生的。
2. 分子能级的高低顺序:σ<π<n<*π<σ*分子轨道间可能的跃迁有:σ→σ*, σ→*π, π→σ*, n→σ*, π→*π, n→*π跃迁能量最大:σ→σ*,跃迁能量最小:n→*π3. 朗伯-比尔定律1)它表明在稀溶液中,物质对单色光的吸光度(A)与吸光物质溶液的浓度(c)和液层厚度(l)的乘积成正比。
2)公式:A=lcε(ε:常数,称为吸光系数或吸收系数)3)摩尔吸光系数:在一定波长时,溶液浓度为单位摩尔浓度、液层厚度为单位厚度时的吸光度,其单位为L·cm-1·mol-1。
(偏离比尔定律的因素:1)化学因素:浓度,需要小于0.01mol/L;2)光学因素:非单色光;其他光学因素:反射,参比溶液;散射:胶体,细小颗粒物(应用均匀溶液,真溶液,若产生“假吸收”,会导致吸光度增加,导致结果偏高))4. 影响显色反应的因素:显色剂用量、溶液酸度(pH)、显色时间、显色温度第三章1. 红外光谱(IR)是分子光谱,是由于分子中原子振动或分子转动产生的吸收光谱。
仪器分析重点知识点整理
仪器分析重点知识点整理一,名词解释。
1.吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱2.吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数 A=abc =lg(I0/I t)3.透光率(T):透射光强度与入射光强度之比 T=I0/I t4.摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度5.百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度6.发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收7.助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团8.红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象9.蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象10.浓色效应(增色效应):使化合物吸收强度增加的效应11.淡色效应(减色效应):使化合物吸收强度减弱的效应12.吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带13.R带:Radikal(基团) ,是由 n →π*跃迁引起的吸收带14.K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带15.B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带16.E带:也是芳香族化合物特征吸收带,分为E1、E217.紫外吸收曲线(紫外吸收光谱):18.最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长19.最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长20.末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分21.试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液22.试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液23.溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液24.荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光25.分子荧光:?26.荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比27.多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示28.谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓29.半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围30.峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?31.共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线32.内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法33.外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法34.背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因35.物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应36.光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰37.原子吸收光谱:?38.保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应39.释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来40.红外线:波长为0.76-500um的电磁波41.红外光谱:又称分子振动转动光谱,属分子吸收光谱。
仪器分析知识点总结
0;相对保留值:某组分2的调整保留值与组分1的调整保留值之比。
1死体积:不被保留的组分通过色谱柱所消耗的流动相的体积。
保留时间:从进样开始到色谱峰最大值出现时所需要的时间。
发色团:能导致化合物在紫外及可见光区产生吸收的基团。
1;最大吸收波长:吸收峰所对应的波长称为最大吸收波长。
2;肩峰:在一个峰旁边产生的曲折,称为肩峰。
3、末端吸收:在指有机化合物分子中含有能产生∏~∏*或n~∏*跃迁的,能在紫外可见光范围内产生吸收的光团。
④助色团(带杂原子的饱和基团):是含有非键电子对的杂原子饱和色团,当他们与生色团或饱和烃相连时,能使生色团或饱和烃的吸收峰向长波方向移动,并使吸收增加,如-oH,-NH2等。
5 红移:指由于化合物的结构改变,如加入助色团,发生共轭作用以及改变溶剂等,使吸收峰向长波方向移动。
6蓝移:指当化合物的结构改变或受溶剂影响,使吸收峰向短波方向移动。
7 、增色效应:由于化合物结构改变或其他原因,使吸收强度增强,称为增色效应。
8、减色效应:由于化合物的结构改变或其他原因,使吸收强度减弱,称减色效应。
9、程序升温:指在一个分析周期内柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的。
10 、振动驰豫:激发态分子可能将过剩的振动能量以热的形式传递给周围的分子而自身Sr的高振动能层失活到该电子能级的最低振动能层上。
11 、镜像规则:通常荧光发射光谱与它的吸收光谱成镜像对称系。
12 、内转换:相同多重态间的一种无辐射跃迁过程。
13 、外转换:激发分子通过与溶剂或溶质间的相互作用和能量转换而使荧光或磷光减弱甚至消失的过程。
14 、系间跨越:不同多重态间的一种无辐射跃迁过程,它涉及受电子自旋状态的改变。
15 、荧光发射:分子处于单重激发态的最低振动能层时,发射光子返回基态,这一过程称为荧光跃迁。
16 、磷光发射:当受激分子降至S1的最低振动能级后,如果经系间跨越至T1态,并经T1态的最低振动能级回S0态的各振动能级,此过程辐射的光称为磷光发射。
仪器分析考点整理
仪器分析考点整理一、概念部分1、色谱法:借助于在两相间分配原理而使混合物中各组分分离的技术,称为色谱分离技术或色谱法2、基线:当色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随时间变化的线称为基线3、分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比称为分配系数K4、分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值:5、分配过程:物质在固定相和流动相(气相)之间发生的吸附、脱附和溶解、挥发的过程叫做分配过程。
6、相对保留时间:(α或r12)指某组分2的调整保留时间与另一组分1的调整保留时间之比:7、程序升温:程序升温色谱法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。
8、梯度洗脱:载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比,从而改变极性,通过载液极性的变化来改变被分离组分的分离因素,以提高分离效果。
9、顶空分析:顶空分析是取样品基质(液体和固体)上方的气相部分进行色谱分析。
10、共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线。
11、化学干扰:指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率。
12、谱线轮廓:原子群从基态跃迁至激发态所吸收的谱线并不是绝对单色的几何线,而是具有一定的宽度,称之为谱线轮廓。
13、基体效应:物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起的干扰效应。
14、锐线光源:能发射出谱线半宽度很窄的发射线的光源。
15、担体:是一种化学惰性、多孔性的固体颗粒,主要作用是提供一个大的惰性表面,以便涂上一层薄而均匀的液膜,构成固定相。
15、在气相色谱中,程序升温适于对宽沸程样品进行分析。
16、在使用气相色谱仪之前应检查仪器各部件是否处于正常状态,对气路部分来讲,首先应进行检漏。
仪器分析知识点复习汇总
仪器分析知识点复习汇总研究必备,欢迎下载。
第一章:绪论1.灵敏度是指被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。
检出限是一定置信水平下检出分析物或组分的最小量或最小浓度。
2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的3倍。
3.根据表里给的数据,标准曲线方程为y=5.7554x+0.1267,相关系数为0.9716.第二章:光学分析法导论1.原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。
分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。
吸收光谱是当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。
发射光谱是处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。
带光谱除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。
线光谱是物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,其谱线的宽度约为10-3nm,称为自然宽度。
2.UV-Vis和IR属于带状光谱,AES、AAS和AFS属于线性状光谱。
第三章:紫外-可见吸收光谱法1.朗伯-比尔定律的物理意义是样品溶液中吸收光的强度与样品浓度成正比。
透光度是指样品溶液透过光束后的光强度与入射光强度之比。
吸光度是指样品溶液吸收光束后的光强度与入射光强度之比。
两者之间的关系是吸光度等于-log(透光度)。
2.有色配合物的XXX吸收系数与入射光波长有关。
3.物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁。
4.最大能量跃迁需要最大能量,因此跃迁所需能量最大的是电子从基态到最高激发态的跃迁。
A.样品加入量和仪器响应的不确定性B.谱线重叠的问题C.光谱干扰的问题D.样品制备的不确定性改写:1.电感耦合等离子体光源由高频发射器、等离子炬管、雾化器等三部分组成,具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。
仪器分析 重点内容归纳
仪器分析第一章1.电位法的基本原理。
P152.离子选择电极的分类。
P163.玻璃膜电极是怎样产生的?P184.不对称电位?酸差?碱差?P205.TISAB的组成及作用。
P286.标准曲线法、标准加入法。
P297.电位滴定:数据处理、三种作图方法及终点判断并会用语言描述。
P29~308.电重量法的定义及分类。
P339.库仑法的理论基础及电流效率。
P3510.极谱法的工作电极、定性定量依据、极谱曲线的产生条件?P41~4211.干扰电流有多少种?P48第三章12.色谱流出曲线及参数表征。
P68~6913.气相色谱分离中的各参数的相关内容。
P70~7214.塔板理论及速率理论。
P73~7415.用速率理论来解释怎样提高柱效。
P74~7516.分离度。
P7817.气液色谱固定相分类,担体要求,固定液选择原则、分离依据及出峰顺序。
P81/83、P315(李)18.两种重要检测器的原理、载气及检测过程(理解)。
P8619.气相色谱中固定相选择原则及出峰顺序。
P9120.归一化法及内标法计算题。
P96~9721.气象色谱仪的组成。
P79第四章22.高效液相色谱仪的组成。
P10823.液相色谱的流动相。
P11624.液相色谱的主要分离类型及各自原理。
P118~125第六章(无计算题)25.光谱项及选择定则。
P166~16726.原子发射光谱仪的结构及光源。
P16927.元素的分析线、最后线、灵敏线、共振线及铁谱。
P17728.内标法原理,内标元素与分析线对的选择要求?P17829.引起吸收峰变宽的的原因?P180~18130.锐线光源应满足的条件?P18331.原子吸收分光光度计的结构。
P18432.火焰法类型。
P18633.光谱干扰与抑制?P18834.原子荧光光谱法的原理与分类(了解)。
P193第八章35.分子荧光中去激发方式?P22936.荧光光谱的基本特征?P23337.产生荧光的分子必须具备的条件。
P23438.分子磷光与荧光的区别。
仪器分析知识点总结
1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法;光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号.光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。
光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器; 显示与数据处理;2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。
原子发射光谱分析法的特点:(1)可多元素同时检测各元素同时发射各自的特征光谱;(2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);(3)选择性高各元素具有不同的特征光谱;(4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)(5)准确度较高5%~10% (一般光源);〈1%(ICP) ;(6)ICP-AES性能优越线性范围4~6数量级,可测高、中、低不同含量试样;缺点:非金属元素不能检测或灵敏度低.3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。
特点:(1)检出限低,10—10~10—14 g;(2) 准确度高,1%~5%;(3)选择性高,一般情况下共存元素不干扰;(4)应用广,可测定70多个元素(各种样品中);局限性:难熔元素、非金属元素测定困难、不能同时多元素测量4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。
5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10—8s后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90度的方向上,测定荧光强度进行定量分析的方法.6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。
仪器分析重点
一、红外光谱的产生及其条件: 分子的振动-转动能级间的跃迁,能量低 (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。 二、 红外吸收光谱与分子结构 • 基团频率区:4000~1300 cm-1 • 指纹区:1300~650-1 • 影响基团频率位移的因素
1)共轭效应:;2) 诱导效应
仪器分析
Instrumental Analysis
: ; 8293927(h) email:
1
• 第一章、绪论
仪器分析的分类和特点
灵敏度高, 选择性好。 操作简便,分析速度快,容易实现自动化。 相对误差较大。
分析仪器的组成
分析信号
信号发生
转换或检测器
电信号
信号处理器
读出装置
第二章 光分析法导论
一、光学分析法及其分类
• 阳极、阴极的区分:氧化或还原反应 •色谱法分类:气相(气固、气液)、液相(液固、液液)
•分离类型的选择:相对分子质量、溶解度、分子结构 •: ; 8293927(h)
•石墨炉原•子化电器在测极定时的的四极个阶化段。:浓差极化、电化学极化、过电位、超电压。
•AAS、AES、HPLC、GC、MS、IR、UV-Vis、CV
3)中介效应:;4) 氢键的影响
三、红外光谱仪
光源:能斯特灯、Βιβλιοθήκη 碳棒样品室(吸收池):玻璃、石英等对红外光均有吸收。 采用NaCl、KBr等材料
单色器:
检测器:热电偶、测热辐射计、热释电检测器和碲 镉汞检测器
两种类型红外光谱仪的主要区别
四、样品制备要求及方法
第五章、分子荧光及磷光分析
一、荧光与磷光的产生(发射光谱) 荧光:第一激发单重态的最低振动能级→基态; 磷光:第一激发三重态的最低振动能级→基态; 振动弛豫、内转换、外转换、系间跨越、发射光谱、
仪器分析教程知识点总结
仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。
其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。
在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。
2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。
通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。
在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。
通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。
在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。
通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。
在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。
仪器分析课程知识点总结
课程知识点归纳1.电磁辐射的波粒二象性,分别用哪些参数表示(波动性:折射、衍射、干涉和散射现象,可以用波长、频率和速度等参数来描述;粒子性:能量E=hv)υ=λvE=hv=hc/λ波长:λ每个光子能量:E J/mol 频率:v 辐射传播速度:υh=6.626×10-34J·s2.电磁辐射能量与波长、频率的关系E=hv3.紫外-可见吸收光谱法的波长范围180nm-780nm4.生色基团、助色基团、红移、蓝移发色基团(生色基团)凡是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显色都是发色基团。
助色集团,它们孤立的存在于分子式中时,在紫外-可见光区内不一定产生吸收。
但当它与发色基团相连时,能使发色基团的吸收谱带明显地发生改变。
红移由于取代基作用或溶剂效应导致发色基团的吸收峰向长波长移动的现象。
蓝移由于取代基作用或溶剂效应导致发色基团的吸收峰向短波长移动的现象。
5.影响化合物紫外-可见光谱的因素1.共轭效应的影响同分异构体之间双键位置或基团排列位置不同,分子的共轭程度不同,它们的紫外-可见吸收波长及强度也不同。
2.分子离子化的影响若化合物在不同的pH介质中能形成阳离子或阴离子,则吸收带会随分子的离子化而改变。
3.取代基的影响取代基对吸收带波长的影响程度与取代基的性质及其在分子中的相对位置有着密切的关系。
4.溶剂的影响在不同溶剂中测一种纯物质的紫外-可见光谱时,所获得的谱带形状、最大吸收波长和吸收强度可能因溶剂不同而不同。
6.朗伯比尔定律(公式、透光率T、吸光度A、摩尔吸光系数ε、计算题、摩尔吸光系数的物理意义)T=I/I0透光率:T %出射光强:I 入射光强:I0A=εlc=-lgT吸光度:A L/(g·cm)或L/(mol·cm)吸光物质浓度:c g/L或mol/L液层厚度:l cm 吸光系数:ε吸光系数的物理意义是吸光物质在单位质量浓度及单位液层厚度时的吸光度7.偏离比尔定律的主要因素及其减免方法主要因素光学因素:1朗伯-比尔定律的前提条件之一是入射光为单色光。
仪器分析全知识点..
分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。
紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光范围的光谱行为。
第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子内部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。
纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。
2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。
在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。
单色光: 单一频率(波长)的光 7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数: 注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示 8人们对光吸收定律认识,经历了较长历史过程。
仪器分析(考点总结)
常用方法色谱分析法,电化学分析法,光学分析法,核磁共振波谱法,质谱分析法 (多)2 .气相载气: N2,H2 和 He (多)3.基线:当色谱柱没有组分进入检测器时,反应检测器噪声随时间变化的线。
(名,判)4.基线漂移:基线随时间定向的缓慢变化。
(名)5.基线噪声:由各种因素所引起的基线起伏。
(名,判)6.保留时间:指被测组分从进样开始到柱后出现浓度最大值所需的时间。
(名,判)指扣除死时间后的保留时间。
(名,判)7.调整保留时间:峰高为一半处的宽度。
(名,判,单)8.半峰宽度9.分配系数 K:在一定温度下组分在两相之间分配达到平衡时的浓度比。
(名,判,单)10.气相色谱分析色谱柱:分配系数大的组分需要流出色谱柱的时间较迟。
(填,判 )11.气相色谱分析原理:不同物质在两相间具有不同的分配系数。
(判)12.分配比 k :容量因子或容量比,在一定温度、压力下,在两相间达到分配平衡时,组分在两相中的质量比。
(名,判,单):包括气相传质阻力系数 C g 和液相传质阻力系数 C1 。
(单)13.传质项14.分离度若两组峰高相近,峰形对称且满足正态分布,当 R=1 时,分离程度可达98%:当 R=1.5 时,相邻两峰已完全分开的标志,分离程度可达 99.7%。
(单)15.柱温对于沸点范围较宽的试样,宜采用程序升温。
(填,判,单)16.气相分离非极性物质,一般选用非极性固定液。
(单)17.气相检测器原理分类:浓度型检测器和质量型检测器。
(填,多,单)18.气相检测器分类:热导检测器 ( TCD ),氢火焰离子化检测器 ( FID ) ,电子俘获检测器( ECD ) ,火焰光度检测器( FPD ,单)。
(多)19.气相检测器性能指标:灵敏度 S ,检出限 D,最小检出量 Q0 ,响应时间,线性范围。
(多)20.气相色谱定性根据色谱保留值进行的。
(判)21. 气相色谱分析的特点:高效能,选择性好,灵敏度高,操作简单,应用广泛的分析、分离方法。
仪器分析重点内容梳理
电位滴定法 滴定终点确定的方法
9
7、电解分析基本原理
分解电压、析出电位、超电位 电解析出离子的次序及完全程度
8、电解分析方法及应用
控制电流分解法
控制电位分解法
9、库仑分析法 法拉第电解定律 库仑法与电解法装置与测定原理的异同 库仑滴定:原理、特点、应用
10
10、伏安法和极谱分析
定义、原理
定量、定性依据 干扰电流及其抑制
11、现代极谱方法
方波极谱
12、溶出伏安法
电解富集与伏安分析相结合的一种极谱分析技术 基本原理与过程
13、循环伏安法
基本原理
11
三、吸收光谱(原子吸收、紫外吸收、红外吸收光谱)
1、原子吸收光谱
利用物质的气态原子对特定波长的光的吸收来进行分析的方法 AAS与UV-Vis异同 谱线变宽的原因:自然变宽、多普勒变宽、压力变宽 积分吸收与峰值吸收:采用锐线光源(定义、原因、结果) 空心阴极灯 原子吸收分光光度计:光源 原子化器(火焰、石墨炉) 原子化系统 分光系统 检测系统 定量方法:标准曲线法、标准加入法 干扰及其消除:谱线干扰、背景吸收、化学干扰、物理干扰及电 离干扰 测定条件的选择:分析线、灯电流、原子化条件、燃烧器高度、 12 狭缝宽度
2、电分析化学法分类 3、电位分析基本原理
ΔE = + - - + 液接电位 Nernst方程
7
4、离子选择性电极的原理
结构、类别 不同膜电极的组成、测定原理、特点(晶体膜电极、玻璃 膜电极、流动载体膜电极、气敏电极) 玻璃膜电位的产生
仪器分析知识点总结大全
仪器分析知识点总结大全仪器分析是化学分析领域中重要的分支,它借助各种仪器设备对物质进行定性、定量和结构分析。
以下是对仪器分析中一些关键知识点的详细总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的方法。
关键知识点:1、锐线光源:通常使用空心阴极灯,能发射出半宽度很窄的特征谱线。
2、原子化器:常见的有火焰原子化器和石墨炉原子化器。
火焰原子化器操作简便、重现性好;石墨炉原子化器灵敏度高,但精密度稍差。
3、定量分析方法:常用的有标准曲线法和标准加入法。
(二)原子发射光谱法(AES)原子发射光谱法是通过测量原子由激发态回到基态时发射的特征谱线来定性和定量分析元素的方法。
重点内容:1、激发源:如电弧、火花和电感耦合等离子体(ICP)等。
ICP 具有温度高、稳定性好、自吸效应小等优点。
2、定性分析:依据元素的特征谱线进行。
3、定量分析:内标法是常用的定量方法,选择合适的内标元素很关键。
(三)紫外可见分光光度法(UVVis)这是基于物质分子对紫外可见光区的电磁辐射的吸收特性而建立的分析方法。
知识点包括:1、吸收光谱:物质对不同波长光的吸收程度不同,形成吸收光谱。
2、朗伯比尔定律:A =εbc,其中 A 为吸光度,ε 为摩尔吸光系数,b 为光程,c 为物质浓度。
3、显色反应:为了提高测定的灵敏度和选择性,常需要进行显色反应。
二、电化学分析法(一)电位分析法通过测量电池电动势来确定溶液中被测物质浓度的方法。
要点如下:1、指示电极和参比电极:指示电极的电位随被测离子浓度变化而变化,参比电极的电位恒定。
2、 pH 玻璃电极:对氢离子有选择性响应。
3、离子选择性电极:选择性地响应特定离子。
(二)电解与库仑分析法电解分析法是通过电解使被测物质在电极上析出,然后称重求得其含量。
库仑分析法是依据电解过程中消耗的电量来进行定量分析。
仪器分析知识点总结各章
仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。
1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。
1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。
常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。
第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。
2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。
原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。
2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。
2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。
第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。
3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。
3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。
3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。
《仪器分析》知识点整理
《仪器分析》知识点整理一、仪器分类1.按测量原理分类:光学仪器、电子仪器、热力学仪器等;2.按测量对象分类:物理性质测量仪器、化学性质测量仪器、生物性质测量仪器等;3.按测量方法分类:分光法仪器、电化学法仪器、色谱法仪器等。
二、分析方法1.光谱法:包括紫外可见光谱、红外光谱、原子吸收光谱等,用于物质的结构分析和定量测定;2.色谱法:包括气相色谱、液相色谱等,用于物质分离和定性定量分析;3.电化学法:包括电位滴定法、电解析法等,用于物质的电化学性质测定;4.波谱法:包括质谱、核磁共振等,用于物质的分子结构和成分的测定;5.色度法:用于物质颜色的测定。
三、仪器操作与调试1.仪器的安装:包括设备摆放、电源接线和设备连接等操作;2.仪器的调零:如光谱仪进行零点调整,使其读数归零,保证测量的准确性;3.分析曲线的绘制:通过构建标准曲线来进行定量分析,提高测量精度;4.仪器的正确使用:如熟练掌握仪器的各个功能键和参数设定方法,避免误操作;5.仪器的维护与保养:包括定期清洁、维修和更换零部件,延长仪器寿命。
四、仪器的应用领域1.化学分析:如水质分析、土壤分析、食品质量检测、药物分析等;2.聚合物材料:如塑料、合成树脂等材料的成分分析和性能表征;3.环境监测:包括大气污染、水质污染、土壤污染等环境问题的分析与监测;4.制药工业:用于药物质量控制和药物成分分析等;5.生命科学:如生物材料分析、基因测序、蛋白质组学研究等。
五、仪器的发展趋势1.近红外光谱技术的应用与发展;2.微纳技术和生物芯片技术的应用;3.便携式仪器设备的发展;4.互联网和大数据技术在仪器分析中的应用;5.仪器的自动化和智能化发展。
通过对以上知识点的整理,可以更好地理解《仪器分析》的基本概念、分类和应用领域,了解仪器的操作和调试方法,了解仪器分析领域的未来发展趋势。
同时,了解《仪器分析》的知识也有助于提高我们在实验室工作中的科学素养和操作技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_ _ _ _ Pyroelectric transducer _
____ UV-Vis
350 - (500 )max-750 nm _______ ibid 190 - 1100nm
U V-Vis
IR
真空光电管
阴极
e
光束 阳极丝(Ni)
抽真空
直流放大
R
- 90V DC +
阴极表面可涂渍不同光敏物质:高灵敏(K,Cs,Sb其中二者)、红光敏 (Na/K/Cs/Sb, Ag/O/Cs)、紫外光敏、平坦响应(Ga/As,响应受波长影响 小)。产生的光电流约为硒光电池的1/10。 优点:阻抗大,电流易放大;响应快;应用广。 缺点:有微小暗电流(Dark current,40K的放射线激发)。
定义,概念,名词解释 方法原理、特点 仪器 定性、定量分析 误差来源及消除
仪器分析方法及分类
仪器分析
光分析法
原子 光谱
分子 光谱
电化学分析法
电 电库 伏 导 位仑 安
色谱分析法
气相 色谱
液相 色谱
热分析法, 质谱分析法, 分析仪器联用技术
原 原原 子 子子 发 吸荧 射 收光
紫分 红 外子 外 可荧 见 光、
_ _ _ _ _ Photovoltaic cell ,_ _ _ _
_____
_ Vacuum phototube _
_____
_ Photomultiplier tube _
_ _ _ _ _ Silicon diode _
______ ______
______ ______
_ Photodiode array, PDA _
磷 光
吸 分 吸分离尺亲 附 配 附配子寸和 色 色 色色交排色 谱 谱 谱谱换阻谱
色色 谱谱
仪器性能及其表征
精密度
误差 bias x
灵敏度 分析灵敏度
检测限
CDL
k1sb k
3sb k
线性范围
k/s
选择性
仪器分析校正方法
所谓校正,就是将仪器分析产生的各种信号与待测物浓度联系起来的 过程。
校正方法有:
693.4nm 632.8nm 515.4nm _ 488.0nm
__
对光源的要求:强度大(分析灵敏度高)、稳定(分析重现性好)。
2. 吸收池
除发射光谱外,其它所有光谱分析都需要吸收池。盛放试样的吸 收池由光透明材料制成。
❖ 石英或熔融石英:紫外光区—可见光区—3m; ❖ 玻璃:可见光区(350-2000nm); ❖ 盐窗(NaCl, NaBr晶体):红外光区。
__ *
_____ _
H2 _ D2 _ W_ __ Nernst _ ___ Hg _ Na _ _____ _______ _ ______ He-Ne ___ Ar _____ ____ ____ __ ICP
160-375nm
320-2500nm 250-700nm 6000-5000cm -1 _ ______ 254-734nm 589.0nm _ 589.6nm _____
Charge -transfer device, CTD _ (Charge -injection device, CID )
(Charge -coupled device, CCD)
_____
_ Photoconductivity __
_ _ _ _ Thermocouple _
_ _ _ _ _ Bolometer _
标准曲线法; 标准加入法; 内标法。
第二章 光学分析方法导论
光学分析方法: 利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射 强度等光学特性,进行物质的定性和定量分析的方法。
电磁辐射具有波动性和微粒性;E = hν = h c /λ 发射光谱
吸收光谱
线光谱: 由处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约
为10-4A。 带状光谱:
由气态自由基或小分子振动-转动能级跃迁所产生的光谱,由于各能 级间的能量差较小,因而产生的谱线不易分辨开而形成所谓的带状光谱,
其带宽达几个至几十个nm。
原 原原 X
子
子子
射 线
发 吸荧 荧
射 收光 光
原子光谱法
吸收光谱法
原紫红核 子外外磁 吸可可共 收见见振
光谱分析法
紫红分分核化 外外子子磁学 可可荧磷共发 见见光光振光
分子光谱法
发射光谱法
原原分分 X 化
子
子
子
子
射 线
学
发荧荧磷 荧 发
射光光光 光 光
光谱仪器
吸收
光源或 炽热固体
样品容器
分光系统
光电转换
信号处理器
荧光
样品容器
分光系统
光源灯或 激光
光电转换
信号处理器
发射
光源+样品
分光系统
光电转换
信号处理器
1、光源
___ _
___
____ ____ ____ _____ _____
定量分析:选择较宽的狭缝宽度—增加照亮狭缝的亮度,提 高分析的灵敏度;
应根据样品性质和分析要求确定狭缝宽度。并通过条件优化 确定最佳狭缝宽度。
与发射光谱分析相比,原子吸收光谱因谱线数少,可采用较 宽的狭缝。但当背景大时,可适当减小缝宽。
4. 光电转换器
定义:光电转换器是将光辐射转化为可以测量的电信号的器件。 理想的光电转换器要求: ➢ 灵敏度高; ➢ S/N大; ➢ 暗电流小; ➢ 响应快且在宽的波段内响应恒定。
3. 分光系统
定义: 将由不同波长的“复合光”分开为一系列“单一” 波长的
“单色光”的器件。
1)棱镜与光栅之比较
2)狭缝
S 单色器的分辨能力(有效带宽S)应由下式决定:
DW
D=倒线色散率;W=狭缝宽度。当单色仪的色散率固定时,波长间隔 将随狭缝宽度变化。
狭缝宽度的选择原则
定性分析:选择较窄的狭缝宽度—提高分辨率,减少其它谱 线的干扰,提高选择性;
C_ _______
___ __
_____ _____
_____
(photo transducer)
______
(Multichannel t ransducer)
_____ _ ___
(Thermal transducer)
___
_ _ (Vis) _ _ _ _ _ _ _ _
(UV-Vis)
光电倍增管
石英套
栅极,Grill
阳极
1个光子产生106~107个电子
光束 屏蔽
共有9个打拿极(dynatron),所加直流电压共为9010V
优点:高灵敏度;响应快;适于弱光测定,甚至对单一光子均可响应。 缺点:热发射强,因此暗电流大,需冷却(-30oC)。不得置于强光(如
日光)下,否则可永久损坏 PMT!