(完整word版)初三数学复习几何论证题中辅助线的添加方法
初中几何添辅助线方法
初中几何添辅助线方法初中几何学中,添辅助线是解题的常用方法之一。
通过巧妙地引入辅助线,可以简化问题,帮助我们更好地理解和解决几何问题。
本文将介绍几种常见的初中几何添辅助线方法。
一、三角形的辅助线方法1. 垂心和垂足当我们遇到一个三角形,需要证明某条线段平行于另一条线段时,可以考虑引入垂心和垂足。
通过引入垂心和垂足,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 中位线中位线是连接三角形两个顶点和中点的线段。
在解决三角形问题时,可以考虑引入中位线。
中位线将三角形分成两个全等的三角形,从而简化问题。
3. 角平分线角平分线将一个角分成两个相等的角。
在解决三角形问题时,可以考虑引入角平分线。
通过引入角平分线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
二、四边形的辅助线方法1. 对角线对角线是四边形两个非相邻顶点之间的线段。
在解决四边形问题时,可以考虑引入对角线。
通过引入对角线,我们可以将四边形分成两个全等的三角形,从而简化问题。
2. 中线中线是连接四边形两个相邻顶点中点的线段。
在解决四边形问题时,可以考虑引入中线。
中线将四边形分成两个全等的三角形,从而简化问题。
三、圆的辅助线方法1. 半径和切线在解决圆的问题时,可以考虑引入半径和切线。
通过引入半径和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 弦和切线在解决圆的问题时,可以考虑引入弦和切线。
通过引入弦和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
四、其他几何图形的辅助线方法1. 高和底边在解决梯形或三角形问题时,可以考虑引入高和底边。
通过引入高和底边,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 中线在解决平行四边形问题时,可以考虑引入中线。
中线将平行四边形分成两个全等的三角形,从而简化问题。
初中几何学中的添辅助线方法是解题的重要手段之一。
通过巧妙地引入辅助线,我们可以简化问题,帮助我们更好地理解和解决几何问题。
几何证明题辅助线基本方法
几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。
在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。
本文将介绍几何证明题中常用的辅助线基本方法。
1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。
具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。
2. 在相应的位置引入一条辅助线。
3. 利用平行线的性质进行推理,证明所需的平行关系。
2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。
2. 在相应的位置引入一条相等的辅助线。
3. 利用等边、等角等性质进行推理,证明所需的相等关系。
3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。
2. 在相应的位置引入一条垂直的辅助线。
3. 利用垂直线的性质进行推理,证明所需的垂直关系。
4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能存在同位角的直线。
2. 在相应的位置引入同位角的辅助线。
3. 利用同位角的性质进行推理,证明所需的同位角相等关系。
5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。
例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。
综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。
通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。
在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。
几何证明例题及常见的添加辅助线方法
几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。
下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。
添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。
然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。
2.证明等腰梯形的对角线垂直。
添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。
通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。
3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。
添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。
通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。
4.证明正方形的对角线互相垂直。
添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。
通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。
5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。
添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。
通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。
以上是几个常见的几何证明例题及其对应的添加辅助线方法。
在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。
但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。
(2021年整理)初三数学复习几何论证题中辅助线的添加方法
(完整版)初三数学复习几何论证题中辅助线的添加方法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初三数学复习几何论证题中辅助线的添加方法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初三数学复习几何论证题中辅助线的添加方法的全部内容。
(完整版)初三数学复习几何论证题中辅助线的添加方法编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)初三数学复习几何论证题中辅助线的添加方法这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)初三数学复习几何论证题中辅助线的添加方法〉这篇文档的全部内容。
C初三数学复习——几何论证题中辅助线的添加方法(一)辅助线的添加方法正确熟练地掌握辅助线的作法和规律,也是迅速解题的关键,如何准确地作出需要的辅助线,简单介绍几种方法: 方法一:从已知出发作出辅助线:例1.已知:在△ABC 中,AD 是BC 边的中线,E 是AD F 是BE 延长线与AC 的交点,求证:AF=FC 21 分析:题设中含有D 是BC 中点,E 是AD 中点,由此可以联想到三角形中与边中点有密 切联系的中位线,所以,可有如下2种辅助线作法:(1)过D 点作DN ∥CA ,交BF 于N ,可得N 为BF 中点,由中位线定理得DN=FC 21,再证△AEF ≌△DEN ,则有AF=DN,进而有AF=FC 21(2)过D 点作DM ∥BF ,交AC 于M,可得FM=CM ,FM=AF 有AF=FC 21方法二:分析结论,作出辅助线例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径, 求证:AB ·AC=AE ·AD分析:要证AB ·AC=AE ·AD ,需证ACAEAD AB =(或ACADAE AB =),需证△ABE ∽△ADC(或△ABD ∽△AEC ), 这就需要连结BE (或CE ),形成所需要的三角形,同时得 ∠ABE=∠ADC=900(或∠ADB=∠ACE=900)又∠E=∠C (或∠B=∠E ) 因而得证。
初中数学几何图形的辅助线添加方法大全
初中数学添加辅助线的方法汇总作辅助线的根本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作边或线段的平行线,以到达应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边假设相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心〞和“无心〞旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于角;第二,是把三角形中的某一线段进展平移。
故作歌诀:“造角、平、相似,和差积商见。
〞托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表〕五:两圆假设相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切〔外切,切〕,或相离〔含、外离〕,那么,辅助线往往是连心线或外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径〔或半径〕端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,那么弧上的弦是辅助线;如遇弦,那么弦心距为辅助线。
初中数学几何证明题画辅助线的技巧
初中数学几何证明题画辅助线的技巧第一篇:初中数学几何证明题画辅助线的技巧初中数学几何证明题画辅助线的技巧在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。
以下是常见的辅助线作法编成了一些“顺口溜” 歌诀。
人人都说几何难,难就难在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
第二篇:初中数学几何证明题作辅助线的技巧人说几何很困难,难点就在辅助线。
初中数学几何证明题辅助线怎么画?辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
几何题添加辅助线的标准
几何题添加辅助线的标准在解几何题时,添加辅助线是常用的方法之一,用于连接已知条件和未知条件,以便更容易找到解题思路和求解方法。
下面介绍几种常见的添加辅助线的方法。
1. 定义法定义法是指根据题目所给的条件和结论,结合几何图形的性质和定义,直接在图形上画出满足条件的辅助线。
这种方法比较简单,但需要熟练掌握几何图形的性质和定义。
例如,在解直角三角形时,可以根据直角三角形的定义,直接在图形上画出直角三角形的高、中线和角平分线等辅助线。
2. 构造法构造法是指根据题目所给的条件和结论,构造一个满足条件的新的几何图形,并在该图形上画出需要的辅助线。
这种方法比较灵活,但需要充分了解各种几何图形的性质和特点。
例如,在解圆的问题时,可以通过构造一个直径、半径或圆心角等辅助线,将已知条件和未知条件连接起来。
3. 归纳法归纳法是指通过对一些特殊情况的观察和分析,总结归纳出一般规律,并在此基础上画出需要的辅助线。
这种方法比较抽象,但可以帮助我们发现新的规律和解题方法。
例如,在解多边形的问题时,可以通过归纳总结出多边形的内角和公式,并在此基础上画出需要的辅助线。
4. 反证法反证法是指先假设题目中的结论不成立,然后推导出矛盾的结论,从而证明结论的正确性。
这种方法比较间接,但可以帮助我们找到解题的突破口。
例如,在解平行线的问题时,可以通过反证法证明一条直线和另外两条平行线相交时所得到的同位角相等。
具体做法是先假设同位角不相等,然后推导出矛盾的结论,从而证明同位角相等。
5. 转化法添加辅助线的目的是为了将复杂的问题转化为简单的问题进行处理。
转化法是指通过添加辅助线将题目中的复杂图形转化为简单图形,以便更容易求解。
这种方法比较灵活,需要熟练掌握各种几何图形的性质和特点。
例如,在解四边形的问题时,可以通过添加辅助线将四边形转化为三角形、平行四边形或矩形等简单图形进行处理。
又如,在解圆的问题时,可以通过添加辅助线将圆转化为三角形、矩形或椭圆等简单图形进行处理。
几何证明辅助线添加技巧
初中数学几何证明辅助线添加技巧一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线(还可以利用等腰三角形顶角的外角是底角的两倍添加辅助线)。
2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的第三条直线。
(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形(这个图形很重要!)。
(3)等腰三角形中的重要线段(即三线合一线,往往是加高用中点)是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形(这个图形很重要!)中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形(好好琢磨下这段文字,还是很有道理的):全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
(完整word版)初中几何辅助线大全
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线.2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图"!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形.出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形.(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形.(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中几何辅助线添加的方法
初中几何辅助线添加的方法初中数学辅助线的添加方法一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中数学辅助线的九种添加方法
初中数学辅助线的九种添加方法1添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
初中数学辅助线的添加方式汇总
初中数学辅助线的添加方式汇总一、添辅助线有二种情形:1、按概念添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按大体图形添辅助线:每一个几何定理都有与它相对应的几何图形,咱们把它叫做大体图形,添辅助线往往是具有大体图形的性质而大体图形不完整时补完整大体图形,因此“添线”应该叫做“补图”!如此可避免乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个大体图形:当几何中显现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的大体图形:当几何问题中显现一点发出的二条相等线段时往往要补完整等腰三角形。
显现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的大体图形:显现等腰三角形底边上的中点添底边上的中线;显现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的大体图形。
(4)直角三角形斜边上中线大体图形显现直角三角形斜边上的中点往往添斜边上的中线。
显现线段倍半关系且倍线段是直角三角形的斜边那么要添直角三角形斜边上的中线得直角三角形斜边上中线大体图形。
(5)三角形中位线大体图形几何问题中显现多个中点时往往添加三角形中位线大体图形进行证明当有中点没有中位线时那么添中位线,当有中位线三角形不完整时那么需补完整三角形;当显现线段倍半关系且与倍线段有公共端点的线段带一个中点那么可过这中点添倍线段的平行线得三角形中位线大体图形;当显现线段倍半关系且与半线段的端点是某线段的中点,那么可过带中点线段的端点添半线段的平行线得三角形中位线大体图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;若是显现两条相等线段或两个档相等角关于某一直线成轴对称就能够够添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
中考题辅助线的作法及解题对策
初中几何题辅助线的做法(一)三角形添加辅助线的常用方法1. 图中若有角分线,可向两边作垂线;2.角分线加平行线,等腰三角形来添;3.角平分线加垂线,三线合一试试看;4.线段垂线平分线,常向两端把线连;5.线段和差及倍半,截长补短可试验;6.线段和差不等式,移到同一三角形;7.三角形中两中点,连接则成中位线;8.三角形中有中线,倍长中线得全等。
(二)平行四边形添加辅助线的常用方法1. 对角线交于一点,对称中心等分点;2. 常常连接对角线,或是平移对角线;3.过顶点作边垂线,构成直角三角形;4.连接中心与边中点,构成平行或中位线;5.过顶点作对角线垂线,构成平行或全等形。
(三)圆添加辅助线的常用方法1. 半径与弦长计算,弦心距来作桥梁;2. 圆上若有一切线,切点圆心半径连;3.切线长度要计算,勾股定理最方便;4.要想证明是切线,半径垂线是关键;5.直径所对是半圆,构成直角径连弦;6.弧有中点圆心连,垂径定理要用到;7.圆周角边两条弦,直径和弦端点连;8.圆中看到弦切角,找同弧所对圆周角;9. 要想作个外接圆,各边做出中垂线;10.还要作个内切圆,作出内角平分线;11.如果遇到相交圆,不要忘作公共弦;12.内外相切两个圆,经过切点公切线;13.若是添上连心线,切点肯定在线上;14.要作等角添个圆,同圆同弧对等角;15.同圆等弧对等弦,证明等角找等弧;16.圆心角2倍圆周角,两者对的是等弧。
中考题中设置问题的求解对策1. 若要求线段长度,常会用到相似、勾股或全等。
有时可能需要分成两段算。
2.证明两条线段相等,常用等角或全等。
3.证明两线平行,常找三线八角。
4.判定平行四边形,两组对边分别平行或相等;也可两组对角相等;也可对角线互相评分;也可一组对边平行且相等。
5.判定图形是菱形,平行四边形+邻边相等;或平行四边形+对角线垂直。
6.判定图形是矩形,平行四边形+一个直角;或平行四边形+对角线相等。
7.求线段比值,引入a,b,c等字母,通过相似、全等或勾股定理,求解字母的数字,最后求解比值问题,三角形面积的比常常联系相似比。
中考添加辅助线解题的方法
中考添加辅助线解题的方法一、添辅助线有二种情况:按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
初中数学常见辅助线做法精编WORD版
初中数学常见辅助线做法精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中几何15中添加辅助线的方法
初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。
辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。
在这里,我将介绍15种常见的添加辅助线的方法。
1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。
2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。
3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。
4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。
5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。
6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。
7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。
8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。
9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。
10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。
11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。
12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。
13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。
14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。
15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。
这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。
当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。
通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学复习——几何论证题中辅助线的添加方法
(一)辅助线的添加方法
正确熟练地掌握辅助线的作法和规律,也是迅速解题的关键,如何准确地作出需要的辅助线,简单介绍几种方法: 方法一:从已知出发作出辅助线:
例1.已知:在△ABC 中,AD 是BC 边的中线,E 是AD 延长线与AC 的交点,求证:AF=FC 21
分析:题设中含有D 是BC 中点,E 是AD 中点,由此可以联想到三角形中与边中点有密 切联系的中位线,所以,可有如下2种辅助线作法:
(1)过D 点作DN ∥CA ,交BF 于N ,可得N 为BF 中点,由中位线定理得
DN=FC 21,再证△AEF ≌△DEN ,则有AF=DN ,进而有AF=FC 21
(2)过D 点作DM ∥BF ,交AC 于M ,可得FM=CM ,AF=FC 2
1
方法二:分析结论,作出辅助线
例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径, 求证:AB ·AC=AE ·AD
分析:要证AB ·AC=AE ·AD ,需证AC
AE
AD AB =
(或
AC
AD
AE AB =),需证△ABE ∽△ADC (或△ABD ∽△AEC ), 这就需要连结BE (或CE ),形成所需要的三角形,同时得
∠ABE=∠ADC=900(或∠ADB=∠ACE=900)又∠E=∠C (或∠B=∠E ) 因而得证。
方法三:“两头凑”(即同时分析已知和结论)作出辅助线
例3:过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ; 求证:AE ∶ED=2AF ∶FB
分析:已知D 是BC 中点,那么在 三角形中可过中点作平行线得中位线;
若要出现结论中的AE ∶ED ,则应有一条与EF 平行的直线。
所以,过D 点作DM ∥EF 交AB 于M ,可得
FM
AF
FM AF ED AE 22=
=,再证BF=2FM 即可。
方法四:找出辅助线的一般规律,助。
例如:在“圆”部分就有许多规律性辅助线: (1)有弦,作“垂直于弦的直径”
例4:已知,如图,在以O 弦
AB 交小圆于C 、D 两点,求证:AC=BD
分析:过O 点作OE ⊥AB 于E ,则 AE=BE ,CE=DE ,即可证得AC=BD
(2)有直径,构成直径上的圆周角(直角) 例5:已知:如图,以△ABC 的AC 边为直径,
作⊙O 交BC 、BA 于D 、E 两点,且⋂
⋂=DE CD , 求证:∠B=∠C
分析:连结AD ,由于AC 为直径,则有AD ⊥BC ,又
⋂
⋂=DE CD ,有∠1=∠2,由内角和定理得∠B=∠C
(3)见切线,连半径,证垂直
例6:如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,求证:AC 平分∠DAB 分析:连结OC ,由于CD 为切线,可知 OC ⊥CD ,易证:∠1=∠2,又因为∠2=∠3, 所以∠1=∠3,则可得AC 平分∠DAB
(4)证切线时,“连半径,证垂直”或“作垂直,证半径” 例7:已知,直线AB 经过⊙O 上的一点,并且OA=OB ,CA=CB ; 求证:直线AB 是⊙O 的切线
分析:连结OC ,要证AB 是⊙O 的切线, 需证OC ⊥AB ,由已知可证△OAC ≌△OBC , 可得∠OCA=∠OCB=900,结论得证。
例8:已知,梯形ABCD 中,AB ∥CD ,∠A=900,BC 是⊙O 的直
径,BC=CD+AB , 求证:AD 是⊙O 的切线
分析:过O 点作OE ⊥AD ,垂足为E ,
要证AD 是⊙O 的切线,只要证OE 是⊙O 的半径即可,
也就是说需要证OE=BC 2
1
,由于∠A=900,AB ∥CD ,可得AB ∥CD ∥OE ,再由平行
线等分线段定理得DE=EA ,进而由梯形中位线定理得OE=BC CD AB 21
)(21=+,
所以E 点在⊙O 上,AD 是⊙O 的切线。
(二)练习
1、已知: 如图,在△ABC 中,AD =DB ,AE =EC . 求证: DE ∥BC ,DE =2
1
BC .
2、已知: 如图27.3.12所示,在梯形ABCD 中,
AD ∥BC ,AE =BE ,DF =CF . 求证: EF ∥BC ,EF =2
1
(AD +BC ).
E
D
A
C
B
3、已知:如图27.3.13所示,在△ABC中.AD=DB,BE=EC,AF=FC. 求证:AE、DF互相平分。
4、如图:已知:AB为⊙O的直径,弦CD⊥AB,M为
AC上一点,AM的延长
线交DC的延长线于F,
求证:∠AMD=∠FMC
5、如图:正方形ABCD中,E、F分别AB、BC的中点,AF和DE交于点P
求证:CP=CD
P
F
E
C A
B。